Решите уравнение а: Уравнения. Онлайн калькулятор с примерами

Содержание

Mathway | Решение алгебраических задач

Mathway | Решение алгебраических задач

New Messages

User is Typing

Для функционирования Mathway необходим javascript и современный браузер.

Этот веб-сайт использует cookie файлы, чтобы сделать использование нашего ресурса максимально удобным для вас.

Убедитесь, что ваш пароль содержит не менее 8 символов и как минимум один из следующих символов:

  • число
  • буква
  • специальный символ: @$#!%*?&

Решение уравнений с параметром онлайн · Как пользоваться Контрольная Работа РУ

Решение уравнений с параметром онлайн

Сайт решает несколько типов уравнений с параметрами:

  • линейные с параметром
  • квадратные с параметром

Например, если требуется решить линейное уравнение с параметром: (a^2-1)*x = 1 + a

Дано уравнение с параметром: $$x \left(a^{2} - 1\right) = a + 1$$ Коэффициент при x равен $$a^{2} - 1$$ тогда возможные случаи для a : $$a < -1$$ $$a = -1$$ $$a > -1 \wedge a < 1$$ $$a = 1$$ Рассмотри все случаи подробнее:
При $$a < -1$$ уравнение будет $$3 x + 1 = 0$$ его решение $$x = - \frac{1}{3}$$ При $$a = -1$$ уравнение будет $$0 = 0$$ его решение - любое x При $$a > -1 \wedge a < 1$$ уравнение будет $$- x - 1 = 0$$ его решение $$x = -1$$ При $$a = 1$$ уравнение будет $$-2 = 0$$ его решение: нет решений

Пример решения квадратного уравнения с параметром

Пример решения квадратного и квадратичного уравнения с параметрами онлайн

(a^2-1)*x^2 = (8 + 9*a)*x + 1

Дано уравнение с параметром: $$x^{2} \left(a^{2} - 1\right) = x \left(9 a + 8\right) + 1$$ Коэффициент при x равен $$a^{2} - 1$$ тогда возможные случаи для a : $$a < -1$$ $$a = -1$$ $$a > -1 \wedge a < 1$$ $$a = 1$$ Рассмотри все случаи подробнее:
При $$a < -1$$ уравнение будет $$3 x^{2} + 10 x - 1 = 0$$ его решение $$x = - \frac{5}{3} + \frac{2 \sqrt{7}}{3}$$ $$x = - \frac{2 \sqrt{7}}{3} - \frac{5}{3}$$ При $$a = -1$$ уравнение будет $$x - 1 = 0$$ его решение $$x = 1$$ При $$a > -1 \wedge a < 1$$ уравнение будет $$- x^{2} - 8 x - 1 = 0$$ его решение $$x = -4 - \sqrt{15}$$ $$x = -4 + \sqrt{15}$$ При $$a = 1$$ уравнение будет $$- 17 x - 1 = 0$$ его решение $$x = - \frac{1}{17}$$

Задание №13. Уравнения - профильный ЕГЭ по математике

Задание 13 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 13 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

{cos x}{cos x}

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

-\frac{17\pi }{6};-\frac{5\pi }{2};-\frac{3\pi }{2}.

Ответ:

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

4 \pi.

Получим:

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а)

Степени равны, их основания равны. Значит, равны и показатели.

{cos x({sin x-\frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

\left[-\pi ;\frac{\pi }{2}\right]

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

а)

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

{{sin}^2 x=0,5}

{{sin}^2 x=0,5}

{{sin}^2 x=0,5}

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Сначала серия

Теперь серия

Ответ: .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

ОДЗ:

{tg x=\frac{{sin x}}{{cos x}}}.

Уравнение равносильно системе:

{tg x=\frac{{sin x}}{{cos x}}}.

{tg x=\frac{{sin x}}{{cos x}}}.

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых {tg x=\frac{{sin x}}{{cos x}}}., то есть те, что соответствуют точкам справа от оси .

Y

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

\left[-\frac{5\pi }{2};-\pi \right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

и

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

[-\pi ;4\pi ].

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

tgx=-1.

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

{cos x+{sin x}}\ge 0

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке нам подходит корень .

На отрезке нам подходят корни .

На отрезке — корни

Ответ в пункте б):

Решение уравнений на ЕГЭ по Математике. Готовимся правильно!

В этом разделе – все основные способы и приемы решения уравнений на ЕГЭ по математике.

А встретиться вам могут всевозможные уравнения – квадратные, а также уравнения высших степеней. Дробно-рациональные уравнения. Уравнения, содержащие знак корня (иррациональные) или знак модуля. Показательные и логарифмические. И для каждого из этих типов – свои методы и секреты решения.

Десятиклассникам будут особенно полезны темы: «Алгебраические уравнения», «Уравнения с модулем», «Иррациональные уравнения», «Системы алгебраических уравнений».

Квадратные уравнения

Алгебраические уравнения

Системы алгебраических уравнений

Показательные уравнения

Логарифмические уравнения

Уравнения с модулем

Иррациональные уравнения

Простейшие тригонометрические уравнения, 1

Простейшие тригонометрические уравнения, 2

Тригонометрические уравнения. Методы решения

 

Запомним главное – что нужно знать при решении уравнений

- Корень уравнения – это такое число, при подстановке которого в уравнение получается верное равенство.

- Решить уравнение – значит найти все его корни или доказать, что их нет.

- Равносильными называются уравнения, множества решений которых совпадают.

- Если в уравнении есть дроби, корни четной степени, логарифмы – значит, не забываем про область допустимых значений (ОДЗ) уравнения. 

- Если в уравнении можно сделать замену переменной – сделайте замену переменной.

- Решение уравнения лучше всего оформлять в виде цепочки равносильных переходов.

- Решив уравнение, сделайте проверку. Действительно ли найденные вами ответы являются корнями уравнения?

- Если слева и справа в уравнении находятся функции разных типов – например, квадратичная и показательная, или логарифм и синус, - значит, оно решается или графически, или с использованием свойств этих функций, или методом оценки

Больше уравнений:

Задание 5 Профильного ЕГЭ по математике

Задание 13 Профильного ЕГЭ по математике

Решатель уравнений: Wolfram | Alpha

О решении уравнений

Значение называется корнем многочлена if.

Наибольший показатель степени появления называется степенью. Если есть степень, то хорошо известно, что есть корни, если учесть множественность. Чтобы понять, что подразумевается под множественностью, возьмем, например,. Считается, что этот многочлен имеет два корня, оба равны 3.

Кто-то изучает «теорему о факторах», как правило, во втором курсе алгебры, как способ найти все корни, являющиеся рациональными числами.Также можно научиться находить корни всех квадратичных многочленов, используя при необходимости квадратные корни (возникающие из дискриминанта). Существуют более сложные формулы для выражения корней многочленов кубической и четвертой степени, а также ряд численных методов аппроксимации корней произвольных многочленов. В них используются методы комплексного анализа, а также сложные численные алгоритмы, и это действительно область постоянных исследований и разработок.

Системы линейных уравнений часто решаются с использованием метода исключения Гаусса или связанных методов.Это тоже обычно встречается в программах средней школы или колледжа по математике. Для поиска корней одновременных систем нелинейных уравнений необходимы более совершенные методы. Аналогичные замечания относятся к работе с системами неравенств: линейный случай может быть обработан с использованием методов, описанных в курсах линейной алгебры, тогда как полиномиальные системы более высокой степени обычно требуют более сложных вычислительных инструментов.

Как Wolfram | Alpha решает уравнения

Для решения уравнений Wolfram | Alpha вызывает функции Solve и Reduce языка Wolfram Language, которые содержат широкий спектр методов для всех видов алгебры, от основных линейных и квадратных уравнений до многомерных нелинейных систем.В некоторых случаях используются методы линейной алгебры, такие как исключение Гаусса, с оптимизацией для повышения скорости и надежности. Другие операции полагаются на теоремы и алгоритмы из теории чисел, абстрактной алгебры и других сложных областей для вычисления результатов. Эти методы тщательно спроектированы и выбраны, чтобы позволить Wolfram | Alpha решать самые разнообразные проблемы, а также минимизировать время вычислений.

Хотя такие методы полезны для прямых решений, для системы также важно понимать, как человек решит ту же проблему.В результате в Wolfram | Alpha также есть отдельные алгоритмы для пошагового отображения алгебраических операций с использованием классических методов, которые людям легко распознать и которым легко следовать. Это включает в себя исключение, замену, квадратную формулу, правило Крамера и многое другое.

.

Решение уравнений

Что такое уравнение?

Уравнение говорит, что две вещи равны. Он будет иметь знак равенства "=", например:

.

Это уравнение говорит: то, что слева (x - 2) равно тому, что справа (4)

Таким образом, уравнение похоже на оператор ", это равно , что "

Что такое решение?

Решение - это значение, которое мы можем ввести вместо переменной (например, x ), которая делает уравнение истинным .


Пример: x - 2 = 4

Когда мы ставим 6 вместо x, получаем:

6–2 = 4

, что соответствует истинным

Итак, x = 6 - решение.

Как насчет других значений x?

  • Для x = 5 мы получаем «5−2 = 4», что неверно , поэтому x = 5 не является решением .
  • Для x = 9 мы получаем «9−2 = 4», что не соответствует , поэтому x = 9 не является решением .
  • и т. Д.

В этом случае x = 6 - единственное решение.

Вы можете попрактиковаться в решении некоторых анимированных уравнений.

Более одного решения

Может быть более одного решения .

Пример: (x − 3) (x − 2) = 0

Когда x равно 3, получаем:

(3−3) (3−2) = 0 × 1 = 0

, что соответствует истинным

И когда x равно 2, получаем:

(2−3) (2−2) = (−1) × 0 = 0

, что также является истинным

Итак, решения:

x = 3 , или x = 2

Когда мы собираем все решения вместе, он называется набором решений

Приведенный выше набор решений: {2, 3}

Решения везде!

Некоторые уравнения верны для всех допустимых значений и называются

Identities

Пример: sin (−θ) = −sin (θ) - одно из тригонометрических тождеств

Попробуем θ = 30 °:

sin (-30 °) = -0.5 и

−sin (30 °) = −0,5

Так что истинно для θ = 30 °

Попробуем θ = 90 °:

sin (−90 °) = −1 и

−sin (90 °) = −1

Так же истинно для θ = 90 °

Верно ли для все значения θ ? Попробуйте сами!

Как решить уравнение

Не существует "единого идеального способа" решить все уравнения.

Полезная цель

Но мы часто добиваемся успеха, когда наша цель - получить:

Другими словами, мы хотим переместить все, кроме «x» (или любого другого имени переменной), в правую часть.

Пример: Решить 3x − 6 = 9

Начать с: 3x − 6 = 9

Добавьте 6 к обеим сторонам: 3x = 9 + 6

Разделить на 3: x = (9 + 6) / 3

Теперь у нас x = что-то ,

и короткий расчет показывает, что x = 5

Как головоломка

Фактически, решение уравнения похоже на решение головоломки.И, как и в случае с головоломками, есть вещи, которые мы можем (и не можем) делать.

Вот несколько вещей, которые мы можем сделать:

Пример: Решить √ (x / 2) = 3

Начать с: √ (x / 2) = 3

Квадрат с обеих сторон: x / 2 = 3 2

Вычислить 3 2 = 9: x / 2 = 9

Умножьте обе стороны на 2: x = 18

И чем больше «трюков» и приемов вы изучите, тем лучше вы получите.

Специальные уравнения

Есть специальные способы решения некоторых типов уравнений.Узнайте, как ...

Проверьте свои решения

Вы всегда должны проверять, что ваше «решение» действительно - это решение.

Как проверить

Возьмите решения и поместите их в исходное уравнение , чтобы увидеть, действительно ли они работают.

Пример: найти x:

2x x - 3 + 3 = 6 x - 3 (x ≠ 3)

Мы сказали x ≠ 3, чтобы избежать деления на ноль.

Умножим на (x - 3):

2x + 3 (x − 3) = 6

Переместите 6 влево:

2x + 3 (x − 3) - 6 = 0

Развернуть и решить:

2x + 3x - 9-6 = 0

5x - 15 = 0

5 (х - 3) = 0

х - 3 = 0

Это можно решить, если x = 3

Проверим:

2 × 3 3–3 + 3 = 6 3–3

Держись!
Это означает деление на ноль!

И вообще, мы сказали вверху, что x 3, так что...

x = 3 на самом деле не работает, поэтому:

Есть Нет Решение!

Это было интересно ... мы думали, что нашли решение, но когда мы оглянулись на вопрос, мы обнаружили, что это запрещено!

Это дает нам моральный урок:

«Решение» дает нам только возможные решения, их нужно проверять!

Подсказки

  • Запишите, где выражение не определено (из-за деления на ноль, квадратного корня из отрицательного числа или по какой-либо другой причине)
  • Покажите все шаги , чтобы их можно было проверить позже (вами или кем-то еще)

,

Wolfram | Примеры альфа: решение уравнений


уравнения

Решайте, строите и исследуйте уравнения с одной или несколькими переменными.

Решите полиномиальное уравнение:

Решить по указанному домену:

Решите уравнение с параметрами:

Решите тригонометрическое уравнение:

Другие примеры


Системы уравнений

Решите систему из двух или более одновременных уравнений.

Решите систему линейных уравнений:

Решите систему полиномиальных уравнений:

Другие примеры


Системы конгруэнций

Найдите решения для систем конгруэнтных отношений.

Решите одно уравнение сравнения:

Решите системы сравнений:

Проверьте, эквивалентны ли значения при заданном модуле:

Решите сравнение с переменными в модуле:

,

Решатель математических уравнений

Использование калькулятора

Решайте математические задачи, используя порядок операций, такой как PEMDAS, BEDMAS и BODMAS. (Предупреждение PEMDAS) Этот калькулятор решает математические уравнения, которые складывают, вычитают, умножают и делят положительные и отрицательные числа и экспоненциальные числа. Вы также можете включать круглые скобки и числа с показателями или корнями в свои уравнения.5 равно 2 в степени 5)
r корней (2r3 - это 3-й корень из 2)
() [] {} Кронштейны

Вы можете попытаться скопировать уравнения из других печатных источников и вставить их сюда, и, если они используют ÷ для деления и × для умножения, этот калькулятор уравнений попытается преобразовать их в / и * соответственно, но в некоторых случаях вам может потребоваться повторно ввести скопированные и вставленные символы или даже полные уравнения.(2/3) 5 повышено до 2/3

  • 5r (1/4) - это 1/4 корня из 5, который совпадает с 5 в 4-й степени
  • Ввод дробей

    Если вы хотите, чтобы такая запись, как 1/2, рассматривалась как дробь, введите ее как (1/2). Например, в уравнении 4, деленном на ½, вы должны ввести его как 4 / (1/2). Тогда сначала выполняется деление 1/2 = 0,5, а последним - 4 / 0,5 = 8. Если вы неправильно введете его как 4/1/2, то сначала решается 4/1 = 4, а затем 4/2 = 2.2 - неправильный ответ. 8 был правильным ответом.

    Математический порядок операций - PEMDAS, BEDMAS, BODMAS

    PEMDAS - это аббревиатура, которая может помочь вам запомнить порядок операций при решении математических уравнений. PEMDAS обычно расширяется до фразы: «Прошу прощения, моя дорогая тетя Салли». Первая буква каждого слова во фразе образует акроним PEMDAS. Решайте математические задачи со стандартным математическим порядком операций, работая слева направо:

    1. Круглые скобки - работая слева направо в уравнении, сначала найдите и решите выражения в скобках; если у вас есть вложенные круглые скобки, работайте от самого внутреннего до самого внешнего
    2. Экспоненты и корни - работая слева направо в уравнении, вычислите все экспоненциальные и корневые выражения секунды
    3. Умножение и деление - затем решите оба выражения умножения и деления одновременно, работая слева направо в уравнении.
    4. Сложение и вычитание - затем решите оба выражения сложения И вычитания одновременно, работая слева направо в уравнении

    Предупреждение PEMDAS

    Умножение НЕ всегда выполняется перед Делением. Умножение и деление происходят одновременно слева направо.

    Сложение НЕ всегда выполняется перед вычитанием. Сложение и вычитание выполняются одновременно слева направо.

    Порядок "MD" (DM в BEDMAS) иногда путают, когда он означает, что умножение происходит до деления (или наоборот). Однако умножение и деление имеют одинаковый приоритет. Другими словами, умножение и деление выполняются на одном и том же шаге слева направо. Например, 4/2 * 2 = 4 и 4/2 * 2 не равно 1.

    Такая же путаница может произойти и с «AS», однако сложение и вычитание также имеют одинаковый приоритет и выполняются на одном и том же шаге слева направо.Например, 5-3 + 2 = 4 и 5-3 + 2 не равно 0.

    Чтобы запомнить это, можно написать PEMDAS как PE (MD) (AS) или BEDMAS как BE (DM) (AS).

    Порядок операций Сокращения

    Сокращения, обозначающие порядок операций, означают, что вы должны решать уравнения именно в этом порядке, всегда работая слева направо в вашем уравнении.

    PEMDAS означает « P аренцев, E компонентов, M ultiplication и D ivision, A ddition и S убирание "

    Вы также можете видеть BEDMAS и BODMAS в качестве сокращений порядка операций.В этих акронимах «квадратные скобки» совпадают с круглыми скобками, а «порядок» совпадает с порядком.

    BEDMAS означает « B ракеток, E xponents, D ivision и M ultiplication, A ddition и S убирание "

    BEDMAS похож на BODMAS.

    BODMAS означает " B ракетки, O rder, D ivision и M ultiplication, A ddition и S убирание "

    Ассоциативность операторов

    Умножение, деление, сложение и вычитание левоассоциативны.Это означает, что когда вы решаете выражения умножения и деления, вы переходите от левой части уравнения к правой. Точно так же, когда вы решаете выражения сложения и вычитания, вы действуете слева направо.

    Примеры левоассоциативности:

    • а / б * с = (а / б) * с
    • а + б - с = (а + б) - с

    Показатели и корни или радикалы правоассоциативны и решаются справа налево.(4/5))

    Для вложенных круглых или квадратных скобок сначала решите самые внутренние круглые скобки или выражения скобок и двигайтесь к самым внешним скобкам. Для каждого выражения в круглых скобках следуйте остальной части порядка PEMDAS: сначала вычислите экспоненты и радикалы, затем умножение и деление и, наконец, сложение и вычитание.

    Вы можете решать умножение и деление на одном и том же этапе математической задачи: после решения скобок, степеней и радикалов и перед сложением и вычитанием.Для умножения и деления действуйте слева направо. Решение сложения и вычитания следует после скобок, показателей степени, корней и умножения / деления. Снова действуйте слева направо для сложения и вычитания.

    Сложение, вычитание, умножение и деление положительных и отрицательных чисел

    Этот калькулятор следует стандартным правилам для решения уравнений.

    Правила сложения (+)

    Если знаки одинаковые, оставьте знак и складывайте числа.

    -21 + -9 = - 30

    (+7) + (+13) = (+20)

    Если знаки разные, вычтите меньшее число из большего числа и сохраните знак большего числа.

    (-13) + (+5) = (-8)

    (-7) + (+9) = (+2)

    Правила для операций вычитания (-)

    Сохраните знак первого числа.Замените все следующие знаки вычитания на знаки сложения. Измените знак каждого следующего числа, чтобы положительное стало отрицательным, а отрицательное стало положительным, затем следуйте правилам для задач сложения.

    (-15) - (-7) =

    (-5) - (+6) =

    (+4) - (-3) =

    (-15) + (+7) = (-8)

    (-5) + (-6) = (-11)

    (+4) + (+3) = (+7)

    Правила операций умножения (* или ×)

    Умножение отрицательного на отрицательный или положительного на положительный дает положительный результат.Умножение положительного на отрицательный или отрицательного на положительный дает отрицательный результат.

    -10 * -2 = 20

    10 * 2 = 20

    10 * -2 = -20

    -10 * 2 = -20

    -10 × -2 = 20

    10 × 2 = 20

    10 × -2 = -20

    -10 × 2 = -20

    Правила для операций дивизии (/ или ÷)

    Подобно умножению, деление отрицательного на отрицательное или положительного на положительное дает положительный результат.Разделение положительного на отрицательный или отрицательного на положительное дает отрицательный результат.

    -10 / -2 = 5

    10/2 = 5

    10 / -2 = -5

    -10 / 2 = -5

    -10 ÷ -2 = 5

    10 ÷ 2 = 5

    10 ÷ -2 = -5

    -10 ÷ 2 = -5

    ,

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *