Азотная кислота концентрированная с металлами: Урок №34. Свойства концентрированной азотной кислоты

Содержание

Азотная кислота: получение и химические свойства

 

 

Строение молекулы и физические свойства

 

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

 

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

 

Способы получения

 

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота  образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например, концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

KNO3    +    H2SO4(конц)    →    KHSO4    +    HNO3

 

2. В промышленности азотную кислоту получают из аммиака. Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

4NH3    +   5O2    →    4NO  +   6H2O

 

2 стадия. Окисление оксида азота (II)  до оксида азота (IV) кислородом воздуха.

2NO   +    O2   →    2NO2

 

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

4NO2   +   2H2O   +  O2   →  4HNO3

 

Химические свойства

 

Азотная кислота – это сильная кислота. За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциирует в водном растворе.

 HNO→ H+ + NO3

 

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, азотная кислота взаимодействует с оксидом меди (II)

:

CuO   +   2HNO3   →   Cu(NO3)2   +   H2O

 

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3   +   NaOH   →   NaNO3   +   H2O

 

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3   +   Na2CO3   →  2NaNO3   +   H2O   +   CO2

 

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2   +   O2   +   2H2O

 

5. Азотная кислота активно взаимодействует с

металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

 

С алюминием, хромом и железом на холоду концентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Fe    +   6HNO3(конц.)  →   Fe(NO3)3   +   3NO2  +   3H2O

 Al   +   6HNO

3(конц.)   →  Al(NO3)3   +   3NO2  +   3H2O

 

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3      +   3HCl   +   Au   →   AuCl3   +   NO   +   2H2O

 

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

 

С активными металлами (щелочными и щелочноземельными)

концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3       +  4Ca   →    4Ca(NO3)2    +    2N2O   +   5H2O

 

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)     +    3Cu   →    3Cu(NO3)2    +    2NO   +   4H2O

 

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)     +  10Na   →    10NaNO3    +    N

2   +   6H2O

 

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3       +  4Ca    →   4Ca(NO3)2    +    2N2O   +   5H2O

 

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3         +  4Zn   →    4Zn(NO3)2    +    NH4NO3   +   3H2O

 

Таблица. Взаимодействие азотной кислоты с металлами.

 

Азотная кислота
Концентрированная Разбавленная
с Fe, Al, Cr с неактивными металлами и металлами средней активности (после Al) с щелочными и щелочноземельными металлами  с неактивными металлами и металлами средней активности (после Al) с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Т образуется NO2 образуется N2O  образуется NO  образуется N2

 

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNOобычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо

оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3       +   S     →   H2SO4   +   6NO2    +    2H2O

 

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3      +    P   →    H3PO4     +   5NO2    +    H2O

5HNO3      +    3P     +    2H2O   →    3H3PO4     +   5NO

 

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3     +    C   →   CO2    +    4NO2    +    2H

2O

 

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3   +   I2  →   2HIO3   +   10NO2   +   4H2O

 

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3     +   SO2  →   H2SO4     +   2NO2

Еще

пример: азотная кислота окисляет иодоводород:

6HNO3   +   HI   →  HIO3   +   6NO2   +   3H2O

 

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С    +    4HNO3   →    3СО2    +    4NO    +   2H2O

 

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3     +   H2S     →  S    +    2NO2   +   2H2O

 

При нагревании до серной кислоты:

2HNO3     +   H2S     →  H2SO4    +    2NO2   +   2H2O

8HNO3     +    CuS   →   CuSO4    +   8NO2    +   4H2O

 

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3     +    FeS   →   Fe(NO3)3  +   NO    +   S    +   2H2O

 

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

 

 

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Свойства серной и азотной кислот

Разбавленная серная кислота:

Физические свойства.
Хорошо растворимая в воде, напоминающая масло, тяжёлая жидкость. При гидратации (растворении) выделяется большое количество энергии. Очень гигроскопична (способна поглощать воду из окружающей среды), обугливает бумагу, сахар, дерево.

При приготовлении раствора серной кислоты ВСЕГДА ДОБАВЛЯЮТ КИСЛОТУ В ВОДУ. НИКОГДА НЕ ДОБАВЛЯЮТ ВОДУ К КИСЛОТЕ.

Это связано с тем, что вода имеет плотность ниже, чем серная кислота, и останется на поверхности кислоты. Большое выделение энергии при поглощении воды может настолько нагреть смесь, что она начнёт кипеть и разбрызгиваться, вызывая ожоги.

Промышленный способ получения:


4FeS2+11O2→2Fe2 O3+8SO2

2SO2+O2 → 2SO3

nSO3+H2 SO4 (конц.)→H2 SO4∙nSO3(олеум)

В промышленности на последней стадии не используют водяной пар. Странно, ведь это прямой путь получения серной кислоты. Но дело в том, что при реакции серного ангидрида (SO3) с водой выделяется большое количество теплоты, что получившаяся серная кислота начнёт закипать и превращаться в пар. Возникает проблема по удалению этого пара из активной зоны реакции, поэтому используют 98% концентрированную кислоту. В ней серный ангидрид очень хорошо растворяется, полученный продукт называется Олеум.

Химические свойства.

H2SO4 – cильная двухосновная кислота, следовательно, сильный электролит.

Степень диссоциации – 100%

В водном растворе диссоциирует на ионы в две стадии:
H2 SO4↔H++HSO4

HSO4↔H++SO42-

Суммарное уравнение:   H2 SO4↔2H++SO42-

Разбавленная серная кислота реагирует с металлами, стоящими в электрохимическом ряду напряжения левее водорода по схеме:
Металл + кислота → соль + водород

Пример:
Zn+H2 SO4→ZnSO4+H2

Разбавленная серная кислота реагирует с основными оксидами по схеме:
Оксид + кислота → соль + вода

Пример:
CaO+H2 SO4→CaSO4+H2O

Разбавленная серная кислота реагирует с щелочами и нерастворимыми основаниями по схеме:

Кислота + основание (или щёлочь) → соль + вода

H2 SO4+2NaOH→Na2 SO4+2H2O

H2 SO4+Cu(OH)2→CuSO4+2H2O

Разбавленная серная кислота реагирует с солями (если среди продуктов одно вещество будет не электролитом) по схеме:
соль + кислота → новая соль + новая кислота

Пример:
Na2 CO3+H2 SO4→Na2 SO4+CO2↑+H2O (при обычных условиях H2CO3не существует и распадается на CO2и H2O)

BaCl2+H2 SO4→BaSO4↓+2HCl

Na2 SiO3+H2 SO4→H2 SiO3↓+Na2 SO4

Концентрированная серная кислота:

Очень сильный окислитель. Не реагирует с Au и Pt.В обычных условиях реагирует со всеми металлами, кроме Fe, Al , Cr, потому что они пассивируются в ней, чтобы запустить реакцию, нужно нагревание. Концентрированная серная кислота окисляет металлы до более высоких степеней окисления (Fe+3,Cr+3,Mn+4)

Продукты реакции металла и серной концентрированной кислоты разнообразны.

Концентрированная серная кислота восстанавливается до различных степеней окисления и соответствующих ей при этих степенях соединений.


С металлами, стоящими в ряду напряжения до Al (включительно) реакция идёт по схеме:

Металл+ кислота→соль+H2 S↑+H2O

8Al+15H2 SO4 (конц.)→4Al2 (SO4 )3+3H2S↑+12H2O

С металлами, стоящими в ряду напряжения послеAl и до Cr (включительно) реакция идёт по схеме:
Металл+кислота→соль+S↓+H2O

2Cr+4H2 SO4 (конц.)→Cr2 (SO4 )3+S↓+4H2S↑

С металлами, стоящими в ряду напряжений после Cr (кроме Ptи Au) реакция идёт по схеме:

Металл+кислота→соль+SO2+H2O

2Fe+6H2 SO4 (конц.)→Fe2 (SO4 )3+3SO2↑+6H2O

Концентрированная серная кислота реагирует с некоторыми неметаллами, окисляя их до максимальной степени окисления, а сама восстанавливается до SO2 :
C+2H2 SO4 (конц.)→CO2↑+2SO2↑+2H2O

Концентрированная серная кислота окисляет йодид и бромид-ионы до свободных галогенов:

2KI+2H2 SO4→K2 SO4+SO2↑+I2↓+2H2O

Концентрированная серная кислота не может окислять хлорид-ионы до свободного галогена, реакция идёт по другой схеме:
NaCl+H2 SO4 (конц.)→NaHSO4+HCl

Азотная кислота.

Физические свойства.

Бесцветная жидкость с резким запахом, неограниченно растворима в воде. Хранят в тёмном месте, потому что разлагается на свету.

Химические свойства:

Кислородосодержащая, одноосновная кислота, сильный электролит.

На свету разлагается :
4HNO3→4NO2↑+2H2O+O2

Промышленный способ получения:

4NH3+5O2 → 4NO↑+6H2O

2NO+O2→2NO2

4NO2+2H2O+O2→4HNO3

Лабораторный способ получения:

KNO3+H2 SO4 (конц.) →KHSO4+HNO3

Химические свойства азотной кислоты:

Имеет типичные свойства кислот, кроме реакций с металлами.
Взаимодействует с основными оксидами:

2HNO3+CuO→Cu(NO3 )2+H2O

Взаимодействует с щелочами и основаниями:
HNO3+NaOH→NaNO3+H2O

2HNO3+Zn(OH)2→Zn(NO3 )2+2H2O

Реагирует с солями, но, так как все соли-нитраты растворимы, грамотнее будет сказать – вытесняет более слабые кислоты из их солей.

2HNO3+Na2 SiO3→2NaNO3+H2 SiO3

Азотная концентрированная кислота взаимодействует с металлами:

Общая схема всех реакций азотной кислоты с металлами (концентрация значения не имеет):

Кислота + металл → соль + газ + вода

С малоактивными металлами азотная концентрированная кислота восстанавливается до NO2.

Cu+4HNO3→Cu(NO3 )2+2NO2↑+2H2O

С щелочными и щелочноземельными азотная концентрированная кислота восстанавливается до N2O.
4Ca+10HNO3→4Ca(NO3 )2+N2O↑+5H2O

Fe, Cr, Al пассивируются.

Азотная разбавленная кислота взаимодействует с металлами:

С малоактивными металлами азотная разбавленная кислота восстанавливается до NO.

3Cu+8HNO3→3Cu(NO3 )2+2NO↑+4H2O

Очень разбавленная кислота металлами восстанавливается до нитрата аммония.

4Ca+10HNO3→4Ca(NO3 )2+NH4 NO3+3H2O

Реагирует с неметаллами:

Концентрированная азотная кислота окисляет неметаллы до их высших кислот, а сама восстанавливается до оксидов азота (II,если кислота разбавленная. IV, если кислота концентрированная).

S+6HNO3 (конц.)→H2 SO4+6NO2↑+2H2O

Смесь соляной и азотной кислот называется “царской водкой”. Она способна растворять платину и золото.

HNO3+4HCl+Au→H[AuCl4 ]+NO↑+2H2O

4HNO3+18HCl+Pt→3H2 [PtCl6 ]+4NO↑+8H2O

С помощью азотной кислоты получают взрывчатые вещества:

Тринитротолуол (тротил) получают с помощью смеси азотной и серной кислот (серная кислота выступает в роли водоотнимающего средства):


Тринитроглицерин получают с помощью смеси азотной и серной кислот (серная кислота выступает в роли водоотнимающего средства):


Тринитроцеллюлозу (пироксилин) получают с помощью смеси азотной и концентрированной серной кислот (серная кислота выступает в роли водоотнимающего средства):


Автор статьи: Симкин Егор Андреевич

Редактор: Харламова Галина Николаевна

ЕГЭ. Химические свойства азотной кислоты

Химические свойства азотной кислоты

 

Чем более разбавленной является кислота, тем более сильным окислителем она является.

  • Изменение степени окисления азота в реакциях с сильным восстановителем:
Восстановление N+5 Продукты восстановления Условие
N+5 + 8e → N–3 NH3 или NH4NO3 очень разбавленная HNO3
N+5 + 5e → N0 N2 разбавленная HNO3
N+5 + 4e → N+1 N2O разбавленная HNO3, концентрированная

 

  • Изменение степени окисления азота в реакциях со слабым восстановителем:
Восстановление N+5 Продукты восстановления Условие
N+5 + 3e → N+2 NO разбавленная HNO3
N+5 + 1e → N+4 NO2 концентрированная HNO3

 

Восстановители:

Сильные:

  • Металлы от Li до Al

Слабые:

  • Металлы, начиная с Fe
  • Неметаллы
  • Соли (если можем окислить)
  • Оксиды (если можем окислить)
  • HI и йодиды, H2S и сульфиды

 

Взаимодействие азотной кислоты с простыми веществами:

1) с металлами — сильными восстановителями:

10HNO3(оч. разб.) + 4Mg → 4Mg(NO3)2 + NH4NO3 + 3H2O

10HNO3(разб.) + 4Mg → 4Mg(NO3)2 + N2O + 5H2O        (возможно образование N2)

 

2) с металлами — слабыми восстановителями:

8HNO3(разб.) + 3Cu → 3Cu(NO3)2 + 2NO + 4H2O

4HNO3(конц.) + 3Cu → 3Cu(NO3)2 + 2NO2 + 2H2O

HNO3(конц.) + Fe → Fe(NO3)3 + NO2 + H2O

 

3) С неметаллами (слабыми восстановителями) образуются соответствующие кислоты, а также NO (если кислота разб.) или NO2 (если кислота конц.):

10HNO3(конц.) + I2 →  2HIO3 + 10NO2 + 4H2O (t)   (из галогенов реакция идет только с йодом)

4HNO3(конц.) + C → CO2 + 4NO2 + 2H2O                        

5HNO3(конц.) + P → H3PO4 + 5NO2 + H2O

6HNO3(конц.) + S → H2SO4 + 6NO2 + 2H2O

 

Взаимодействие азотной кислоты со сложными веществами:

Окисляем анион:

8HNO3(к) + H2S →  H2SO4 + 8NO2 + 4H2O

8HNO3(к) + Na2S →  Na2SO4 + 8NO2 + 4H2O

4HNO3(конц.) + CuS → Cu(NO3)2 + S + 2NO2 + 2H2O

8HNO3(конц.) + CuS →  CuSO4 + 8NO2 + 4H2O

8HNO3 + Cu2S → 2Cu(NO3)2 + S + 4NO2 + 4H2O

12HNO3 + Cu2S →  CuSO4 + Cu(NO3)2 + 10NO2 + 6H2O

16HNO3(к) + Mg3P2 → Mg3(PO4)2 + 16NO2 + 8H2O

16HNO3(к) + Ca(HS)2 →   H2SO4 + CaSO4 + 16NO2 + 8H2O

8HNO3(к) + AlP&nbsp →  AlPO4 + 8NO2­ + 4H2O

В избытке кислоты фосфаты растворяются:

11HNO3(к, изб.) + AlPH3PO4 + Al(NO3)3 + 8NO2 + 4H2O

 

Окисляем металл соли или оксида:

10HNO3(к) + Fe3O4 → 3Fe(NO3)3 + NO2 + 5H2O

4HNO3(к) + FeO → Fe(NO3)3 + NO2 + 2H2O

HNO3(к) + FeSO4 → Fe(NO3)3 + NO2 + H2SO4 + H2O

4HNO3(к) + CrCl2 → Cr(NO3)3 + NO2 + 2HCl + H2O (ионы Cl азотная кислота окислить не может)

 

Одновременное окисление катиона и аниона:

14HNO3(к) + Cu2S →  H2SO4 + 2Cu(NO3)2 + 10NO2 + 6H2O.

Концентрированная азотная кислота взаимодействие — Справочник химика 21

    Концентрированная азотная кислота взаимодействует с белковыми веществами, образуя соединения ярко-желтой окраски. Вследствие этого на коже поддействием кислоты образуются желтые пятна. Кислота разрушает шерсть и натуральный шелк. [c.56]

    С концентрированной азотной кислотой взаимодействует медь  [c.154]

    Азотная кислота действует почти на все металлы (кроме золота, платины и некоторых других), превращая их в соли. В ней растворяют серебро, медь, свинец, на которые другие кислоты не действуют. Концентрированная азотная кислота, взаимодействуя с металлами, восстанавливается до двуокиси азота  [c.197]


    Азотная кислота — сильная и характеризуется ярко выраженными окислительными свойствами. В продажу обычно поступает 65%-ная ННОз плотностью 1400 кг/м . С водой азотная кислота смешивается в любых соотношениях. Животные и растительные ткани при действии на них азотной кислоты очень быстро разрушаются. Даже небольшое количество разбавленной азотной кислоты оставляет желтые пятна на коже. Концентрированная азотная кислота взаимодействует с многими неметаллами сера окисляется ею до серной кислоты при кипячении, уголь —до углекислого газа. Тлеющая лучинка, внесенная в пары азотной кислоты, воспламеняется скипидар, влитый в концентрированную азотную кислоту, загорается синий раствор индиго обесцвечивается. Концентрированная азотная кислота не действует на золото и платину. Железо, алюминий и некоторые другие металлы пассивируются концентрированной азотной кислотой, так как на их поверхности возникает плотная защитная пленка оксидов, нерастворимая в кислотах. Это свойство азотной кислоты позволяет хранить и транспортировать ее в стальных цистернах. [c.304]

    Поскольку из исходной смеси металлов с концентрированной азотной кислотой взаимодействует только медь, то по объему выделившегося оксида азота(IV) (6,72 л) по уравнению (1) можно рассчитать количество растворенной меди. Оно равно 9,6 г. Так кйк медь и золото в соляной кислоте не растворяются, то по уравнению (2), зная [c.87]

    Ксантопротоиновая реакция. Концентрированная азотная кислота взаимодействует с белками, причем образуется желтое окрашивание, ко- [c.322]

    Концентрированную азотную кислоту получают несколькими способами. Более старый способ заключается в перегонке разбавленной азотной кислоты в смеси с серной кислотой (купоросным маслом). В настоящее время построены и работают промышленные установки для получения концентрированной азотной кислоты взаимодействием жидкой двуокиси азота с водой (практически пользуются слабой азотной кислотой) в присутствии кислорода. Процесс протекает при давлении 50 ат и температуре около 70 °С по суммарному уравнению [c.265]

    Когда концентрированная азотная кислота взаимодействие с металлоидами (углеродом, фосфором, серой) и с сульфидами металлов, она восстанавливается до N0 [c.280]

    Полиизобутилен — насыщенный полимер, отличающийся высокой стойкостью к действию кислорода и озона при нормальных температурах, стойкий к старению.- Введение в полиизобутилен активных наполнителей (технического углерода, графита) повышает его прочностные свойства и химическую стойкость. Полиизобутилен стоек к концентрированным и разбавленным серной и соляной кислотам, органическим кислотам, аммиаку, щелочам, пероксиду водорода, при нагревании разрушается концентрированной азотной кислотой, взаимодействует с газообразными хлором и бромом. Полиизобутилен легко окрашивается любыми красителями. Физикомеханические свойства полиизобутилена приведены в Приложении 2. [c.172]

    Концентрированная азотная кислота взаимодействует со многими неметаллами сера окисляется ею до Н2504 при кипячении, уголь — до СО2. Тлеющая лучинка, внесенная в пары азотной кислоты, воспламеняется скипидар, влитый в концентрированную НЫОз, загорается синий раствор индиго обесцвечивается. Концентрированная НМОз не действует на золото и платину. Железо, алюминий и некоторые другие металлы пассивируются концентрированной азотной кислотой, так как на их поверхности возникает плотная защитная.пленка оксидов, нерастворимая в кислотах. Это свойство азотной,кислоты позволяет хранить и транспортировать ее в стальных цистернах. [c.322]

    В настоящее время построены и работают производственные установки для получения концентрированной азотной кислоты взаимодействием жидкой двуокиси азота с водой (практически пользуются слабой азотной кислотой) в присутствии кислорода по суммарному уравнению [c.238]

    Концентрированная азотная кислота, взаимодействуя с 6-амино-4-метил-пиримидином, дает 6-нитрамино-4-метилпиримидин (ЬХШ), который может быть восстановлен в 6-гидразино-4-метилпиримидин [218]. [c.227]

    Концентрированная азотная кислота взаимодействует почти со всеми металлами с образованием нитратов, при этом она восстанавливается до диоксида азота, разбавленная— до оксонитрида азота (V) НгО (закись азота). Диоксид азота и оксонитрид азота химически активны. [c.33]


Как реагирует концентрированная азотная кислота с металлами

Главная » Разное » Как реагирует концентрированная азотная кислота с металлами

Азотная кислота, подготовка к ЕГЭ по химии

Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.

Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.

Получение

В промышленности азотную кислоту получают в результате окисления аммиака на платино-родиевых катализаторах.

NH3 + O2 → (кат. Pt) NO + H 2O

NO + O2 → NO2

NO2 + H2O + O2 → HNO3

Чистая азотная кислота впервые была получена действием на селитру концентрированной серной кислоты:

KNO3 + H2SO4(конц.) → KHSO4 + HNO3

Химические свойства

  • Кислотные свойства
  • Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии выпадения осадка, выделения газа или образования слабого электролита.

    CaO + HNO3 → Ca(NO3)2 + H2O

    HNO3 + NaOH → NaNO3 + H2O

    Na2CO3 + HNO3 → NaNO3 + H2O + CO2

  • Термическое разложение
  • При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в темном месте.

    HNO3 → (hv) NO2 + H2O + O2

  • Реакции с неметаллами
  • Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2, если разбавленная — до NO.

    HNO3(конц.) + C → CO2 + H 2O + NO2

    HNO3(конц.) + S → H2SO4 + NO2 + H2O

    HNO3(разб.) + S → H2SO4 + NO + H2O

    HNO3(конц.) + P → H3PO4 + NO2 + H2O

  • Реакции с металлами
  • В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.

    Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием нитрата и преимущественно NO2.

    Cu + HNO3(конц.) → Cu(NO3)2 + NO2 + H2O

    С разбавленной азотной кислотой газообразным продуктом преимущественно является NO.

    Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

    В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2, NO, N2O, атмосферный газ N2, NH4NO3.

    Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка с азотной кислотой в различных концентрациях.

    Zn + HNO3(70% — конц.) → Zn(NO3)2 + NO2 + H2O

    Zn + HNO3(35% — ср. конц.) → Zn(NO3)2 + NO + H2O

    Zn + HNO3(20% — разб.) → Zn(NO3)2 + N2O + H2O

    Zn + HNO3(10% — оч. разб.) → Zn(NO3)2 + N 2 + H2O

    Zn + HNO3(3% — оч. разб.) → Zn(NO3)2 + NH4NO3 + H2O

    Посмотрите на таблицу ниже, в которой также отражены изученные нами закономерности.

    Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит за счет оксидной пленки, которой покрыты данные металлы.

    Al + HNO3(конц.) ⇸ (реакция не идет)

    При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так как оксидная пленка на поверхности металлов разрушается.

    Al + HNO3 → (t) Al2O3 + NO2 + H2O

Соли азотной кислоты — нитраты NO
3

Получение

Получают нитраты в ходе реакции азотной кислоты с металлами, их оксидами и основаниями.

Fe + HNO3(разб.) → Fe(NO3)2 + NH4NO3 + H2O

В реакциях с оксидами и основаниями газообразный продукт обычно не выделяется.

MgO + HNO3 → Mg(NO3)2 + H2O

Cr(OH)3 + HNO3 → Cr(NO3)3 + H2O

Нитрат аммония получают реакция аммиака с азотной кислотой.

NH3 + HNO3 → NH4NO3

Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная кислота — до +2.

Fe + HNO3(разб.) → Fe(NO3)2 + NH4NO3 + H2O

Fe + HNO3(конц.) → Fe(NO3)3 + NO + H2O

Химические свойства

  • Реакции с металлами, основаниями и кислотами
  • Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

    Hg(NO3)2 + Mg → Mg(NO3)2 + Hg

    Pb(NO3)2 + LiOH → Pb(OH)2 + LiNO3

    AgNO3 + KCl → AgCl↓ + KNO3

    Ba(NO3)2 + Na2SO4 → BaSO4 + NaNO3

  • Разложение нитратов
  • Нитраты разлагаются в зависимости от активности металла, входящего в их состав.

    Pb(NO3)2 → (t) PbO + NO2 + O2

    NaNO3 → (t) NaNO2 + O2

    Cu(NO3)2 → (t) CuO + NO2 + O2

    PtNO3 → (t) Pt + NO2 + O2

    © Беллевич Юрий Сергеевич 2018-2020

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Реакции элементов 2 группы с кислотами

Это посложнее. Когда большинство металлов вступает в реакцию с большинством кислот, то на самом деле они восстанавливают ионы водорода до газообразного водорода, добавляя электроны к ионам водорода. Металл, конечно, окисляется до положительных ионов металла, потому что он теряет электроны.

Но ионы нитрата также легко восстанавливаются до таких продуктов, как монооксид азота и диоксид азота.

Итак, металлы, реагируя с азотной кислотой, имеют тенденцию давать оксиды азота, а не водорода.Если кислота относительно разбавлена, вы, как правило, получаете монооксид азота, хотя он немедленно вступает в реакцию с кислородом воздуха с образованием коричневого диоксида азота.

Концентрированная азотная кислота дает диоксид азота.

Бериллий

Существует множество разногласий между различными источниками относительно того, реагирует ли бериллий с азотной кислотой. Бериллий имеет прочный оксидный слой (похожий на более известный алюминий), который замедляет реакцию до тех пор, пока он не будет удален.

Некоторые источники говорят, что бериллий не реагирует с азотной кислотой. С другой стороны, легко найти практические детали для получения нитрата бериллия путем взаимодействия порошка бериллия с азотной кислотой. Один источник использует полуконцентрированную азотную кислоту и сообщает, что выделяющийся газ представляет собой монооксид азота. Этого и следовало ожидать.

Похоже, что происходит то, что реагирует он или нет, зависит от источника бериллия (как он был произведен) — возможно, изменение небольших количеств примесей в металле, которые влияют на реакцию.

Это все настолько неопределенно, что трудно понять, как можно задать вопрос об этом на экзамене.

Прочие металлы 2 группы

Они будут производить водород из азотной кислоты, если кислота очень разбавлена, но даже в этом случае она будет загрязнена оксидами азота. Образуются бесцветные растворы нитратов металлов.

На примере магния, если раствор очень разбавлен:

При умеренных концентрациях (и даже с очень разбавленной кислотой это в некоторой степени произойдет):

А с концентрированной кислотой:

.

Азотная кислота — Sciencemadness Wiki

Азотная кислота — сильная кислота с формулой HNO 3 . Это важная минеральная кислота, наряду с соляной, серной, хлорной и фосфорной кислотами. Это мощный окислитель, особенно в смеси с серной кислотой, которая производит ион нитрония на месте.

Недвижимость

Химическая промышленность

Азотная кислота является окисляющей кислотой при комнатной температуре. Его часто используют при нитровании органических соединений.Он способен растворять металлы, такие как медь и серебро, благодаря своей окислительной природе, и выделяет токсичный диоксид азота в качестве побочного продукта окисления.

Cu + 8 HNO 3 → 3 Cu (NO 3 ) 2 + 2 NO + 4 H 2 O
Физические свойства

Концентрированная азотная кислота — это прозрачный раствор плотностью около 1,2 г / мл. Когда концентрация кислоты превышает 70%, она классифицируется как дымящая азотная кислота, это можно определить по видимому дыму при вдувании воздуха.Азотная кислота в концентрациях выше 90% сильно дымит при любом контакте с воздухом. Он образует азеотроп с водой при концентрации 68%, что затрудняет получение чистого вещества.

Наличие

Азотную кислоту

можно приобрести у таких лабораторных поставщиков, как Elemental Scientific и Duda Diesel. Хотя сама кислота не дорогая, для нее требуется обязательная плата за доставку HAZMAT в размере 37,50 долларов, что делает эту кислоту довольно дорогой для химика-любителя.

В большинстве мест продажа азотной кислоты населению ограничена из-за ее использования в производстве взрывчатых материалов.

Препарат

Импровизированное производство азотной кислоты путем пропускания газообразного диоксида азота (справа) в охлажденную перекись водорода (слева).

Классический метод лабораторного синтеза азотной кислоты описан в подпункте:

Синтез азотной кислоты по Глауберу

Несколько менее эффективный способ получения азотной кислоты — это реакция смеси, содержащей серную кислоту и нитратную соль, с металлической медью, в результате чего образуется большое количество газообразного диоксида азота.Затем газ можно барботировать в перекись водорода или воду, при этом перекись водорода дает более высокий выход.

Бисульфат натрия также можно использовать для замены серной кислоты, однако при более высокой температуре азотная кислота разлагается на кислород, диоксид азота и воду.

Азотную кислоту можно производить с помощью реактора Оствальда или путем реакции азота и кислорода в воздухе с помощью электрической искры.

Если вам нужно быстро взбить немного разбавленной азотной кислоты, вы можете использовать «быстрый и грязный» метод, а именно реакцию нитрата кальция с серной кислотой.У этого метода есть два недостатка: во-первых, даже если ваши реагенты находятся в идеальном стехиометрическом соотношении, полученная кислота все равно загрязнена небольшим количеством сульфата кальция, которому удалось остаться в растворе. Во-вторых, осадок сульфата кальция невероятно грязный и объемный, кислота выглядит как сметана, и ее практически невозможно правильно перелить. Используйте этот метод, только если у вас есть набор для вакуумной фильтрации. Эту низкосортную кислоту можно перегонять с получением азеотропной азотной кислоты.

Желтая концентрированная азотная кислота может быть превращена в белый цвет или RFNA преобразована в WFNA путем пропускания через кислоту кислорода. Кислород окисляет NO 2 до N 2 O 5 , который объединяется с остаточной водой в кислоте с образованием почти чистой азотной кислоты.

Проектов

Азотная кислота может использоваться во многих проектах, включая производство нитратных солей. При смешивании с концентрированной серной или плавиковой кислотой азотная кислота действует как основание и выделяет ион нитрония:

2 H 2 SO 4 + HNO 3 → NO 2 + + 2 HSO 4 + H 2 O

Эта смесь, известная как нитрующая смесь или смешанная кислота может использоваться для нитрования многих органических соединений.

Другое:

Обработка

Безопасность

Растворы азотной кислоты очень едкие и окрашивают кожу в желтый цвет из-за нитрования белков. Следует соблюдать осторожность, чтобы азотная кислота не попала на кожу. Нитраты не следует использовать с соляной кислотой, так как при этом образуется нитрозилхлорид.

Большинство типов перчаток (за исключением бутилкаучука или неопрена) несовместимы из-за сильного окислительного воздействия азотной кислоты и могут гореть при контакте с кислотой. [1] При работе с дымящей азотной кислотой надевайте перчатки из бутилкаучука. Другие типы резины могут очень бурно реагировать с азотной кислотой этой концентрации. Если у вас нет бутилкаучука, вообще не надевайте перчатки: ваши голые руки будут меньше повреждены, чем резина в огне. Азотная кислота обычно реагирует с резиной; не пытайтесь перегонять его в аппаратах, содержащих резиновые детали. При перегонке азотной кислоты, особенно дымящейся, используйте шлифованные стеклянные швы или реторту.

Хранилище

Азотная кислота несовместима с большинством пластиков из-за ее окислительной природы, хотя крышки для бутылок из полипропилена (ПП) приемлемы. Азотная кислота в высоких концентрациях чувствительна к свету и должна храниться в бутылках из желтого стекла с достаточным запасом для предотвращения повышения давления из-за оксидов азота.

Утилизация

Азотная кислота может быть нейтрализована нейтрализующими соединениями, такими как карбонаты, бикарбонаты, оксиды, гидроксиды. Карбонат кальция является хорошим нейтрализующим агентом, и, если кислота не загрязнена тяжелыми металлами, полученный нитрат кальция можно выбросить в землю или вылить в канализацию.Концентрированная азотная кислота (> 50%) должна быть сначала разбавлена ​​холодной водой, а затем нейтрализована основанием, чтобы ограничить количество коррозионных паров / аэрозолей, выделяемых в воздух во время процесса нейтрализации.

Список литературы

  1. ↑ http://www.ansellpro.com/download/Ansell_7thEditionChemicalResistanceGuide.pdf
Соответствующие темы Sciencemadness
.

аминов и азотистой кислоты

Фон

Взаимодействие между аминами и азотистой кислотой использовалось в прошлом как очень точный способ различения первичных, вторичных и третичных аминов. Однако продукт с вторичным амином является мощным канцерогеном, поэтому эта реакция больше не проводится на этом уровне.

Азотистая кислота, HNO 2 , (иногда обозначаемая как HONO, чтобы показать ее структуру) нестабильна и всегда готовится in situ .

Обычно его получают путем реакции раствора, содержащего нитрит натрия или калия (нитрат натрия или калия (III)), с соляной кислотой.

Азотистая кислота — слабая кислота, поэтому вы получите реакцию:

Поскольку азотистая кислота является слабой кислотой, положение равновесия является правильным.

 

В каждой из следующих реакций амин следует подкислять соляной кислотой и добавлять раствор нитрита натрия или калия.Кислота и нитрит образуют азотистую кислоту, которая затем вступает в реакцию с амином.

 

Первичные амины и азотистая кислота

Главное наблюдение — выброс бесцветного газа без запаха. Выделяется азот.

К сожалению, не существует единого четкого уравнения, которое можно было бы процитировать для этого. Вы получаете много разных органических продуктов. Например, среди продуктов вы найдете спирт, в котором группа -NH 2 заменена на OH.Если вам нужно одно уравнение, вы можете процитировать (на примере 1-аминопропана):

. . . но пропан-1-ол будет только одним из многих продуктов, включая пропан-2-ол, пропен, 1-хлорпропан, 2-хлорпропан и другие.

Азот, однако, выделяется в количествах, точно указанных в уравнении. Измеряя количество произведенного азота, вы можете использовать эту реакцию для определения количества амина, присутствующего в растворе.

.

Урок «Азотная кислота, состав, строение молекулы, физические и химические свойства, получение»

Тип урока: Урок передачи и приобретения новых знаний и умений.

Цели: Повторить и закрепить знания об общих химических свойствах кислот; изучить строение молекулы азотной кислоты, физические и специфические химические свойства азотной кислоты – взаимодействие ее с металлами; познакомить учащихся с промышленным и лабораторным способами получения чистой азотной кислоты.

В результате урока необходимо знать:

  1. Состав и строение молекулы азотной кислоты; число ковалентных связей, образуемых атомом азота и степень окисления азота в молекуле азотной кислоты.
  2. Общие химические свойства азотной кислоты: взаимодействие с индикаторами (лакмусом и метилоранжем), с основными и амфотерными оксидами, основаниями, с солями более слабых и более летучих кислот.
  3. Специфические химические свойства азотной кислоты: взаимодействие ее с металлами.
  4. Лабораторный и промышленный способы получения азотной кислоты.

Необходимо уметь:

  1. Составлять уравнения химических реакций с позиции теории электролитической диссоциации.
  2. Составлять уравнения реакций взаимодействия концентрированной и разбавленной кислоты с металлами с использованием метода электронного баланса.

Методы и методические приемы:

  1. Беседа.
  2. Самостоятельная работа учащихся по составлению уравнений химических реакций азотной кислоты с металлами.
  3. Лабораторная работа по изучению общих химических свойств азотной кислоты;
  4. Составление опорного конспекта.
  5. Творческая работа: сообщение учащегося о получении азотной кислоты.
  6. Демонстрация опытов: взаимодействие разбавленной и концентрированной азотной кислоты с медью.
  7. Демонстрация слайдов с помощью мультимедиа проектора.
  8. Взаимопроверка и взаимооценка результатов самостоятельной работы.

Оборудование и реактивы:

На столах учащихся: растворы азотной кислоты HNO3 (20 – 25 %), индикаторы лакмус и метилоранж, раствор гидроксида натрия NaOH, раствор сульфата меди (II) CuSO4, раствор сульфата железа (II) FeSO4, оксид меди (II) CuO, оксид алюминия Al2O3, раствор карбоната натрия Na2CO3, пробирки, пробиркодержатели.
На столе учителя:  концентрированная азотная кислота HNO3 (60 – 65 %), разбавленная азотная кислота HNO3 (30 %), штатив с пробирками, медная проволока (кусочки), газоотводная трубка, кристаллизатор с водой, пробиркодержатель, мультимедийная установка (компьютер, проектор, экран).

План урока:
План урока написан на доске и отпечатан для составления опорного конспекта на столах учащихся (Приложение 1)

Ход урока:

I Повторение.

Учитель:       На прошлых уроках мы изучили некоторые соединения азота. Давайте вспомним их.
Ученик:        Это аммиак, соли аммония, оксиды азота.
Учитель:       Какие оксиды азота являются кислотными?
Ученик:        Оксид азота (III) N2O3 – азотистый ангидрид и оксид азота (V) N2O5 – азотный ангидрид, ему соответствует азотная кислота HNO3.
Учитель:       Каков качественный и количественный состав азотной кислоты?

Учитель пишет на доске формулу азотной кислоты и просит ученика расставить степени окисления

Ученик:        Молекула состоит из трех химических элементов: H, N, O – из одного атома водорода, одного атома азота и трех атомов кислорода.

II Состав и строение HNO3

Учитель:       Как же образуется молекула азотной кислоты?

Учитель показывает презентацию об азотной кислоте (Приложение 2 – презентация, Приложение 3 – текст пояснения к презентации)

III Физические свойства:

Учитель:       Теперь переходим к изучению физических свойств азотной кислоты.

Учащиеся составляют краткое описание физических свойств азотной кислоты.

Учитель на демонстрационном столе показывает, что представляет собой концентрированная азотная кислота HNO (60 – 65 %) — бесцветная жидкость, «дымящаяся на воздухе», с едким запахом. Концентрированная 100 % — ая HNO3 иногда окрашена в желтоватый цвет, т.к. она летучая и нестойкая, и при комнатной температуре разлагается с выделением оксида азота (IV) или «бурого» газа, именно поэтому ее хранят в бутылках из темного стекла.

Учитель на доске пишет уравнение химической реакции разложения азотной кислоты:

Учитель:       Азотная кислота гигроскопична, смешивается с водой в любых отношениях. В водных растворах – сильный электролит, при температуре – 41,6 0С затвердевает. На практике применяется 65 % азотная кислота, она не дымит, в отличие от 100 % — ой.

IV Химические свойства

Учитель:       Переходим к следующему этапу урока. Азотная кислота – сильный электролит. Следовательно, ей будут присущи все общие свойства кислот. С какими веществами реагируют кислоты?
Ученик:        С индикаторами, с основными и амфотерными оксидами, с основаниями, с солями более слабых и летучих кислот, с металлами.
Учитель:       Перед вами общие свойства кислот.

Включается мультимедийная установка. Учитель показывает презентацию об общих химических свойствах кислот (Приложение 4).

Учитель:       Проведем экспериментальный этап урока. Ваша задача – провести химические реакции, подтверждающие химические свойства кислот, на примере азотной кислоты. Работать будете группами по 4 человека. На партах лежат инструкции к лабораторным опытам (Приложение 5). В тетрадях надо составить уравнения химических реакций в молекулярном и ионном виде.

Далее учитель проверяет технику безопасности выполнения лабораторных опытов. Вызывает учеников к доске записывать уравнения реакций.

Учитель:       Переходим к специфическим химическим свойствам азотной кислоты. Следует отметить, что азотная кислота, и разбавленная, и концентрированная, при взаимодействии с металлами не выделяет водород, а может выделять различные соединения азота – от аммиака до оксида азота (IV).

Включается мультимедийная установка. Учитель показывает презентацию о возможных продуктах восстановления азотной кислоты (Приложение 6).

Учитель:       Посмотрим на схему. У каждого на столах лежат схемы восстановления азотной кислоты (разбавленной и концентрированной) металлами (Приложение 7).

Далее учитель демонстрирует опыты:

  1. Взаимодействие разбавленной азотной кислоты с медью. Собирание оксида азота (II) над водой.
  2. Взаимодействие концентрированной азотной кислоты с медью. Получение оксида азота (IV).

На доске записывает уравнения реакций:

Учитель:         На основе опытов можно сделать выводы:

  1. Раствор азотной кислоты реагирует не только с металлами, стоящими в электрохимическом ряду напряжений металлов до водорода, но и с металлами, стоящими после водорода.
  2. В реакции с разбавленной HNO3 окислителем металлов является не ион водорода H+, а ион NO3-, у которого окислительные свойства сильнее.
  3. Концентрированная азотная кислота также реагирует с металлами, стоящими в электрохимическом ряду напряжений металлов правее водорода. Окислителем металлов в данном случае являются молекулы HNO3 за счет предельно окисленного атома азота .
  4. В окислительно-восстановительных реакциях с металлами азотная кислота выступает как сильный окислитель за счет атомов . Поэтому водород не выделяется, продуктами реакции являются соединения азота с более низкой степенью окисления, чем +5, а также соль и вода.

Учитель:       Пользуясь схемами восстановления концентрированной и разбавленной азотной кислоты металлами, а также учебником на стр. 127, перейдем к самостоятельной работе по вариантам (Приложение 8). Каждый выполняет свой вариант. Вам предложены карточки – задания. Время работы 5-7 минут.

Включается мультимедийная установка. Учитель показывает правильные варианты ответов (Приложение 9). Учащиеся проверяют правильность выполнения задания.

V Получение азотной кислоты HNO3

Ученик:        (сообщение) В лаборатории азотную кислоту получают взаимодействием калийной или натриевой селитры с концентрированной серной кислотой при нагревании или без нагревания:

В промышленности азотную кислоту получают каталитическим окислением аммиака, синтезированного из азота воздуха:

Ученик показывает схему получения азотной кислоты (Приложение 10), а учащиеся записывают уравнения реакций в тетрадь.

VI Заключение

Учитель:       На сегодняшнем уроке мы познакомились с составом и строением азотной кислоты. Повторили и закрепили общие свойства кислот на примере азотной кислоты, закрепили свои знания по теории ТЭД, теории строения атома и химической связи. Изучили специфические свойства азотной кислоты, а именно взаимодействие ее с металлами. Познакомились со способами получения азотной кислоты.

Далее подводятся итоги, выставляются оценки. Учитель задает домашнее задание по учебнику, задачнику и конспекту.

Д/з:     § 33, упр. 4 на стр. 128 учебника;
задачи: 4 – 35, 4 – 41 задачник;
выучить конспект.

Список литературы

  1. Кузнецова Н.Е., Титова И.М., Гара Н.Н., Жегин А.Ю. Химия: учебник для 9 класса общеобразовательных учреждений. – М.: Вентана – Граф, 2004.
  2. Энциклопедия для детей. Химия. – М.: Аванта, 2000.
  3. Максименко О.О. Химия. Пособие для поступающих в вузы. – М.: Эксмо, 2003.
  4. Полосин В.С., Прокопенко В.Г. Практикум по методике преподавания химии. Учебное пособие. – М.: Просвещение, 1989.
  5. Мартыненко Б.В. Химия: Кислоты и основания. – М.: Просвещение, 2000.

как взаимодействует концентрированная азотная кислота с щелочными металлами??? составить

Кислота + основание = соль + вода (Реакция нейтрализации)
HCl + NaOH = NaCl + h3O
Причем кислоты реагируют как и с растворимыми основаниями (щелочами), так и с нерастворимыми, при условии, что образуется растворимая соль
h3SO4 + Cu(OH)2 = CuSO4 + 2h3O
Кислота + основный оксид = соль + вода
2HNO3 + CuO = Cu(NO3)2 + h3O
(В этом правиле существует исключение: плавиковая кислота реагирует с диоксидом кремния (кислотным оксидом))6HF +SiO2 = h3[SiF6]+2h3O
Кислота + металл = соль + водород
2HCl + Zn = ZnCl2 + h3 (газ)
На это правило распространяется ограничение:
1) Кислоты реагируют с металлами, стоящими в ряду напряжений металлов до водорода (Исключение составляют концентрированная серная и азотная кислота любой концентрации)
2) При реакции метала с кислотой должна получиться растворимая соль
3) На щелочные металлы правило распространяется частично т.к эта реакция проходит в растворе (щелочные металлы взаимодействуют с водой) Исключения: Cu + 2h3SO4 (конц.) = CuSO4 + SO2 (газ) + 2h3O 4Zn + 5h3SO4 (конц.) = 4ZnSO4 + h3S(газ) + 4h3O
8HNO3 (разб) + 3Cu = 3Cu(NO3)2 + 2NO (газ) + 4h3O
Cu + 4HNO3 (конц.) = Cu(NO3)2 + 2NO2 (газ) + 2h3O Zn + 4HNO3 (конц.) =(t) Zn(NO3)2 + 2NO2 (газ) + 2h3O 4Zn + 10HNO3 (разб.) =(t) 4Zn(NO3)2 + N2O (газ) + 5h3O 4Zn + 10HNO3 (сильно разб) =(t) 4Zn(NO3)2 + Nh5NO3 + 3h3O 12HNO3 (сильно разб) + 5Fe = 5Fe(NO3)2 + N2 (газ) + 6h3O Кислота + соль = новая кислота + новая соль
h3SO4 + BaCl2 = BaSO4 (осадок) + 2HCl
Для осуществления этой реакции необходимо, чтобы кислота, получающаяся в итоге, была либо летуча (или нерастворима например кремниевая). Или соль, получающаяся в итоге выпадала в осадок Соль1 + Соль2 = Соль3 + Соль4 Na2CO3 + Ca(NO3)2 = 2NaNO3 + CaCO3 (Следует напомнить, что при составлении таких реакций следует руководствоваться правилом протекания реакций. В данном случае исходные соли должны быть хорошо растворимы, а одна из образующихся должна выпадать в осадок)
Основание + кислота = соль + вода (см. выше)
Основание + кислотный оксид = соль + вода
2NaOH + CO2 = Na 2CO3 +h3O
В эту реакцию вступают только растворимые основания
Основание + соль = новое основание + новая соль
KOH + CuSO4 = K2SO 4 + Cu(OH)2 (осадок)
Правило распространяется только на реакцию с растворимыми основаниями
Кислотный оксид + вода = кислота
SO3 + h3O = h3SO4
На диоксид кремния (SiO2 ) правило не распространяется т.к. этот оксид водой не гидратируется
Кислотный оксид + основный оксид = соль
SO2 + Li2O = Li2SO3
Кислотный оксид + основание = соль + вода (см. выше)

Основный оксид + вода = основание
K2O + h3O = 2KOH
Правило распространяется только на те реакции, в результате которых получается растворимое основание (т.е щелочь)
Основный оксид + кислота = соль + вода (см. выше)
Основный оксид + кислотный оксид = соль (см. выше)

Металл + кислота = соль + водород (см. выше)
Металл + неметалл = соединение ( соль, оксид, пероксид)
2Na + Cl2 = 2NaCl (соль)
2Mg + O2 = 2MgO (оксид)
2Na + O2 = Na2O2 (пероксид)
При составлении некоторых уравнений химических реакций следует руководствоваться следующим правилом: Реакция практически осуществима, если в результате реакции образуется газ, осадок или вода (малодиссоциирующее соединение

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Азотная кислота — обзор

2.29.3.3 Растворы азотной кислоты

Растворы азотной кислоты используются при переработке ядерного топлива, используя склонность урана и плутония к образованию нитратных комплексов, которые растворяются в нуклеофильных растворителях, таких как три- n — бутилфосфат. Нержавеющие стали, в основном аустенитные марки, обычно используются при строительстве перерабатывающих заводов и являются либо пассивными, либо подвержены межкристаллитной коррозии (что приводит к опаданию зерна и, следовательно, к общим потерям, а не к растрескиванию), в зависимости от окислительной способности раствора, которая является сильно увеличивается при высоких температурах (> 70 ° C) и в присутствии некоторых растворенных веществ, которые действуют как окислители.Более подробное описание дается в другом месте (см. Глава 2.24 , Коррозия в азотной кислоте ).

Радиолиз водной азотной кислоты и нейтральных нитратных растворов дает нитрит-ион в качестве основного растворенного продукта 30 вместе с различными количествами перекиси водорода, в зависимости от кислотности, поскольку азотистая кислота окисляется перекисью водорода ( по крайней мере, при комнатной температуре; в горячих растворах азотной кислоты перекись водорода разлагается с образованием газов NO x , что свидетельствует о восстановлении нитрат-иона, то есть обращении окислительно-восстановительной пары).Схемы реакций сложны, включают в себя различные связанные химические реакции, а также радиолитические, и выходы сильно зависят от ЛПЭ излучения. 30

Присутствие азотистой кислоты в значительных концентрациях значительно изменяет коррозионное поведение азотной кислоты, причем общий эффект зависит от обстоятельств. В чистых водных растворах азотной кислоты азотистая кислота катализирует восстановление нитратов и, следовательно, действует, повышая потенциал коррозии нержавеющей стали, немного увеличивая ее скорость коррозии, если температура достаточно высока, чтобы поддерживать межкристаллитную коррозию, даже если окислительно-восстановительный потенциал раствор падает, поскольку азотистая кислота является менее окисляющей, чем азотная кислота (см. Рисунок 12 в Глава 2.24 , Коррозия в азотной кислоте ). В более сложных растворах, содержащих определенные растворенные частицы, такие как Cr (VI) и Ce (IV), эффект производства азотистой кислоты может быть значительным, резко снижая скорость коррозии, если происходит полное восстановление до Cr (III) и Ce (III). , так как потенциал коррозии снова становится пассивным. 31 В таких растворах потенциал коррозии и, следовательно, достигаемая скорость коррозии зависят от общего окислительно-восстановительного баланса; преобладает ли окисление кислотой или восстановление под действием облучения, зависит от концентрации азотной кислоты и температуры, увеличение любой из которых способствует окислению, и мощности дозы облучения, увеличение которой способствует снижению.

Поскольку на коррозионную стойкость таких металлов, как цирконий и тантал, не влияют окисляющие вещества в растворе, эффект радиолиза не проявляется. О влиянии радиолиза на коррозионную стойкость титана не сообщалось, хотя можно было бы ожидать отрицательного эффекта, если бы для поддержания пассивности полагались на окисляющие ионы, а не на растворенные ионы титана (см. Глава 2.24 , Коррозия в Азотная кислота ).

Азотная кислота — Энциклопедия Нового Света

Азотная кислота
Общие
Систематическое название азотная кислота
Другие названия Aqua fortis
Спирт селитры
Сальпетровая кислота
Молекулярная формула HNO 3
УЛЫБКИ [N +] (= O) (OH) [O-]
Концентрация кислотных ионов pH = -2 (1 Н)
Молярная масса 63.01 г / моль
Внешний вид Прозрачная бесцветная жидкость
Номер CAS 7697-37-2
Недвижимость
Плотность и фаза 1,51 г / см³
Растворимость в воде смешиваемый
Температура плавления -42 ° С (231 К)
Температура кипения 83 ° С (356 К)
Кислотность (p K a ) -2
Вязкость ? cP на? ° C
Структура
Молекулярная форма тригонально планарный
Дипольный момент ? D
Опасности
Паспорт безопасности Внешний паспорт безопасности материала
Классификация ЕС Окислитель ( O )
Коррозионный ( C )
NFPA 704 (≤40%)

0

3

0

OX

NFPA 704 (> 40%)

0

4

0

OX

NFPA 704 (дымящий)

0

4

1

OX

R-фразы R8, R35
S-фразы S1 / 2, S23, S26,
S36, S45
Температура вспышки не применимо
Номер RTECS QU5775000
Страница дополнительных данных
Структура и
свойства
n , ε r и т. Д.
Термодинамические
данные
Фазовое поведение
Твердое, жидкое, газовое
Спектральные данные УФ, ИК, ЯМР, МС
Родственные соединения
Родственные соединения Азотистая кислота
Пятиокись азота
Если не указано иное, данные приведены для материалов
в их стандартном состоянии (при 25 ° C, 100 кПа)

Азотная кислота (химическая формула HNO 3 ) — одна из важнейших неорганических кислот.Алхимики восьмого века назвали его aqua fortis (сильная вода), aqua valens, (сильная вода) или духом селитры. Это очень едкая и токсичная кислота, которая может вызвать серьезные ожоги. Бесцветные в чистом виде, более старые образцы имеют тенденцию приобретать желтый оттенок из-за накопления оксидов азота. Азотная кислота смешивается с водой во всех пропорциях, образуя гидраты при низкой температуре.

Эта кислота является обычным лабораторным реагентом и важным промышленным товаром.Он в основном используется для производства нитрата аммония (NH 4 NO 3 ) для удобрений. Он также используется для производства взрывчатых веществ (таких как нитроглицерин), нитрохлопка или пушечного хлопка, пластмасс и красителей.

История

Самое раннее известное письменное описание метода синтеза азотной кислоты приписывают алхимику Джабиру ибн Хайяну (Геберу). Он говорит:

Возьмите фунт кипрского купороса, полтора фунта солянки и четверть фунта квасцов.Отправьте все на перегонку, чтобы получить раствор, обладающий сильным растворяющим действием. Растворяющая способность кислоты значительно возрастает, если ее смешать с некоторым количеством нашатырного спирта, поскольку тогда она растворяет золото, серебро и серу. [1]

Позднее голландский химик Иоганн Рудольф Глаубер первым получил азотную кислоту путем перегонки селитры с серной кислотой, или купоросного масла, как он это называл. Продукт (декагидрат сульфата натрия) назван «глауберова соль» в память о нем.

Aqua regia (лат. «Королевская вода») — одно из химикатов, придуманных древними учеными. Это очень едкий дымящийся раствор желтого или красного цвета. Смесь образуется путем смешивания концентрированной азотной и соляной кислоты, обычно в объемном соотношении один к трем. Это один из немногих реагентов, способных растворять золото и платину, так называемые королевские или благородные металлы — отсюда и название «королевская вода». Эффективность царской водки частично объясняется наличием хлора и нитрозилхлорида.Царская водка используется в травлении и некоторых аналитических процессах, а также в лабораториях для очистки стеклянной посуды от органических и металлических соединений.

Физические свойства

Лабораторный реагент азотная кислота содержит только 68 процентов HNO по весу. Эта концентрация соответствует постоянно кипящей смеси HNO 3 с водой, которая имеет атмосферное давление 68,4 процента по массе и кипит при 121,9 ° C. Чистая безводная азотная кислота (100 процентов) представляет собой бесцветную жидкость с плотностью 1522 кг / м 3 при 25 ° C, которая затвердевает при -41.6 ° C с образованием белых кристаллов и кипит при 86 ° C. При кипячении на свету даже при комнатной температуре происходит частичное разложение с образованием диоксида азота по реакции:

4HNO 3 → 2H 2 O + 4NO 2 + O 2 (72 ° C)

, что означает, что безводную азотную кислоту следует хранить при температуре ниже 0 ° C во избежание разложения. Двуокись азота (NO 2 ) остается растворенной в азотной кислоте, окрашивая ее в желтый или красный цвет при более высоких температурах.В то время как чистая кислота имеет тенденцию выделять белые пары при контакте с воздухом, кислота с растворенным диоксидом азота выделяет красновато-коричневые пары, что дает общее название «красная дымящая кислота» или «дымящая азотная кислота».

  • Азотная кислота смешивается с водой во всех пропорциях, и перегонка дает азеотроп с концентрацией 68 процентов HNO 3 и температурой кипения 120,5 ° C при 1 атм. Известны два твердых гидрата: моногидрат (HNO 3 .H 2 O) и тригидрат (HNO 3 .3H 2 O).
  • Оксиды азота (NO x ) растворимы в азотной кислоте, и это свойство влияет более или менее на все физические характеристики в зависимости от концентрации оксидов. В основном это давление пара над жидкостью и температура кипения, а также цвет, упомянутый выше.
  • Азотная кислота подвержена термическому или легкому разложению с увеличением концентрации, и это может вызвать некоторые заметные изменения давления пара над жидкостью, поскольку образующиеся оксиды азота частично или полностью растворяются в кислоте.

Химические свойства

Азотная кислота образуется при реакции пятиокиси азота (N 2 O 3 ) и двуокиси азота (NO 2 ) с водой. Если раствор содержит более 86 процентов азотной кислоты, он обозначается как дымящаяся азотная кислота . Дымящаяся азотная кислота характеризуется как белая дымящая азотная кислота и красная дымящая азотная кислота, в зависимости от количества присутствующего диоксида азота.

Азотная кислота — это сильная одноосновная кислота, мощный окислитель, который также нитрирует многие органические соединения, и одноосновная кислота, потому что диссоциация происходит только в одном месте.

Кислотные свойства

Как типичная кислота, азотная кислота реагирует со щелочами, основными оксидами и карбонатами с образованием солей, наиболее важной из которых является нитрат аммония. Из-за своей окислительной природы азотная кислота (за некоторыми исключениями) не выделяет водород при реакции с металлами, и образующиеся соли обычно находятся в более высоком окисленном состоянии. По этой причине можно ожидать сильной коррозии, и ее следует защищать соответствующим использованием коррозионно-стойких металлов или сплавов.

Азотная кислота — сильная кислота с кислотной константой диссоциации (pK a ) -2: в водном растворе она полностью ионизируется в нитрат-ион NO 3 и гидратированный протон, известный как гидроний. ион, H 3 O + .

HNO 3 + H 2 O → H 3 O + + NO 3

Окислительные свойства

Азотная кислота — сильный окислитель, о чем свидетельствуют большие положительные значения E .

NO 3 (водн.) + 2H + (водн.) E → NO 2 (г) + H 2 O (l) E = 0,79 V
NO 3 (водн.) + 4H + + 3e → NO (г) 2H 2 (l) E = 0,96 V

Являясь сильным окислителем, азотная кислота бурно реагирует со многими неметаллическими соединениями, и реакции могут быть взрывоопасными. Конечные продукты могут варьироваться в зависимости от концентрации кислоты, температуры и используемого восстановителя.Реакция происходит со всеми металлами, за исключением ряда драгоценных металлов и некоторых сплавов. Как правило, окислительные реакции происходят в основном с концентрированной кислотой, что способствует образованию диоксида азота (NO 2 ).

Реакции с металлами

Азотная кислота растворяет большинство металлов, включая железо, медь и серебро, с высвобождением низших оксидов азота, а не водорода. Он также может растворять благородные металлы с добавлением соляной кислоты.

Cu + 4HNO 3 → Cu (NO 3 ) 2 + 2NO 2 + 2H 2 O

Кислотные свойства имеют тенденцию преобладать с разбавленной кислотой в сочетании с преимущественным образованием азота оксид (NO).

3Cu + 8HNO 3 → 3Cu (NO 3 ) 2 + 2NO + 4H 2 O

Поскольку азотная кислота является окислителем, водород (H) образуется редко. Только магний (Mg) и кальций (Ca) реагируют с холодной, разбавленной азотной кислотой с образованием водорода:

Mg (s) + 2HNO 3 (водн.) → Mg (NO 3 ) 2 (водн.) + H 2 (г)
Реакции с неметаллами

Реакция с неметаллическими элементами, за исключением кремния и галогена, обычно окисляет их до высшей степени окисления в виде кислот с образованием диоксида азота для концентрированной кислоты и оксида азота для разбавленной кислоты.

C + 4HNO 3 → CO 2 + 4NO 2 + 2H 2 O

или

3C + 4HNO 3 → 3CO 2 + 4NO + 2H 2 O
Пассивация

Хотя хром (Cr), железо (Fe) и алюминий (Al) легко растворяются в разбавленной азотной кислоте, концентрированная кислота образует слой оксида металла, который защищает металл от дальнейшего окисления, что называется пассивацией.

Синтез и производство

Азотная кислота производится путем смешивания диоксида азота (NO 2 ) с водой в присутствии кислорода или воздуха для окисления азотистой кислоты, также образующейся в результате реакции.Разбавленная азотная кислота может быть сконцентрирована перегонкой до 68% кислоты, которая представляет собой азеотропную смесь с 32% воды. Дальнейшее концентрирование включает перегонку с серной кислотой, которая действует как дегидратирующий агент. В лабораторных условиях такая перегонка должна проводиться во всех стеклянных аппаратах при пониженном давлении, чтобы предотвратить разложение кислоты. Также следует избегать использования резиновых и пробковых фитингов, так как азотная кислота разъедает эти материалы. Растворы азотной кислоты товарного качества обычно содержат от 52 до 68 процентов азотной кислоты.Промышленное производство азотной кислоты осуществляется посредством процесса Оствальда, названного в честь Вильгельма Оствальда.

Первый процесс представляет собой каталитическую реакцию в газовой фазе — первичный процесс окисления аммиака до азотной кислоты при температуре около 900 ° C на платино-родиевом катализаторе.

4 NH 3 (г) + 5O 2 (г) → 4NO (г) + 6H 2 O (г)

Второй этап — быстрое окисление оксида азота до диоксида азота. Это относительно медленная реакция, т.е.е., этап, определяющий скорость в последовательности реакций.

2NO (г) + O, 2 (г) → 2NO 2 (г)

Наконец, диспропорционирование NO 2 в воде дает одну молекулу оксида азота на каждые две молекулы азотной кислоты.

3NO 2 (г) + H 2 O (л) → 2HNO 3 (водный) + NO (г)

Для получения чистой азотной кислоты, которая бесцветна и кипит, требуется дальнейшее удаление воды. при 83 ° С.

В лаборатории азотная кислота может быть получена из нитрата меди (II) или путем реакции примерно равных масс нитрата калия (KNO 3 ) с 96-процентной серной кислотой (H 2 SO 4 ) и перегонкой. эту смесь при температуре кипения азотной кислоты 83 ° C до тех пор, пока в реакционном сосуде не останется только белая кристаллическая масса, гидросульфат калия (KHSO 4 ). Полученная красная дымящая азотная кислота может быть преобразована в белую азотную кислоту. Обратите внимание, что в лабораторных условиях необходимо использовать цельностеклянное оборудование, в идеале цельную реторту, поскольку безводная азотная кислота разъедает пробку, резину и кожу, а протечки могут быть чрезвычайно опасными.

H 2 SO 4 + KNO 3 → KHSO 4 + HNO 3

Растворенный NO x легко удаляется при пониженном давлении при комнатной температуре (10-30 мин. 200 мм рт. Ст. Или 27 кПа). Полученная белая дымящаяся азотная кислота имеет плотность 1,51 г / см³. Эту процедуру также можно выполнить при пониженном давлении и температуре за один этап, чтобы получить меньше газообразного диоксида азота.

Кислота также может быть синтезирована путем окисления аммиака, но продукт разбавляется водой, также образующейся в ходе реакции.Однако этот метод важен для производства нитрата аммония из аммиака, полученного в процессе Габера, поскольку конечный продукт может быть получен из азота, водорода и кислорода в качестве единственного сырья.

Белая дымящаяся азотная кислота, также называемая 100-процентной азотной кислотой или WFNA, очень близка к безводной азотной кислоте. Одна из спецификаций дымящейся азотной кислоты заключается в том, что она содержит максимум 2 процента воды и максимум 0,5 растворенного NO 2 . Красная дымящая азотная кислота, или RFNA, содержит значительные количества растворенного диоксида азота (NO 2 ), в результате чего раствор приобретает красновато-коричневый цвет.В одной формулировке RFNA указано как минимум 17 процентов NO 2 , в другой — 13 процентов NO 2 . В любом случае ингибированная дымящаяся азотная кислота (IWFNA или IRFNA) может быть получена путем добавления от 0,6 до 0,7 процента фтористого водорода HF. Этот фторид добавляют для защиты от коррозии в металлических резервуарах (фторид создает слой фторида металла, который защищает металл).

использует

Обычно используется в качестве лабораторного реагента, азотная кислота используется при производстве взрывчатых веществ, включая нитроглицерин, тринитротолуол (TNT) и циклотриметилентринитрамин (RDX), а также удобрения, такие как нитрат аммония.

Также в методах ICP-MS и ICP-AES азотная кислота (с концентрацией от 0,5 до 2,0%) используется в качестве матричного соединения для определения следов металлов в растворах. Для такого определения требуется сверхчистая кислота, поскольку небольшие количества ионов металлов могут повлиять на результат анализа.

Он находит дополнительное применение в металлургии и рафинировании, поскольку вступает в реакцию с большинством металлов, а также в органическом синтезе. В сочетании с соляной кислотой он образует царскую водку, один из немногих реагентов, способных растворять золото и платину.

Азотная кислота — компонент кислотных дождей.

Азотная кислота — мощный окислитель, и реакции азотной кислоты с такими соединениями, как цианиды, карбиды и металлические порошки, могут быть взрывоопасными. Реакции азотной кислоты со многими органическими соединениями, такими как скипидар, являются бурными и гиперголичными (т. Е. Самовоспламеняющимися).

Концентрированная азотная кислота окрашивает кожу человека в желтый цвет из-за реакции с протеиновым кератином. Эти желтые пятна при нейтрализации становятся оранжевыми.

Одно из применений IWFNA — это окислитель в ракетах на жидком топливе.

Азотная кислота используется в колориметрическом тесте для различения героина и морфина.

Азотная кислота также используется в школьных лабораториях для проведения экспериментов по тестированию хлоридов. В образец добавляют раствор нитрата серебра и азотную кислоту, чтобы увидеть, остался ли белый осадок хлорида серебра.

Правила техники безопасности

Азотная кислота — опасное химическое вещество, с которым следует обращаться с учетом ее коррозионных и окислительных свойств.Избегайте контакта с кислотой и используйте средства защиты, особенно средства защиты глаз. При попадании на кожу он может вызвать пожелтение, а большие количества или концентрации могут вызвать смертельные ожоги. Не вдыхайте пары, выделяющиеся при смешивании с металлами или органическими соединениями — эффект может быть отсроченным, но все же фатальным. Держитесь подальше от красно-коричневых паров! Азотная кислота сама по себе не горит, но окисляет органические вещества и делает их легко воспламеняемыми.

Связанные темы

Банкноты

  1. ↑ Томас Х.Чилтон, Strong Water; Азотная кислота: источники, методы производства и применение (Кембридж, Массачусетс: M.I.T. Press, 1968). OCLC 237255.

Список литературы

  • Чилтон, Томас Х. 1968. Сильная вода; Азотная кислота: источники, методы производства и использование. Кембридж, Массачусетс: M.I.T. Нажмите. OCLC 237255.
  • Корвин, К. Х. 2001. Введение в химические концепции и связи. 3-е изд. Река Аппер Сэдл, штат Нью-Джерси: Prentice Hall. ISBN 0130874701.
  • Federmann, R. 1964. Королевское искусство алхимии. Пер. Р. Х. Вебер. Нью-Йорк: Книга Чилтона. ASIN B000J3UZJ4.
  • Jolly, W. L. 1966. Химия неметаллов. Основы серии «Современная химия». Энглвуд Клиффс, Нью-Джерси: Prentice Hall. ASIN B0006BNQ1I.
  • Макмерри Дж.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *