Геометрия это – Основные понятия геометрии ℹ️ что такое геометрия, список определений , обозначений и значений по геометрии, термины для 7 класса

Содержание

Геометрия - это... Что такое Геометрия?

Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «мерю») — раздел математики, изучающий пространственные структуры, отношения и их обобщения[1].

Классификация

Общепринятую в наши дни классификацию различных разделов геометрии предложил Феликс Клейн в своей «Эрлангенской программе» (1872). Согласно Клейну, каждый раздел изучает те свойства геометрических объектов, которые сохраняются (инвариантны) при действии некоторой группы преобразований, специфичной для каждого раздела. В соответствии с этой классификацией, в классической геометрии можно выделить следующие основные разделы.

  • Евклидова геометрия, в которой предполагается, что размеры отрезков и углов при перемещении фигур на плоскости не меняются. Другими словами, это теория тех свойств фигур, которые сохраняются при их переносе, вращении и отражении.
    • Планиметрия — раздел евклидовой геометрии, исследующий фигуры на плоскости.
    • Стереометрия — раздел евклидовой геометрии, в котором изучаются фигуры в пространстве.
  • Проективная геометрия, изучающую проективные свойства фигур, то есть свойства, сохраняющиеся при их проективных преобразованиях. Инварианты в этой геометрии — это свойства, сохраняющиеся при замене фигур на подобные им, но другого размера.
  • Аффинная геометрия, использующая очень общие аффинные преобразования. В ней длины и величины углов не имеют существенного значения, но прямые переходят в прямые.
  • Начертательная геометрия — инженерная дисциплина, в основе которой лежит метод проекций. Этот метод использует две и более проекций (ортогональных или косоугольных), что позволяет представить трехмерный объект на плоскости.

Современная геометрия включает в себя следующие дополнительные разделы.

По используемым методам выделяют также такие инструментальные подразделы.

История

Муза геометрии, Лувр

Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.

Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.

Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название

проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями.

Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию.

В честь геометрии назван астероид (376) Геометрия (англ.)русск., открытый в 1893 году.

Литература

  • Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. М.: Наука.
  • Мацуо Комацу. Многообразие геометрии. М.: «Знание», 1981.
  • Левитин Карл. Геометрическая рапсодия. М.: «Знание», 1984.

Ссылки

Примечания

dic.academic.ru

ГЕОМЕТРИЯ - это... Что такое ГЕОМЕТРИЯ?

- часть математики, первоначальным предметом к-рой являются пространственные отношения и формы тел. Г. изучает пространственные отношения и формы, отвлекаясь от прочих свойств реальных предметов (плотность, вес, цвет и т. д.). В последующем развитии предметом Г. становятся также идругие отношения и формы действительности, сходные с пространственными. В современном общем смысле Г. объемлет любые отношения и формы, к-рые возникают при рассмотрении однородных объектов, явлений, событий вне их конкретного содержания и к-рые оказываются сходными с обычными пространственными отношениями и формами. Напр., рассматривают расстояния между функциями, отвлекаясь от того, каковы специальные свойства этих функций и какие реальные процессы эти функции описывают (см., напр., Метрическое пространство, Функциональный анализ).

Исторический очерк. Возникновение Г. относится к глубокой древности. Оно было обусловлено практик, потребностями (измерением земельных участков, объемов тел). Простейшие геометрия, сведения и понятия были известны еще древним египтянам (нач. 2-го тыс. до н. э.). Геометрич. утверждения формулировались тогда в виде правил, логич. доказательства к-рых либо отсутствовали, либо были примитивными. Начиная с 7 в. до н. э. и до 1 в. н. э., развитие Г. происходило в основном в Др. Греции. Здесь накапливались сведения о метрич. соотношениях в треугольниках, измерениях площадей и объемов, пропорциях и подобии фигур, конич. сечениях, задачах на построение. В то время появились уже сравнительно строгие логич. доказательства геометрич. утверждений. Собранием известных фактов Г. и их логической систематизацией явились

"Начала" Евклида (ок. 300 до н. э.). В этом сочинении были сформулированы основные положения (аксиомы) Г., из к-рых при помощи логич. рассуждений выводились различные свойства простейших фигур на плоскости и в пространстве. Здесь впервые сложились основы аксиоматич. метода. Развитие астрономии и геодезии (1 - 2 вв. н. э.) привело к созданию плоской и сферич. тригонометрии.

Дальнейшее развитие Г., вплоть до 17 в., происходило не столь интенсивно. Возрождение наук и искусств в Европе способствовало развитию Г. Теория перспективы, задача к-рой состояла в изображении тел на плоскости (см.

Начертательная геометрия), была в центре внимания художников и архитекторов. Эта потребность привела к зарождению проективной геометрии - раздела Г., в к-ром изучаются свойства фигур, инвариантные относительно так наз. проективных преобразований.

Совершенно новый подход к решению геометрнч. вопросов был предложен в 1-й пол. 17 в. Р. Декартом (R. Descartes). Им был создан метод координат, позволивший привлечь в Г. методы алгебры, а в последующем и анализа. Начиная с этого момента Г. бурно развивается. Появляется аналитическая геометрия, в к-рой методами алгебры исследуются кривые и поверхности, задаваемые алгебраич. уравнениями. Применение в 18 в. Л. Эйлером (L. Euler) и Г. Монжем (G. Monge) методов математич. анализа в Г. заложило основы классической дифференциальной геометрии. Ее ведущие разделы: теория кривых и теория поверхностей- интенсивно развивались и обобщались в работах К. Гаусса (С. Gauss) и др. геометров. В результате взаимодействия Г. с алгеброй и анализом в дальнейшем возникли специальные исчисления, удобные для использования в Г. и др. разделах математики (

векторное исчисление, тензорное исчисление, метод дифференциальных форм).

Разделы Г., не опирающиеся на методы алгебры и анализа и оперирующие непосредственно с геометрич. образами, получили назв. синтетической геометрии.

Предмет, основные разделы геометрии, связь с другими областями математики. Свои первоначальные шаги Г. делала как физич. наука, ее первые результаты описывали свойства физически наблюдаемых величин. Затем, до 2-й пол. 19 в., предметом Г. были отношения и формы тел пространства, свойства к-рого определялись аксиомами, сформулированными Евклидом (см. Евклидова геометрия). Пространство Евклида столь хорошо отражает простейшие физич. наблюдения, что до 19 в. оно как бы отождествлялось с физич. пространством. В 1826 Н. И. Лобачевский построил Г. (см. Лобачевского геометрия), в основу к-рой была положена система аксиом, отличающаяся от системы аксиом Евклида только аксиомой о параллельных прямых. В результате появилась логически непротиворечивая Г., существенно отличная от евклидовой. Стало ясно, что в математике возможно построение разнообразных пространств с содержательной Г. (см., напр.,

Неевклидовы геометрии). Наряду с этим сложилась идея многомерного пространства. Следующим новым шагом в Г. была идея Б. Римана (В. Riemann), к-рый в 1854 сформулировал обобщенное понятие пространства как непрерывной совокупности любых однородных объектов или явлений и ввел пространства, измерение расстояний (метрика) в к-рых производится по нек-рому заданному закону "бесконечно малыми шагами". Иными словами, задается определенная функция, к-рая выражает длину пути точки через диффередциалы координат при малом ее смещении. Развитие идеи Римана привело к дальнейшим разнообразным обобщениям способов задания метрики и рассмотрению Г. соответствующих пространств (см. Риманово пространство, Финслеррво пространство). При исследовании физич. пространства, различных меха-нич. систем или вообще систем каких-либо однородных физич. объектов выбор подходящего математич. пространства и сопоставление его элементов-объектам изучаемой системы зависят от характера этой .системы. Качество такого математич. моделирования проверяется опытом. Разные объекты или одни и те же объекты при разной детальности исследования могут требовать разных пространств. В общей физич. теории пространства-времени-тяготения (см.
Относительности теория
).используется одна из разновидностей римановой Г.

Одним из стимулов развити-я и систематизации Г. явилась ее связь с теорией групп. Ф. Клейн (F. Klein) в эрлангенской программе(1872) так определил содержание Г.: дано многообразие и в нем группа преобразований. Требуется развить теорию инвариантов этой группы. Напр., теория инвариантов ортогональной группы определяет евклидову Г. В такую классификацию хорошо укладываются также аффинная геометрия, конформная геометрия, проективная геометрия. Но риманова Г. не может быть определена таким образом. В связи с этим Э. Картан (Е. Cartan) ввел пространства, в к-рых соответствующая группа преобразований действует только локально, в бесконечно малой окрестности; таковы римановы пространства и пространства с различной связностью. Групповой подход с точки зрения непрерывных групп преобразований был предложен С. Ли (S. Lie).

Параллельно в конце 19 в. развивался логич. анализ основ Г. Выяснение непротиворечивости, минимальности и полноты систем аксиом Г. суммировано Д. Гильбертом (D. Hilbert) в книге "Основания геометрии" (1899) (см.

Основания геометрии).

Современное понимание пространства как непрерывной совокупности однородных объектов (явлений, состояний, фигур, функций) обусловлено глубокой взаимосвязью Г. с другими областями математики. Наиболее отчетливо эта связь проявилась в развитии Г. в 20 в., когда Г. стала широко разветвленной, а ее границы в связи с усилением единства математики стали менее четкими. Теперь пространство в математике понимается как множество, снабженное нек-рой структурой, т. е. нек-рыми отношениями между его элементами или подмножествами.

Изучение простейшей весьма общей структуры, позволяющей говорить о непрерывности, привело к выделению из Г. большой самостоятельной части математики - топологии. Г. предполагает наличие более богатых структур. При использовании аналитич. аппарата дополнительные структуры (связности, метрики, конформные и симплектич. структуры и т. п.) задают обычно с помощью тензорных (в частности - векторных) или иных полей.

Исследование ряда геометрич. структур относится и к другим частям математики. Это связано с преобладающим методом исследования. Так, алгебраическая геометрия изучает алгебраич. многообразия и связанные с ними алгебраич. и арифметич. проблемы. Алге-браизация геометрич. закономерностей позволяет строить Г. над произвольными полями (в том числе над конечными - конечные Г.). Эти разделы - части алгебры. Бесконечномерные пространства изучаются в функциональном анализе. Однако во всех этих областях математики остается полезным геометрич. способ мышления, при к-ром непосредственно оперируют наглядными образами, без перехода к исчислениям.

Наиболее традиционным предметом Г. остаются пространства, являющиеся многообразиями с той или иной дополнительной структурой, многообразия различных фигур, в частности - подмногообразий в них и полей разного рода объектов на многообразиях. Многие разделы Г. можно'характеризовать типом пространств и типом объектов в них, являющихся предметом исследования. Напр., глобальная Г. дифференцируемых многообразий изучает многообразия с гладкими структурами, гладкие многообразия и гладкие поля на них, причем изучает их в целом, на полных многообразиях. Геометрия в целом изучает сходные вопросы для кривых и поверхностей при допущении негладкости и особенностей; она ведет свое начало от теории выпуклых тел, основы к-рой были заложены Г. Минковским (Н. Minkowski). В интегральной геометрии исследуются меры на совокупностях геометрич. объектов. Комбинаторная геометрия изучает расположения геометрич. фигур топологич. и метрич. средствами (напр., плот-нейшие упаковки и редчайшие покрытия) в евклидовом, гиперболич. и эллиптич. пространствах разного числа измерений.

Развитие Г., ее приложения, развитие геометрич. восприятия абстрактных объектов в различных областях математики и естествознания свидетельствуют о важности Г. как одного из самых глубоких и плодотворных по идеям и методам средств познания действительности.

Лит.: [1] Александров А. Д., Геометрия, БСЭ, 3 изд., т. 6; [2] Математика, ее содержание, методы и значение, М., 1956, т. 1, с. 5-69, 180-245; т. 2, с. 97-144; [3] Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959; [4] Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; [5] Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., М.- Л., 1937; [6] Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; [7] Гильберт Д., Основания геометрии, пер. с нем., М.- Л., 1948; [8] Об основаниях геометрии, М., 1956; [9] Ефимов Н. В., Высшая геометрия. 5 изд., М., 1971; [10] Клейн Ф., Высшая геометрия, пер. с нем., М.-Л., 1939.

См. также лит. при статьях об отдельных геометрических дисциплинах. Э. Г. Позняк.

Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.

dic.academic.ru

Объём (геометрия) - это... Что такое Объём (геометрия)?

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жордан (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Подходы к определению

Для определения объёма существует несколько существенно различных подходов, которые дополняют друг друга и согласованы по конечному результату на «хороших множествах». Обычно под понятием объёма понимается мера Жордана, но иногда мера Лебега. Для римановых многообразий, понятие объёма вводится аналогично понятию площади поверхности.

Понятие объёма допускает естественное обобщения до понятия -мерного объёма в -мерном пространстве, также на случай римановых и псевдоримановых пространств произвольной размерности.

Объёмы простейших тел

Архимед сумел установить, что сфера и конусы с общей вершиной, вписанные в цилиндр, соотносятся следующим образом: два конуса : сфера : цилиндр как 1:2:3. Архимед просил выбить на своей могиле шар, вписанный в цилиндр. [1]

Интегральная формула

Объём тела в трехмерном пространстве вычисляется как определённый интеграл:

,

где — характеристическая функция геометрического образа тела.

Литература

  • Воднев В. Т., Наумович А. Ф., Наумович Н. Ф., Основные математические формулы. Справочник/Под ред. Богданова Ю. С. Изд. второе, перераб. и доп. Минск, «Вышэйшая школа», 1988
  • Цыпкин А. Г. Справочник по математике для средних учебных заведений. — 4-е изд., испр. и доп.-М.: Наука. Гл. ред. физ.-мат. лит., 1988. — 432 с.

Примечания

  1. [100 человек, которые изменили ход истории. Еженедельное издание. Архимед (Выпуск № 12, 2008). Блестящий ум]

См. также

Ссылки

academic.ru

Геометрия что это? Значение слова Геометрия

Значение слова Геометрия по Ефремовой:

Геометрия — 1. Раздел математики, в котором изучаются пространственные отношения и формы. // Учебный предмет, содержащий теоретические основы данного раздела математики. // разг. Учебник, излагающий содержание данного учебного предмета.
2. перен. Очертание, форма, контуры чего-л.

Значение слова Геометрия по Ожегову:

Геометрия — Раздел математики, изучающий пространственные отношения и формы

Геометрия в Энциклопедическом словаре:

Геометрия — (от гео… и …метрия) — раздел математики, в котором изучаютсяпространственные отношения (напр., взаимное расположение) и формы (напр.,геометрические тела) и их обобщения. Возникновение геометрии относится кглубокой древности и обусловлено практическими потребностями измеренияземельных участков, объемов и др. Строгое построение геометрии как системыпредложений (теорем), последовательно выводимых из немногочисленныхопределений основных понятий и истин, принимаемых без доказательства(аксиом), было дано в Др. Греции. Такое изложение геометрии в «Началах»Евклида (ок. 300 до н. э. ) в течение почти 2 тыс. лет служило образцомприменения аксиоматического метода и основного построения т. н. евклидовойгеометрии. Возрождение наук и искусств в Европе стимулировало развитиегеометрии: теоретической основой построения изображений явиласьпроективная геометрия. Р. Декарт предложил метод координат, позволившийсвязать геометрию с алгеброй и математическим анализом, что породилоаналитическую геометрию и дифференциальную геометрию. В 1826 Н. И.Лобачевский построил т. н. Лобачевского геометрию, отличающуюся отевклидовой аксиомой (постулатом) о параллельных. В сер. 19 в. былирассмотрены многомерные пространства. Некоторый общий принцип построенияразличных обобщенных понятий пространства (и соответствующих им геометрий)на основе теории групп преобразований был дан Ф. Клейном (1872). Обширнаяобласть геометрии — риманова геометрия — была заложена во 2-й пол. 19 в. вработах Б. Римана. Обобщение основного предмета геометрии — пространства -привело к плодотворному применению геометрии в самых различных областях нетолько математики, но и других наук (физики, механики и др.).

Значение слова Геометрия по словарю Ушакова:

ГЕОМЕТРИЯ
геометрии, мн. нет, ж. (от греч. ge — земля и metreo — измеряю). Отдел математики, в к-ром изучаются пространственные формы, их измерение и взаимное расположение. Элементарная геометрия. Аналитическая геометрия (пользующаяся методами алгебры и анализа). Начертательная геометрия (занимающаяся решением геометрических задач в пространстве при помощи проектирования на плоскость).

Значение слова Геометрия по словарю Брокгауза и Ефрона:

Геометрия (γήμετρ&#974. — земля, μετρ&#974. — мерю). — Понятия о пространстве, положении и форме принадлежат к числу первоначальных, с которыми человек был знаком уже в глубокой древности. Первые шаги в Г. были сделаны египтянами и халдеями. В Греции Г. была введена финикийцем Фалесом (637-548 до Р. X.), обучавшимся в Египте и основавшим в Милете так называемую ионийскую школу, Фалесу приписывают теорию подобных треугольников. Ученик Фалеса, Пифагор (580 до Р. X.), основал в Италии известную школу, носящую его имя. Пифагору принадлежат: замечание о несоизмеримости диагонали и стороны квадрата, теорема о квадрате гипотенузы, свойство круга быть maximum между фигурами одного и того же периметра, аналогичное свойство шара и, наконец, первая теория правильных многогранников, игравшая большую роль в космологии древних и средних веков. Настоящий расцвет Г. в Греции начинается с Платона (430-347). Платон первый указал на важное значение Г. в кругу других наук, написав на дверях академии: "пусть не знающий геометрии не входит сюда". Не будучи геометром по специальности, Платон способствовал прогрессу Г. введением в науку так называемого аналитического метода, изучением свойств конических сечений и установкой плодотворного учения о геометрических местах. Первый дошедший до нас полный трактат по Г., представляющий собрание и систематизацию открытий греческих математиков, принадлежит знаменитому александрийскому геометру Эвклиду (285 до Р. X.). Это бессмертное сочинение носит название "Начала" (στοίχει&#945., Elementa) и представляет полный курс так называемой элементарной Г., имеющий, за весьма немногими исключениями, объем, в котором Г. входит в настоящее время в круг преподавания средних учебных заведений. Новинкой этого трактата является метода доказательства, состоящая в доказательстве абсурдности противоположного. В нем автор обнаруживает образцовую последовательность изложения и строгость доказательств. Известен анекдот о Птолемее (Лаге), желавшем познакомиться с Г., но упрекавшем Эвклида за длинноту изложения, на что геометр отвечал словами: "в математике нет царской дороги". Возможность события вероятна, ибо Птолемей, как начинающий, мог не видеть, что краткость изложения не всегда безопасна для строгости доказательства. Кроме "Начал", Эвклидом написаны были несколько других работ, которые не дошли до нас. из этих работ наибольшей глубиной мысли отличается трактат под заглавием "Поризмы" (Πορίσματ&#945.). Об этом трактате мы знаем лишь по неясным указаниям александрийского математика Паппуса. Некоторые из выдающихся геометров последних веков обратили свою пытливость к восстановлению и уяснению содержания этого трактата по темным намекам Паппуса. Эти работы дали толчок к развитию новых приемов в Г., составляющих предмет так называемой проективной Г . Проективная Г. рассматривает фигуры как перспективу или проекцию других фигур. При таком рассмотрении некоторые свойства фигур сохраняются в их перспективе, некоторые же теряются. Теряются так называемые метрические свойства, а именно перспектива меняет величину углов, а также относительные размеры частей фигур. Так, например, круг в перспективе обращается в эллипс. Те же свойства фигур, которые сохраняются в перспективе, носят название проективных свойств фигур и составляют предмет изучения проективной Г. Так, например, касательная к кругу в перспективе остается касательной к эллипсу. Теорема Паскаля о вписанном шестиугольнике, будучи доказанной для круга, остается справедливой и для проекции круга — эллипса. Г. греков достигает своего апогея развития при Архимеде и Аполлонии. Работы Архимеда (287-212) относятся преимущественно к так называемой Г. меры. Под последним названием разумеется совокупность предложений, дающих числовые соотношения между геометрическими величинами, входящими в вопрос, в отличие от Г. положения, рассматривающей свойства фигур, зависящие от их положения, но не зависящие от размеров этих фигур. Перечисляя открытия Архимеда в Г., прежде всего надо остановиться на его изысканиях отношения окружности к диаметру, причем для несоизмеримого числа, выражающего это отношение, дано было первое приближение 22/7. Квадратура параболы представляет первый пример на измерение площадей, ограниченных кривыми линиями. Свойства спиралей, теорема о шаре и цилиндре, объемы сфероидов и коноидов суть главнейшие изобретения творческого гения, которому статика обязана столько же, как и Г. Сочинения Аполлония (247 до Р. X.) относятся к Г. формы. Главнейшей работой, давшей автору известность, был трактат о конических сечениях. Здесь мы имеем полную теорию трех линий, эллипса, гиперболы и параболы, носящих общее название конических сечений, свойства их сопряженных диаметров, асимптот, фокусов, нормалей, теорема о поляре, первое понятие об эволютах и ряд прекрасных вопросов на maxima и minima. Теорию эпициклов, играющую роль в Птолемеевой системе мира, приписывают тоже Аполлонию. Последователи Архимеда и Аполлония направили свои изыскания на астрономию и на части Г., имеющие связь с этой наукой. Сюда относятся работы Гиппарха и Птолемея (125 г. после Р. X.). В этих работах, а также в "Сфериках" Менелая (80 г. после Р. X.) мы находим прямолинейную и сферическую тригонометрии древних греков. Этот период александрийской школы есть уже период упадка Г.. кроме указанных астрономов, мы встречаем тут лишь комментаторов, из которых по праву приобрел наибольшую известность Паппус. Сочинение Паппуса, носящее заглавие "Collectanea mathemati c a", драгоценно как источник для знакомства с состоянием Г. в Греции, ибо большинство сочинений древних геометров, как известно, не дошло до нас. В работах Паппуса мы встречаем известную теорему Гюльдена (см. Гюльден), зародыш учения об ангармонии и инволюции и свойства шестиугольника, вписанного в коническое сечение. Вот краткий исторический обзор главнейших работ греков по геометрии. Они делили геометрию на три части: на элементы, прикладную геометрию, или геодезию, и высшую геометрию, которая представляла совокупность решений вопросов и теорий, в коих геометр мог найти необходимые указания для доказательства теорем и решения задач. Эту последнюю часть новейшие математики называют геометрическим анализом древних греков. Завоевание арабов (638 после Р. X.) положило конец Александрийской школе. В VIII и особенно в IX столетиях центр научной жизни переходит в Багдад. Работы арабских математиков носят характер совершенно отличный от работ греков. Работы греческих ученых имеют чисто геометрический характер, и только позднее, в Александрии, мы видим Диофанта с его алгеброй. Арабы же всегда имели предпочтение к алгебре, что сказывается и в их геометрических работах. Алгебраическое направление работ арабов отразилось и на работах европейских математиков. Так, мы встречаем ряд итальянских геометров: Сципион Ферро, Кардан, Тарталия, Феррари, занимавшихся алгеброй. Настоящим же творцом этой науки надо считать французского математика Вьета (1540-1603). Вьет прилагал алгебру к нескольким вопросам геометрии. Он строил решения уравнений второй и третьей степеней, и первый решил задачу о построении круга, касательного к трем данным кругам. Прежде, чем мы перейдем к творцу новой геометрии Декарту, надо упомянуть еще о трех выдающихся геометрах: Кеплере (1571-1631), Фермате (15 7 0-1633) и Паскале (1623-1662). Кеплеру принадлежит теория звездчатых многогранников. Фермата восстановил работу Аполлония о плоских местах и первый решил вполне задачи, относящиеся к касанию шаров. Паскаль, известный своими работами о циклоиде и по теории вероятности, нашел в возрасте шестнадцати лет знаменитую теорему о шестиугольнике, вписанном в коническое сечение, и из этой теоремы вывел полную теорию этих линий. На работах Паскаля можно видеть влияние его современника Дезарга (1593-1663), весьма почтенного геометра, усовершенствовавшего теорию конических сечений и писавшего также по вопросам приложения геометрии к технике. Таково было состояние геометрии к концу XVI столетия, когда гению Декарта геометрия была обязана совершенно новым направлением. Изобретение аналитической геометрии составило в науке эпоху и подготовило другое, еще более важное открытие — изобретение дифференциального исчисления. Мысль Декарта состояла в полном по возможности приложении алгебры к геометрии и этого он достиг блестящим образом, предложив определять положение точки на плоскости и в пространстве при помощи некоторых чисел называемых координатами. Таких чисел нужно два для определения положения точки на плоскости и три для пространства. Положение точки определяется, конечно, не абсолютно, а по отношению к некоторым предметам, считаемым основными, неподвижными. Так, например, за основные предметы на плоскости можно принять две взаимно перпендикулярные прямые OX и OY, называемые осями. Тогда положение всякой точки M может быть определено двумя расстояниями точки M до осей. Для полного определения положения точки M на плоскости при помощи расстояний до осей необходимо этим расстояниям приписывать знаки + или —, судя по тому, с которой стороны оси лежит точка M, так, как это делается в тригонометрии для синуса и косинуса. Длины расстояний MQ и MP, взятые с соответствующими знаками, суть те числа X и Y, которыми определяется положение точки на плоскости. X = ±QM, Y = ±MP. Выбор знаков зависит от положения точки M и от выбора положительных направлений на осях. Итак, геометрический вопрос нахождения положения некоторой точки на плоскости приводится к вопросу алгебры об определении некоторой пары чисел. Оказывается, что если мы возьмем уравнение первой степени, неопределенное, ax + by + c = 0, то будет существовать множество точек, координаты которых x, у удовлетворяют этому уравнению. все такие точки лежат на некоторой прямой. Итак, мы видим, что, если заданы коэффициенты a, b, c, то написанное уравнение определяет некоторую прямую, которую можем построить, и наоборот, как бы ни было задано положение прямой на плоскости, можно найти три числа a, b, c для соответствующего ей уравнения. Опять мы видим, что геометрический вопрос определения положения некоторых прямых сводится на вопрос алгебры, состоящий в нахождении коэффициентов некоторого уравнения. Если напишем общее неопределенное уравнение второй степени: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, то оказывается, что при разных коэффициентах это уравнение определяет различные конические сечения, т. е. линии: эллипс, гиперболу и параболу или систему двух прямых, другими словами, как раз те линии, которые так интересовали уже греков. Все теоремы Аполлония и других древних и новых геометров, требовавшие для своего изобретения в свое время выдающихся способностей, выводятся просто из алгебраических выкладок над ураввением. Аналитическая Г., начиная с указанных простейших случаев, переходит к рассмотрению уравнений третьей и высших степеней, наконец уравнений более сложных, и всегда уравнению соответствует некоторая кривая. Непрерывная кривая линия, определяемая уравнением, может иметь в некоторых местах разрыв непрерывности и состоять из нескольких отдельных кусков, что зависит, конечно, от свойств самого уравнения. отсюда является понятие о непрерывности формулы. Дальше само собой является задача о проведении касательной к некоторой данной кривой. Аналитически это значит: по данному уравнению кривой найти уравнение касательной, что есть основная задача дифференциального исчисления. В Г. трех измерений мы имеем нечто аналогичное — там положение точки мы определяем тремя прямоугольными координатами x, y, z, которые суть не что иное, как расстояния до трех взаимно перпендикулярных плоскостей. Уравнение ax + by + cz + d = 0 определяет некоторую плоскость. Прямая же линия в пространстве определяется двумя уравнениями двух плоскостей, в пересечении которых она находится. Общее уравнение второй степени: A1x2 + A2y2 + A3z2 + b1yz + B2xz + B3xy + C1x + C2y + C3z + D = 0, определяет ряд поверхностей, среди которых находится шар, прямой круговой конус, круговой цилиндр и эллипсоид, играющий большую роль в геодезии. Общее заключение состоит в том, что уравнение между тремя координатами в пространстве определяет вообще некоторую кривую поверхность. Кривая же линия в пространстве определяется как пересечение двух поверхностей и, следовательно, двумя уравнениями. Эти общие заключения открыли новой Г. обширное поле приложений в разных вопросах натуральной философии. Первыми воспользовались аналитической Г. астрономия и механика, затем физика. В самом деле, например, в механике аналитическая Г. сводит вопрос нахождения точки на аналитический вопрос нахождения уравнения траектории. Открытие исчисления бесконечно малых, следовавшее за изобретением аналитической Г. и обессмертившее имена Ньютона и Лейбница, прилагалось с такой легкостью и успехом к Г. меры и в приложении математики в разных вопросах натуральной философии, что работы в этом направлении почти поглотили деятельность лучших геометров. Но нить чисто геометрических исследований не прерывается. Сам Ньютон в "Principia mathematica Philosofiae naturalis" всюду употребляет геометрические доказательства. Котес (1682-1716) и Маклорен (1698-1746) изучали общие свойства геометрических линий. Укажем ряд выдающихся ученых, желавших восстановить интерес к древним методам. Астроном Галлей перевел Аполлония и Менелая, Симсон писал о конических сечениях и пытался восстановить содержание "Поризм". Кроме нескольких вопросов, трактованных Эйлером (1707-1783), Ламбертом (1728-1 7 77) и другими известными аналистами, до конца XVIII века в Г. мы не встречаем новых метод. В начале ХIХ столетия появилась так называемая начертательная Г. Эта Г., честь изобретения которой принадлежит знаменитому математику Монжу, учит изображать пространственные предметы на плоскости так, чтобы по этому изображению можно было точно судить о размерах и форме предмета, а также о взаимном расположении частей. Основная идея этой методы состоит в том, что на чертеж наносятся одновременно две проекции данной фигуры, но на двух взаимно перпендикулярных плоскостях, или, говоря языком более общепонятным, в начертательной геометрии предмет определяется двумя чертежами, из которых один представляет план этого предмета, а другой боковой вид его. Из нашего указания всякий поймет значение этой части математики в технике. Помимо универсальных технических приложений, начертательная Г. внесла много нового в науку: она показала связь между плоскими фигурами и фигурами в пространстве и дала науке ряд изящных приемов для получения из свойств фигур в пространстве теорем плоской Г. Между прочим, Монжу принадлежит геометрическая метода доказательств, известная под именем принципа непрерывности: некоторые части фигуры, рассматриваемые в общем построении, могут быть как действительными, так и мнимыми. встречается часто, что в случае действительности эти части служат с пользой для доказательства теоремы и что это доказательство перестает иметь место в обратном случае. Тогда говорят, что на основании закона непрерывности теорема имеет место всегда (Шаль, "Aper &ccedil.u historique", 1837). Как противовес аналитическому (алгебраическому) направлению в Г., появились работы, заключающие разработку новых чисто геометрических приемов, составляющих так называемую синтетическую, или новую, Г. Эта Г. есть продолжение геометрического анализа древних, и первыми работами в этом направлении надо считать работы Дезарга и Паскаля. Далее укажем на следующие важнейшие работы: Карно, "Геометрия положения", Дюпен, "Developpements de Geometrie", и наконец выдающееся сочинение Понселе: трактат о проективных свойствах фигур, где изложена теория взаимных поляр и гомологических фигур, откуда выведены все свойства конических сечений и поверхностей второго порядка. Окончательное развитие получили эти новые приемы в работах Шаля и изложены им под названием высшей Г. в сочинении "Geometrie superieur". Не решаясь высказать общее заключение о значении геометрических работ этого последнего направлeния, мы тем не менее укажем на в высшей степени привлекательную общность заключений, достигаемых в высшей Г., а также на то, с какой легкостью и удобством трактуется теория конических сечений и решаются весьма разнообразные задачи, сюда относящиеся. Изложив сущность главнейших метод в Г. в хронологической последовательности их возникновения, мы должны упомянуть о так называемой Неэвклидовой геометрии. Известно, что в основании Г. древних, или так называемой эвклидовой Г., лежат некоторые аксиомы или предложения, не подлежащие доказательству. Этих аксиом три: 1) две точки на плоскости определяют положение геодезической (кратчайшей) линии, проходящей через них. эта линия есть прямая. 2) Фигуры на плоскости можно переносить с одного места плоскости на другое без изменения их свойств. эта аксиома необходима при доказательстве равенства треугольников посредством наложения одного из них на другой. Наконец, 3) известный постулат (аксиома) Эвклида, относящийся к теории параллельных линий. оказывается, что в теории параллельных линий приходится одно из предложений принимать за постулат, все же остальные предложения выводятся из него, причем выбор того или другого предложения за постулат совершенно произволен. так, например, Эвклид принимает за постулат следующее предложение: "если некоторая прямая пересекает две других, причем сумма внутренних углов по одну сторону секущей меньше двух прямых, то рассматриваемые две прямые при продолжении пересекаются, причем пересекаются с той стороны, где сумма внутренних углов меньше двух прямых". Выдающиеся математики последних столетий пробовали выводить Эвклидову аксиому из первых двух. но все предложенные доказательства имели более или менее искусно замаскированные логические допущения. отсюда явилась мысль, что третья аксиома не есть следствие первых двух, а допущение совершенно самостоятельное, что окончательно было доказано профессором Казанского университета Лобачевским. Он рассуждал так: если мы примем две первые аксиомы, третью же отбросим или же, еще лучше, заменим предложением, ей противоречащим, и построим на этих аксиомах полную геометрическую систему, то должно произойти одно из двух: 1) если постулат Эвклида есть следствие первых двух, то мы, очевидно, где-нибудь должны придти к абсурду, ибо строим Г. на трех предложениях, из которых одно противоречит следствию, вытекающему из первых двух. 2) если же мы, строя геометрическую систему, не придем нигде к логическому противоречию, то это будет служить доказательством, что постулат Эвклида есть предложение, совершенно не зависящее от первых двух аксиом, которое мы вправе были заменить предложением новым. Следуя приведенным выше рассуждениям, профессор Лобачевский принял за постулат, что через точку можно провести не одну прямую линию, не пересекающуюся с другой, как это имеет место в Г. Эвклида, и построил целую геометрическую систему, вполне логичную во всех её частях. Это показало, что третья аксиома есть действительно предложение самостоятельное, заменой которого другим Лобачевский получил новую Г., известную под названием неэвклидовой. Конечно, в геометрии Лобачевского теоремы теории параллельных линий иные, нежели в Г. Эвклида. так, например, сумма углов в треугольнике меньше двух прямых, что же касается равенства треугольников, то все теоремы, относящиеся сюда, в Г. Эвклида суть те же, что и у Лобачевского, как основанные на двух первых аксиомах, общих обеим Г. Указанное исследование Лобачевского, вначале не совсем понятое, получило весьма интересное в философском отношении толкование. Выяснилась роль аксиомы в геометрии. Оказывается, что Г. Лобачевского построена не на плоскости, как Г. Эвклида, а на некоторой кривой поверхности, называемой псевдосферой, и есть по отношению к плоской Г. нечто противоположное сферической Г. В самом деле: на шаре геодезическая (кратчайшая) линия, соединяющая две точки, есть дуга большого круга, которая определяется вполне заданием двух точек, что показывает, что в сферической Г. первая аксиома имеет место. Вследствие одинаковой кривизны во всех точках шара сферические фигуры можно переносить с одного места шара на другое, что показывает, что имеет место и вторая аксиома. Так как каждые два больших круга пересекаются между собой, то на шаре нет непересекающихся (параллельных) геодезических линий. Сопоставляя три Г.: сферическую, плоскую и Неэвклидову, мы видим, что все теоремы о равенстве треугольников до теории параллельных линий в трех Г. одинаковы, что же касается параллельных линий, то в плоской Г., через точку, лежащую вне прямой, можно провести одну не пересекающуюся с данной прямой прямую. на псевдосфере Лобачевского через точку, лежащую вне некоторой геодезической линии, можно провести бесчисленное множество не пересекающихся с ней геодезических линий, и, наконец, на шаре через точку, лежащую вне некоторого большого круга, нельзя провести ни одного большого круга, не пересекающегося с ним. Указанная аналогия между тремя Г. выступает еще яснее на теореме о сумме углов треугольника: на плоскости сумма углов треугольника равна двум прямым. на шаре эта сумма углов треугольника больше двух прямых на некоторое число, называемое сферическим избытком. в Г. же Лобачевского сумма углов треугольника меньше двух прямых. Из всего сказанного видно, что аксиомы в Г. суть не что иное, как выражение свойств того предмета, на котором мы строим Г.: первая аксиома в Г., об определении геодезической линии двумя точками, имеет место для всех непрерывных поверхностей. вторая аксиома выражает свойства поверхностей, имеющих во всех точках одинаковую кривизну, к числу которых принадлежат плоскость, шар и псевдосфера Лобачевского, и наконец, третья аксиома Эвклида выражает свойство, принадлежащее одной только плоскости. Г. Эвклида учит решать задачи при помощи циркуля и линейки, другими словами — при помощи следующих геометрических операций: соединения двух указанных точек прямой при помощи линейки и построения круга по указанному центру и радиусу при помощи циркуля. Оказывается, что не все задачи по своему существу могут быть решаемы только этими операциями. При помощи циркуля и линейки строятся только корни уравнений первой и второй степени, коэффициенты которых или выражены через заданные в вопросе длины, или же для получения их необходимо решать другие уравнения тоже или первой, или второй степени, так что для того, чтобы задача решалась циркулем и линейкой, необходимо, чтобы она аналитически приводилась к уравнению первой или второй степени или же к цепи уравнений первой и второй степени. Таким образом, задача о делении угла на три части, вообще говоря, за исключением некоторых частных случаев, как, например, случай угла в 90°, не может быть решаема циркулем и линейкой, ибо аналитически сводится к уравнению третьей степени, не приводящемуся к уравнениям первой и второй. Точно так же невозможна при помощи циркуля и линейки задача о построении квадрата, равновеликого заданному кругу (знаменитая квадратура круга), ибо сторона искомого квадрата связана с радиусом круга при помощи известного числа &#960., которое, как доказано, есть число трансцендентное, не могущее быть корнем никакого алгебраического уравнения. Еще более сузится круг решаемых задач, если мы поставим условие при решении их употреблять или одну линейку, или один циркуль. Все подобные задачи относятся к так называемым Г. линейки и Г. циркуля. Укажем еще на термин Г. счета. Характеристикой этой последней Г. может служить следующая задача: на плоскости проведено произвольно n прямых — определить, на какое число кусков эти прямые рассекают плоскость. Д. Граве.



xn----7sbbh7akdldfh0ai3n.xn--p1ai

Компьютерная геометрия - это... Что такое Компьютерная геометрия?

Вычислительная геометрия — раздел дискретной математики, в котором рассматриваются алгоритмы для решения геометрических задач.

В ней рассматриваются такие задачи как триангуляция, построение выпуклой оболочки, определение принадлежности одного объекта другому, поиск их пересечения и т. п. Оперируют с такими геометрическими объектами как: точка, отрезок, многоугольник, окружность...

Вычислительная геометрия используется в распознавании образов, машинной графике, инженерном проектировании и т. д.

Здесь рассмотрим случай обычной декартовой системы координат.

Длина вектора \overrightarrow{a}=(x,y,z) обозначается \overrightarrow{a}=(x,y,z).

Для двух векторов \overrightarrow{a}=(x_1,y_1,z_1) и \overrightarrow{b}=(x_2,y_2,z_2) их сложение определяется как \overrightarrow{a}+\overrightarrow{b}=(x_1+x_2,y_1+y_2,z_1+z_2).

Умножение вектора \overrightarrow{a}=(x,y,z) на скаляр k определяется как \overrightarrow{b}=k\overrightarrow{a}=(k x, k y, kz). При этом длина вектора меняется в | k | раз. Если k < 0, то направление вектора меняется на противоположное.

Скалярное произведение векторов \overrightarrow{a}=(x_1,y_1,z_1) и \overrightarrow{b}=(x_2,y_2,z_2) равно x1x2 + y1y2 + z1z2.

Векторное произведение векторов \overrightarrow{a}=(x_1,y_1) и \overrightarrow{b}=(x_2,y_2) равно \left\{y_1 z_2 - z_1 y_2,~ z_1 x_2 - x_1 z_2,~ x_1 y_2 - y_1 x_2 \right\}. Это единственная операция, где уменьшение размерности пространства не сводится к простому отбрасыванию третьей координаты (замене её нулём). Обычно для двумерных векторов значением векторного произведения берут третью координату соответствующих трёхмерных векторов: x1y2x2y1.

Относительное положение точки и прямой

Полярные координаты

Виды многоугольников (полигонов)

Многоугольник - замкнутая кривая на плоскости, состоящая из отрезков прямых линий. Отрезки называются сторонами многоугольника, а их концы - вершинами многоугольника.

Многоугольник называется простым, если он не пересекается сам с собой.

Многоугольник называется выпуклым, если все его внутренние углы меньше или равны 180 градусам.

Цепочка вершин называется монотонной, если любая вертикальная линия пересекает ее не более одного раза. Многоугольник, составленный из двух таких цепочек называется монотонным.

См. также

Литература

  • Прапарата Ф., Шеймос М. Вычислительная геометрия: Введение = Computational Geometry An introduction. — М.: Мир, 1989. — С. 478.
  • Ласло М. Вычислительная геометрия и компьютерная графика на C++. — М.: БИНОМ, 1997. — С. 304.
  • Скворцов А.В. Триангуляция Делоне и ее применение. — Томск: Издательство Томского университета, 2002. — С. 128.
  • Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн, Клифорд. Глава 33. Вычислительная геометрия // Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-e издание. — М.: «Вильямс», 2005. — ISBN 5-8459-0857-4
  • Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. — Springer, 2000. — С. 368.
  • David M. Mount. Computional Geometry. — University of Maryland, 2002. — С. 122.
  • Elmar Langetepe, Gabriel Zachmann. Geometric Data Structures for Computer Graphics. — A K Peters, 2006. — С. 362. — ISBN 1568812353
  • Hormoz Pirzadeh. Computational Geometry with the Rotating Calipers. — McGill University, 1999. — С. 118.
  • Jacob E. Goodman, Joseph O'Rourke. Handbook of Discrete and Computational Geometry. — CRC Press LLC, 1997. — С. 956.
  • Jianer Chen. Computational Geometry: Methods and Applications. — Texas A&M University, 1996. — С. 228.
  • Joseph O'Rourke. Computational Geometry in C. — Cambridge University Press, 1998. — С. 362.

Wikimedia Foundation. 2010.

dal.academic.ru

ГЕОМЕТРИЯ это что такое ГЕОМЕТРИЯ: определение — Философия.НЭС

Геометрия

гр. Земля + измеряю) — раздел математики, в котором изучаются пространственные отношения и формы и их обобщения. Возникновение геометрии обусловлено практическими потребностями измерения земельных участков, объемов и др. Строгое построение геометрии как системы предложений (теорем), последовательно выводимых из немногочисленных определений основных понятий и истин, принимаемых без доказательства (см. Аксиомы), было дано в Древней Греции. «Начала» Евклида (ок. 300 до н.э.) в течение почти 2 тыс. лет служили основанием построения евклидовой геометрии. Возрождение наук и искусств в Европе стимулировало развитие геометрии: теоретической основой построения изображений явилась проективная геометрия. Р. Декарт (1596 — 1650) предложил метод координат, позволивший связать геометрию с алгеброй и математическим анализом, что породило аналитическую геометрию и дифференциальную геометрию.  В 1826 г. Н.И. Лобачевский (1792 — 1856) построил геометрию, отличающуюся от евклидовой аксиомой (постулатом) о параллельных. В середине 19 в. были рассмотрены многомерные пространства. Некоторый общий принцип построения различных обобщений понятия пространства (и соответствующих им геометрий) на основе теории групп преобразований был дан в 1872 г. Ф. Клейном (1849 — 1925).    Обширная область геометрии — риманова геометрия — была заложена во 2-й пол. 19 в. в работах Б. Римана (1826 — 1866).

Оцените определение:

Источник: Концепции современного естествознания. Словарь основных терминов

Геометрия

от греч. geometria, где geo, g3 — Земля и metreo — меряю, букв. землемерие) — раздел математики, изучающий пространственные отношения и формы, а также другие отношения и формы, сходные с пространственными по своей структуре. В первоначальном своем значении понималась как наука о фигурах, о взаимном расположении и размерах их частей, а также о преобразовании фигур. Одна из древнейших наук, колыбелью которой считается Восток, а в истории выделяют по крайней мере четыре периода (этапа). Зарождение произошло примерно до VII-V века до н. э. в древних Египте, Вавилоне и Греции, когда правила о вычислении площадей и объемов носили больше эмпирический, чем логический характер. Перенесение геометрических сведений из Египта и Вавилона в Грецию в VII-VI вв. до н. э. положило начало второму периоду развития геометрии — периоду систематического изложения геометрии как науки, где все предложения доказывались. Полагают, что выдающуюся роль в этот период сыграли Фалес, Пифагор, Гиппократ, Платон, Аристотель (последние два придавали большое значение системе и обоснованию геометрии и ввели понятия аксиом, постулатов и предложений), а особая роль отводится Евклиду (III в. до н. з.), изложившему геометрию в 13-томных «Началах». После Евклида выдающуюся роль сыграли Архимед, Аполлоний и Эратосфен. Зарождение капитализма привело к третьему периоду — периоду создания аналитической геометрии, творцами которой стали Декарт и Ферма, а позднее Эйлер, Монж, Дезарг, Паскаль. Четвертый период знаменуется созданием неевклидовых геометрий, первой из которых является геометрия Лобачевского, затем появляется геометрия Римана и многие другие.

Оцените определение:

Источник: Начала современного естествознания: тезаурус

ГЕОМЕТРИЯ

наука, изучающая пространственные отношения и формы тел, обозначающая их посредством символических фигур. С одной стороны, геометрию считали божественной наукой, поскольку она изучает чистые, абсолютные формы. С другой — средневековые схоласты любили говорить, что богомерзостен всякий любящий геометрию. Особенно важное внимание геометрии отводилось в пифагорейской эзотерике. Геометрию называли наукой о душе, ибо она исследует сферу идеального. За геометрическим символизмом происходило раскрытие множественности форм проявления божественного единства. Через геометрию происходило осознание процесса космогенеза. На геометрическом символизме основывалась философия парадоксов Н. Кузанского. Вся европейская эстетика в определенном смысле была построена на идее симметрии. Точка и линия, круг и квадрат выражают антиномичные принципы бытия. Круг и квадрат в сочетании образуют священную мандолу. По китайской символической традиции небо считалось круглым, а земля квадратной. Квадратным являлось и убежище праведников в иранской мифологии — Вара. В основе исламской храмовой архитектуры лежала идея квадрата. Круг служил обозначением космического пространства. Границы круга отделяли космос от хаоса. Вместе с тем круг символизировал бесконечность, и его животным олицетворением служил свернувшийся кольцом или кусающий себе хвост мировой змей. Круг есть плоскостная проекция солнца, мирового яйца, мистического колеса. Ритуальным его соо

terme.ru

Геометрия.ру - это... Что такое Геометрия.ру?

Geometria.ru
Главная страница сайта
URL:

geometria.ru

Коммерческий:

да

Тип сайта:

портал клубной жизни,
социальная сеть

Регистрация:

необходима чтобы писать и комментировать

Язык(и):

русский,
английский,
немецкий

Начало работы:

2002 год

Текущий статус:

работает

Геометрия.ру — российский интернет-портал, посвященный модной, культурной и светской жизни России и стран Восточной и Западной Европы. Расположен в Санкт-Петербурге. Основан в 2002 году.

История

Портал «Геометрия.ру» был основан в 2002 году в Санкт-Петербурге и первоначально занимался подготовкой фоторепортажей, посвященных клубной жизни города. На момент создания это был первый в России ресурс в формате клубного фоторепортажа. С 2005 года портал стал позиционировать себя как "модная социальная сеть". В 2006 году были открыты филиалы в других городах[1]. В августе 2006 была произведена реорганизация сайта[1] В настоящее время портал освещает события клубной жизни более чем в 180 городах России и стран Ближнего Зарубежья[2]. С 2010 года Geometria.ru стала отходить от первоначального фокуса на клубных мероприятиях и позиционировать себя, как «культурная среда»: съемки ведутся на концертах, различных выставках, в театре, на спортивных событиях и т.д. В 2011 году в рамках компании заработал видео-отдел, под названием Geometria.tv, снимающий короткие репортажи с различных мероприятий.

Деятельность

Профилирующая деятельность компании — фото и видео репортажи светской жизни, клубных, культурных и музыкальных событий, организация мероприятий, а также развитие комьюнити модных и интеллектуальных людей. Основным источником дохода для компании является интернет-реклама на сайте. Фоторепортажи с мероприятий и другой контент приводят к притоку посетителей на сайт, делая его, таким образом, привлекательным местом для размещения рекламы.[3]

Структура сайта

Условно сайт можно разделить на редакционный и пользовательский контент, включающий следующие разделы: «Блоги», «Анонсы», «Репортажи», «TV», «Заведения и Проекты», «Пользователи» и «Сообщества». К редакционному контенту относятся фото и видео репортажи, статьи и прямые трансляции, музыкальные релизы. В месяц на сайте появляется около 5000 репортажей и 250 видео. Также, ежедневно на Geometria.ru публикуется несколько десятков музыкальных релизов от известных и начинающих музыкантов, исполнителей и ди-джеев.

К пользовательскому контенту относятся: анонсы событий (пользователи могут обсуждать событие, голосовать за него, приглашать друзей и отмечать те, которые собираются посетить), и блоги (любой пользователь может создать блогпост почти во все рубрики (потоки), а лучшие из них отображаются на главной странице и аккумулируются в потоке «Лучшие»). Также на сайте пользователи могут обмениваться сообщениями, заводить друзей, оценивать других пользователей и создавать личные сообщества.

Инновации

QR code: автоматический генератор QR code (кваркод) к анонсам всех предстоящих событий - это двухмерный штрихкод, предоставляющий информацию для быстрого ее распознавания с помощью камеры на мобильном телефоне. Данная технология позволяет быстро перенести анонс события в календарь на телефоне.

Цвет сайта: днем белый, ночью черный. При желании, пользователь может фиксированно установить нужную цветовую гамму.

On-line трансляции: В режиме он-лайн пользователь увидит то, что фотографирует фотограф Geometria.ru прямо сейчас. При этом помимо онлайн потока фотографий, также можно слушать музыку, которая именно сейчас звучит в клубе. Таким образом, любой может, находясь где угодно, стать участником события, транслируемого на Geometria.ru в прямом эфире.

Персоналии

  • Александр Соколов / Саша Гео, Управляющий GEOMETRIA.ru[4]
  • Алена Духневич, Директор регионального развития[4]
  • Сергей Тонков, Директор по маркетингу[4]
  • Иван Шумков, Технический директор[4]

Источники

  1. 1 2 http://itnews.spb.ru/a0/ru/archive/view.thtml?i=1908&p=0 Geometria.ru выходит из Сети
  2. http://geometria.ru/map Карта филиалов Геометрии
  3. http://www.thedjlist.ru/site/show/Geometria_ru.phtml Geometria.ru
  4. 1 2 3 4 http://geometria.ru/spb/staff Федеральная администрация

Ссылки

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *