Как раскрыть скобки в 3 степени: Формулы сокращённого умножения

Содержание

Формулы сокращенного умножения

Формулы сокращенного умножения
Номер Название формулы Короткая запись Раскрытие скобок/разложение на множители
(1) Разность квадратовa2-b2(a-b)(a+b)
(2) Квадрат суммы/разности(a±b)2a2±2ab+b2
(3) Квадрат суммы для n переменных(a1+a2+…+an)2a12+a22+…+an2+2∑i,jaiaj
(4) Сумма/разность кубовa3±b3(a±b)(a2∓ab+b2)
(5) Куб суммы/разности(a±b)3a3±3a2b+3ab2±b3
(6) Куб суммы для n переменных(a1+a2+. ..+an)3a13+a23+…+an3+3∑i,jai2aj+6∑i,j,kaiajak
(7) Разность четвертых степенейa4-b4(a-b)(a+b)(a2+b2)
(8) Четвертая степень суммы/разности(a±b)4a4±4a3b+6a2b2±4ab3+b4
(9) Сумма/разность nх степенейan-bn(a±b)(a
n-1
+an-2b+an-3b2+…+bn-3a2+bn-2a+bn-1)
(10) Сумма (2n+1)х степенейa2n+1+b2n+1(a+b)(a2n-a2n-1b+a2n-2b2+. ..+b2n-2a2-b2n-1a+b2n)
(11) Nая степень суммы/разности(a±b)nan±(n1)an-1b+(n2)an-2b2±..+(nn-2)a2bn-2±(nn-1)abn-1+bn

— версия для печати
Определение
Nая степень числа — результат умножения числа на себя n раз. Также квадратом числа называется результат возведения числа в степень
n
(в nую степень).
Пример:
(4a3b)3 = 64a3144a2b + 108ab227b3
Пояснение
Под (nk) подразумевается биномиальный коэффициент, равный
Если у вас есть мысли по поводу данной страницы или предложение по созданию математической (см. 3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a — b)^2 \) и \(a^2 — b^2 \), т. 2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

П родолжаю цикл методических статей на тему преподавания. Пришло время рассмотреть особенности индивидуальной работы репетитора по математике с учащимися 7-х классов . С великим удовольствием поделюсь своими соображениями о формах подачи одной из важнейших тем курса алгебры в 7 классе — «раскрытие скобок». Дабы не пытаться объять необъятное, остановимся на ее начальной ступени и разберем методику работы репетитора с умножением многочлена на многочлен. Как репетитор по математике действует в сложных ситуациях, когда слабый ученик не воспринимает классическую форму объяснения? Какие задания нужно готовить для сильного семиклассника? Рассмотрим эти и другие вопросы.

Казалось бы, ну что здесь сложного? «Скобки — это проще простого», — скажет любой отличник. «Есть распределительный закон и свойства степеней для работы с одночленами, общий алгоритм для любого количества слагаемых. Умножай каждое на каждое и приводи подобные». Однако, не все так просто в работе с отстающими. Вопреки стараниям репетитора по математике, учащиеся умудряются допускать ошибки самого разного калибра даже в простейших преобразованиях. Характер ошибок поражает своей разноплановостью: от мелких пропусков букв и знаков, до серьезных тупиковых «стоп-ошибок».

Что мешает школьнику правильно выполнить преобразования? Почему возможно непонимание?

Индивидуальных проблем существует огромное множество и одним из главных препятствий на пути усвоения и закрепления материала является затруднения в своевременном и быстром переключении внимания, сложность в обработке большого объема информации. Возможно, кому-то покажется странным, что я говорю о большом объеме, но слабому ученику 7 класса может не хватить ресурсов памяти и внимания даже для четырех слагаемых. Мешают коэффициенты, переменные, степени (показатели). Ученик путает очередность операций, забывает какие одночлены уже перемножены, а какие остались не тронутыми, не может вспомнить как их умножают и т. д.

Числовой подход репетитора по математике

Конечно же, нужно начинать с объяснений логики построения самого алгоритма. Как это сделать? Нужно поставить задачу: как изменить порядок действий в выражении , чтобы не поменялся результат? Я довольно часто привожу примеры, объясняющие работу тех или иных правил, на конкретных числах. А уже затем заменяю их буквами. Техника использования числового подхода будет описана ниже.

Проблемы мотивации .
В начале урока репетитору по математике трудно собрать ученика, если он не понимает актуальности изучаемого. В рамках программы за 6 — 7 класс сложно найти примеры использования правила умножения многочленов. Я бы сделал упор на необходимость учиться менять порядок действий в выражениях То, что это помогает решать задачи, ученик должен знать по опыту сложения подобных слагаемых. Ему же приходилось их складывать в при решении уравнений. Например, в 2х+5х+13=34 он использует, что 2х+5х=7х. Репетитор по математике просто должен акцентировать на этом внимание школьника.

Учителя математики часто называют прием раскрытия скобок правилом «фонтанчика» .

Этот образ хорошо запоминается и его обязательно нужно использовать. Но как это правило доказывается? Напомним классическую форму, использующую очевидные тождественные преобразования:

(a+b)(c+d)=(a+b) c+(a+b) d=ac+bc+ad+bd

Репетитору по математике трудно что-либо здесь комментировать. Буквы говорят сами за себя. Да и не нужны сильному ученику 7 класса подробные объяснения. Однако, что делать со слабым, который в упор не видит в этой «буквенной мешанине» какого-либо содержания?

Основной проблемой, мешающей восприятию классического математического обоснования «фонтанчика», является непривычная форма записи первого множителя. Ни в 5 классе, ни 6 классе школьнику не приходилось перетаскивать первую скобку к каждому слагаемому второй. Дети имели дело только с числами (коэффициентами), расположенными, чаще всего, слева от скобок, например:

К окончанию 6 класса у школьника формируется визуальный образ объекта – определенное сочетание знаков (действий), связанных со скобками. И любое отклонение от привычного вида в сторону чего-то нового может дезориентировать семиклассника. Именно визуальный образ пары «число+скобка» репетитор по математике берет в оборот при объяснениях.

Можно предложить следующее объяснение. Репетитор рассуждает: «Если бы перед скобкой стояло какое-нибудь число, например 5, то смогли бы мы изменить порядок действий в этом выражении? Конечно. Тогда сделаем это . Подумай, изменится ли его результат, если вместо числа 5 мы вписать сумму 2+3, заключенную в скобки? Любой ученик скажет репетитору: «Какая разница, как писать: 5 или 2+3». Прекрасно. Получится запись . Репетитор по математике берет небольшую паузу, чтобы ученик зрительно запомнил картинку-образ объекта. Затем обращает его внимание на то, что скобка, как и число, «распределилась» или «прыгнула» к каждому слагаемому. Что это означает? Это означает, что данную операцию можно выполнять не только с числом, но и со скобкой. Получились две пары множителей и . С ними большая часть учеников легко справляется самостоятельно и выписывает репетитору результат . Важно сопоставить получившиеся пары с содержанием скобок 2+3 и 6+4 и станет понятно как они открываются.

Если необходимо, то после примера с числами репетитор по математике проводит буквенное доказательство. Оно оказывается легкой прогулкой по тем же самым частям предыдущего алгоритма.

Формирование навыка раскрытия скобок

Формирование навыка умножения скобок — один из важнейших этапов работы репетитора по математике с темой. И даже более важный чем этап объяснения логики правила «фонтанчика». Почему? Обоснования преобразований забудутся уже на следующий день, а навык, если он вовремя сформирован и закреплен, останется. Ученики выполняют операцию механически, как будто извлекают из памяти таблицу умножения. Этого и нужно добиваться. Почему? Если каждый раз при раскрытии скобок школьник будет вспоминать о том, почему раскрывается так, а не иначе, он забудет о задаче, которую решает. Именно поэтому оставшееся время урока репетитор по математике бросает на то, чтобы трансформировать понимание в механическое запоминание. Эта стратегия часто используется и в других темах.

Как репетитору сформировать у школьника навык раскрытия скобок? Для этого ученик 7 класса должен выполнить ряд упражнений в достаточном для закрепления количестве. При этом возникает другая проблема. Слабый семиклассник не справляется с возросшим количеством преобразований. Пусть даже мелких. И ошибки сыплются одна за другой. Что должен предпринять репетитор по математике? Во-первых, нужно рекомендовать подрисовывать стрелки от каждого слагаемого к каждому. Если ученик очень слабый и не способен быстро переключаться с одного вида работы на другой, теряет концентрацию при выполнении несложных команд преподавателя, то репетитор по математике сам рисует эти стрелки.

Причем не все сразу. Сначала репетитор соединяет первое слагаемое левой скобки с каждым слагаемым правой скобки и просит выполнить соответствующее умножение. Только после этого стрелки направляются от второго слагаемого в ту же правую скобку. Иными словами репетитор разделяет процесс на два этапа. Лучше выдерживать небольшую временную паузу (5-7 секунд) между первой и второй операцией.

1) Один набор стрелок нужно рисовать над выражениями, а другой под ними.
2) Важно пропускать между строчками хотя бы пару клеток . Иначе запись будет очень плотной, а стрелки залезут не только на предыдущую строку, но и смешаются со стрелками от следующего упражнения.

3) В случае умножения скобок в формате 3 на 2 стрелки проводятся от короткой скобки к длинной. Иначе этих «фонтанчиков» будет не два, а три. Реализация третьего заметно усложняется в виду отсутствия для стрелок свободного пространства.

4) стрелки всегда направляются из одной точки. Один мой ученик все время порывался их поставить рядом и вот, что у него получалось:

Такое расположение не позволяет выделять и фиксировать текущее слагаемое, с которым ученик работает на каждом из этапов.

Работа пальцев репетитора

4) Для удержания внимания на отдельной паре умножаемых слагаемых, репетитор по математике прикладывает к ним два пальца. Это надо делать так, чтобы не закрывать ученику обзор. Для наиболее невнимательных школьников можно использовать метод «пульсации». Репетитор по математике подводит первый палец к началу стрелки (к одному из слагаемых) и фиксирует его, а вторым «стучит» по ее концу (по второму слагаемому). Пульсация помогает собрать внимание на том слагаемом, на которое ученик умножает. После того, как выполнено первое умножение на правую скобку, репетитор по математике говорит: «Теперь работаем с другим слагаемым». Репетитор передвигает к нему «неподвижный палец», а «пульсирующим» пробегает по слагаемым из другой скобки. Пульсация работает словно «поворотник» в автомобиле и позволяет собирать внимание рассеянного ученика на проводимой им операции. Если ребенок пишет мелко, то вместо пальцев используются два карандаша.

Оптимизация повторения

Как и при изучении любой другой темы курса алгебры умножение многочленов можно и нужно интегрировать с ранее пройденным материалом. Для этого репетитор по математике использует специальные задания-мостики, позволяющие найти применение изучаемого в различных математических объектах. Они не только соединяют темы в единое целое, но и весьма эффективно организуют повторение всего курса математики. И чем больше мостиков построит репетитор, тем лучше.

Традиционно в учебниках алгебры для 7 класса расскрытие скобок интегрируется с решением линейных уравнений. В конце cписка номеров всегда имеются задания такого порядка: решить уравнение . При раскрытии скобок квадраты сокращаются и уравнение легко решается средствами 7 класса. Однако, почему-то про построение графика линейной функции авторы учебников благополучно забывают. Дабы исправить этот недостаток я бы посоветовал репетиторам по математике включать скобоки в аналитические выражения линейных функций, например . На таких упражнениях ученик не только тренирует навыки проведения тождественных преобразований, но еще и повторяет графики. Можно попросить найти точку пересечения двух «монстров», определить взаимное расположение прямых, найти точки их пересечения с осями и т.

д.

Колпаков А.Н. Репетитор по математике в Строгино. Москва

На этом уроке вы узнаете, как из выражения, содержащего скобки, путем преобразования получить выражение, в котором скобок нет. Вы научитесь раскрывать скобки, перед которыми стоит знак плюс и знак минус. Мы вспомним, как раскрывать скобки, используя распределительный закон умножения. Рассмотренные примеры позволят связать новый и ранее изученный материал в единое целое.

Тема: Решение уравнений

Урок: Раскрытие скобок

Как раскрыть скобки, перед которыми стоит знак «+». Использование сочетательного закона сложения.

Если к числу нужно прибавить сумму двух чисел, то можно к этому числу прибавить сначала первое слагаемое, а затем второе.

Слева от знака равно выражение со скобками, а справа — выражение без скобок. Значит, при переходе от левой части равенства к правой произошло раскрытие скобок.

Рассмотрим примеры.

Пример 1.

Раскрыв скобки, мы изменили порядок действий. Считать стало удобнее.

Пример 2.

Пример 3.

Заметим, что во всех трех примерах мы просто убирали скобки. Сформулируем правило:

Замечание.

Если первое слагаемое в скобках стоит без знака, то его надо записать со знаком «плюс».

Можно выполнить пример по действиям. Сначала к 889 прибавить 445. Это действие в уме выполнить можно, но это не очень просто. Раскроем скобки и увидим, что изменённый порядок действий значительно упростит вычисления.

Если следовать указанному порядку действий, то нужно сначала из 512 вычесть 345, а затем к результату прибавить 1345. Раскрыв скобки, мы изменим порядок действий и значительно упростим вычисления.

Иллюстрирующий пример и правило.

Рассмотрим пример: . Найти значение выражения можно, сложив 2 и 5, а затем взять полученное число с противоположным знаком. Получим -7.

С другой стороны, тот же самый результат можно получить, сложив числа, противоположные исходным.

Сформулируем правило:

Пример 1.

Пример 2.

Правило не изменяется, если в скобках не два, а три или более слагаемых.

Пример 3.

Замечание. Знаки меняются на противоположные только перед слагаемыми.

Для того чтобы раскрыть скобки, в данном случае нужно вспомнить распределительное свойство.

Сначала умножим первую скобку на 2, а вторую — на 3.

Перед первой скобкой стоит знак «+», значит, знаки нужно оставить без изменения. Перед второй стоит знак «-», следовательно, все знаки нужно поменять на противоположные

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. — Гимназия, 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. — Просвещение, 1989.
  4. Рурукин А.Н. , Чайковский И.В. Задания по курсу математика 5-6 класс — ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. — ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. — Просвещение, 1989.
  1. Онлайн тесты по математике ().
  2. Можно скачать указанные в п. 1.2. книги ().

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012. (ссылка см. 1.2)
  2. Домашнее задание: № 1254, № 1255, № 1256 (б,г)
  3. Другие задания: № 1258(в), № 1248

«Раскрытие скобок» — Учебник по математике 6 класс (Виленкин)

Краткое описание:


В этом разделе Вы будете учиться раскрывать скобки в примерах. Для чего это нужно? Все для того же, что и раньше – чтобы Вам было легшее и проще считать, чтобы допускать меньше ошибок, а в идеале (мечта Вашего учителя математики) для того, чтобы вообще все решать без ошибок.
Вы уже знаете, что скобки в математической записи ставятся, если подряд идут два математических знака, если мы хотим показать объединение чисел, их перегруппировку. Раскрыть скобки означает избавиться от лишних знаков. Например: (-15)+3=-15+3=-12, 18+(-16)=18-16=2. А помните распределительное свойство умножения относительно сложения? Ведь в том примере мы также избавлялись от скобок для упрощения вычислений. Названное свойство умножения также можно применять для четырех, трех, пяти и более слагаемых. Для примера: 15*(3+8+9+6)=15*3+15*8+15*9+15*6=390. Вы заметили, что при раскрытии скобок числа, находящиеся в них не меняют знака, если стоящее перед скобками число положительное? Ведь пятнадцать – положительное число. А если решить такой пример: -15*(3+8+9+6)=-15*3+(-15)*8+(-15)*9+(-15)*6=-45+(-120)+(-135)+(-90)=-45-120-135-90=-390. У нас перед скобками стояло отрицательное число минус пятнадцать, когда мы раскрыли скобки все числа стали менять свой знак на другой — противоположный – с плюса на минус.
Исходя из вышеуказанных примеров, можно озвучить два основных правила раскрытия скобок:
1. Если у Вас перед скобками стоит положительное число, то после раскрытия скобок все знаки чисел, стоявших в скобках, не изменяются, а остаются точно такими же как и были.
2. Если у Вас перед скобками стоит отрицательное число, то после раскрытия скобок знак минуса больше не пишется, а знаки всех абсолютно чисел, стоявших в скобках, резко меняются на противоположные.
Для примера: (13+8)+(9-8)=13+8+9-8=22; (13+8)-(9-8)=13+8-9+8=20. Немного усложним наши примеры: (13+8)+2(9-8)=13+8+2*9-2*8=21+18-16=23. Вы заметили, что раскрывая вторые скобки, мы умножали на 2, но знаки оставались теми же как и были. А вот такой пример: (3+8)-2*(9-8)=3+8-2*9+2*8=11-18+16=9, в этом примере число два — отрицательное, оно перед скобками стоит со знаком минус, поэтому раскрывая их, мы меняли знаки чисел на противоположные (девять было с плюсом, стало с минусом, восемь было с минусом, стало с плюсом).

Сейчас мы как раз перейдем к раскрытию скобок в выражениях, в которых выражение в скобках умножается на число или выражение. Сформулируем правило раскрытия скобок, перед которыми стоит знак минус: скобки вместе со знаком минус опускаются, а знаки всех слагаемых в скобках заменяются на противоположные.

Одним из видов преобразования выражения является раскрытие скобок. Числовые, буквенные выражения и выражения с переменными бывают составлены с использованием скобок, которые могут указывать порядок выполнения действий, содержать отрицательное число и т.п. Допустим, что в описанных выше выражениях вместо чисел и переменных могут быть любые выражения.

И обратим внимание еще на один момент, касающийся особенностей записи решения при раскрытии скобок. В предыдущем пункте мы разобрались с тем, что называют раскрытием скобок. Для этого существуют правила раскрытия скобок, к обзору которых мы и приступаем. Это правило продиктовано тем, что положительные числа принято записывать без скобок, скобки в этом случае излишни. Выражение (−3,7)−(−2)+4+(−9) может быть записано без скобок как −3,7+2+4−9.

Наконец, третья часть правила просто обусловлена особенностями записи отрицательных чисел, стоящих слева в выражении (о чем мы упоминали в разделе скобки для записи отрицательных чисел). Можно столкнуться с выражениями, составленными из числа, знаков минус и нескольких пар скобок. Если раскрывать скобки, продвигаясь от внутренних к внешним, то решение будет таким: −(−((−(5))))=−(−((−5)))=−(−(−5))=−(5)=−5.

Как раскрыть скобки?

Вот тому пояснение: −(−2·x) есть +2·x, а так как это выражение стоит вначале, то +2·x можно записать как 2·x, −(x2)=−x2, +(−1/x)=−1/x и −(2·x·y2:z)=−2·x·y2:z. Первая часть записанного правила раскрытия скобок напрямую следует из правила умножения отрицательных чисел. Вторая его часть является следствием правила умножения чисел с разными знаками. Переходим к примерам раскрытия скобок в произведениях и частных двух чисел с разными знаками.

Раскрытие скобок: правила, примеры, решения.

Приведенное выше правило учитывает всю цепочку этих действий и значительно ускоряет процесс раскрытия скобок. Это же правило позволяет раскрывать скобки в выражениях, представляющих собой произведения и частные выражений со знаком минус, не являющихся суммами и разностями.

Рассмотрим примеры применения этого правила. Дадим соответствующее правило. Выше мы уже сталкивались с выражениями вида −(a) и −(−a), которые без скобок записываются как −a и a соответственно. Например, −(3)=3, и. Это частные случаи озвученного правила. Теперь рассмотрим примеры раскрытия скобок, когда в них заключены суммы или разности. Покажем примеры использования этого правила. Обозначим выражение (b1+b2) как b, после чего используем правило умножения скобки на выражение из предыдущего пункта, имеем (a1+a2)·(b1+b2)=(a1+a2)·b=(a1·b+a2·b)=a1·b+a2·b.

По индукции это утверждение можно распространить на произвольное количество слагаемых в каждой скобке. Осталось раскрыть скобки в полученном выражении, используя правила из предыдущих пунктов, в итоге получаем 1·3·x·y−1·2·x·y3−x·3·x·y+x·2·x·y3.

Правило по математике раскрытие скобок если перед скобками стоит (+) и (-) очень нужно прваило

Это выражение представляет собой произведение трех множителей (2+4), 3 и (5+7·8). Раскрывать скобки придется последовательно. Теперь используем правило умножения скобки на число, имеем ((2+4)·3)·(5+7·8)=(2·3+4·3)·(5+7·8). Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок.

Для примера преобразуем выражение (a+b+c)2. Сначала запишем его в виде произведения двух скобок (a+b+c)·(a+b+c), теперь выполним умножение скобки на скобку, получаем a·a+a·b+a·c+b·a+b·b+b·c+c·a+c·b+c·c.

Также скажем, что для возведения сумм и разностей двух чисел в натуральную степень целесообразно применять формулу бинома Ньютона. К примеру, (5+7−3):2=5:2+7:2−3:2. Не менее удобно предварительно деление заменить умножением, после чего воспользоваться соответствующим правилом раскрытия скобок в произведении.

Осталось разобраться с порядком раскрытия скобок на примерах. Возьмем выражение (−5)+3·(−2):(−4)−6·(−7). Подставляем эти результаты в исходное выражение: (−5)+3·(−2):(−4)−6·(−7)=(−5)+(3·2:4)−(−6·7). Остается лишь закончить раскрытие скобок, в результате имеем −5+3·2:4+6·7. Значит, при переходе от левой части равенства к правой произошло раскрытие скобок.

Заметим, что во всех трех примерах мы просто убирали скобки. Сначала к 889 прибавить 445. Это действие в уме выполнить можно, но это не очень просто. Раскроем скобки и увидим, что изменённый порядок действий значительно упростит вычисления.

Как раскрыть скобки в другой степени

Иллюстрирующий пример и правило. Рассмотрим пример: . Найти значение выражения можно, сложив 2 и 5, а затем взять полученное число с противоположным знаком. Правило не изменяется, если в скобках не два, а три или более слагаемых. Замечание. Знаки меняются на противоположные только перед слагаемыми. Для того чтобы раскрыть скобки, в данном случае нужно вспомнить распределительное свойство.

У одиночных чисел в скобках

Ваша ошибка заключается не в знаках, а в неправильной работе с дробями? В 6 классе мы познакомились с положительными и отрицательными числами. Как будем решать примеры и уравнения?

Сколько получилось в скобках? Что можно сказать об этих выражениях? Конечно, результат первого и второго примеров одинаков, значит между ними можно поставить знак равенства: -7 + (3 + 4) = -7 + 3 + 4. Что же мы сделали со скобками?

Демонстрация слайда 6 с правилами раскрытия скобок. Таким образом, правила раскрытия скобок помогут нам решать примеры, упрощать выражения. Далее учащимся предлагается работа в парах: необходимо стрелками соединить выражение, содержащее скобки с соответствующим нему выражением без скобок.

Слайд 11 Однажды в Солнечном городе поспорили Знайка и Незнайка, кто из них решил уравнение правильно. Далее учащиеся самостоятельно решают уравнение, применяя правила раскрытия скобок. Решение уравнений»Цели урока: образовательные (закрепление ЗУНов по теме: «Раскрытие скобок.

Тема урока: «Раскрытие скобок. В данном случае нужно каждое слагаемое из первых скобок перемножить с каждым слагаемым из вторых скобок и затем сложить полученные результаты. Сначала берутся два первых множителя, заключаются еще в одни скобки, и внутри этих скобок проводится раскрытие скобок по одному из уже известных правил.

rawalan.freezeet.ru

Раскрытие скобок: правила и примеры (7 класс)

Основная функция скобок – менять порядок действий при вычислениях значений числовых выражений . Например , в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).

Однако если мы имеем дело с алгебраическим выражением , содержащим переменную — например таким: \(2(x-3)\) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила.

Правила раскрытия скобок

Если перед скобкой стоит знак плюс, то скобка просто снимается, выражение в ней при этом остается неизменным.

Иначе говоря:

Здесь нужно пояснить, что в математике для сокращения записей принято не писать знак плюс, если он стоит в выражении первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не \(+7+3\), а просто \(7+3\), несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение \((5+x)\) – знайте, что перед скобкой стоит плюс, который не пишут .



Пример . Раскройте скобку и приведите подобные слагаемые: \((x-11)+(2+3x)\).
Решение : \((x-11)+(2+3x)=x-11+2+3x=4x-9\).

Если перед скобкой стоит знак минус, то при снятии скобки каждый член выражения внутри нее меняет знак на противоположный:

Здесь нужно пояснить, что у a, пока оно стояло в скобке, был знак плюс (просто его не писали), и после снятия скобки этот плюс поменялся на минус.

Пример : Упростите выражение \(2x-(-7+x)\).
Решение : внутри скобки два слагаемых: \(-7\) и \(x\), а перед скобкой минус. Значит, знаки поменяются – и семерка теперь будет с плюсом, а икс – с минусом. Раскрываем скобку и приводим подобные слагаемые .

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть:

Пример. Раскройте скобки \(5(3-x)\).
Решение : В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей .

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение : Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение : У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение , просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

Выполнять задание начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относиться – это сама скобка и минус перед ней (выделено зеленым). Всё остальное (не выделенное) переписываем также как было.

Решение задач по математике онлайн

Калькулятор онлайн.


Упрощение многочлена.
Умножение многочленов.

С помощью данной математической программы вы можете упростить многочлен.
В процессе работы программа:
— умножает многочлены
— суммирует одночлены (приводит подобные)
— раскрывает скобки
— возводит многочлен в степень

Программа упрощения многочленов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы вы могли проконтролировать свои знания по математике и/или алгебре.

Данная программа может быть полезна учащимся общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.

Немного теории.

Произведение одночлена и многочлена. Понятие многочлена

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Представим все слагаемые в виде одночленов стандартного вида:

Приведем в полученном многочлене подобные члены:

Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен имеет третью степень, а трехчлен — вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения и, т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

— квадрат суммы равен сумме квадратов и удвоенного произведения.

— квадрат разности равен сумме квадратов без удвоенного произведения.

— разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач Нахождение НОД и НОК Упрощение многочлена (умножение многочленов) Деление многочлена на многочлен столбиком Вычисление числовых дробей Решение задач на проценты Комплексные числа: сумма, разность, произведение и частное Системы 2-х линейных уравнений с двумя переменными Решение квадратного уравнения Выделение квадрата двучлена и разложение на множители квадратного трехчлена Решение неравенств Решение систем неравенств Построение графика квадратичной функции Построение графика дробно-линейной функции Решение арифметической и геометрической прогрессий Решение тригонометрических, показательных, логарифмических уравнений Вычисление пределов, производной, касательной Интеграл, первообразная Решение треугольников Вычисления действий с векторами Вычисления действий с прямыми и плоскостями Площадь геометрических фигур Периметр геометрических фигур Объем геометрических тел Площадь поверхности геометрических тел
Конструктор дорожных ситуаций
Погода — новости — гороскопы

www. mathsolution.ru

Раскрытие скобок

Продолжаем изучать основы алгебры. В данном уроке мы научимся раскрывать скобки в выражениях. Раскрыть скобки означает избавить выражение от этих скобок.

Чтобы раскрывать скобки, нужно выучить наизусть всего два правила. При регулярных занятиях раскрывать скобки можно с закрытыми глазами, и те правила, которые требовалось заучивать наизусть, можно благополучно забыть.

Первое правило раскрытия скобок

Рассмотрим следующее выражение:

Значение данного выражения равно 2 . Раскроем скобки в данном выражении. Раскрыть скобки означает избавиться от них, не влияя на значение выражения. То есть, после избавления от скобок значение выражения 8+(−9+3) по прежнему должно быть равно двум.

Первое правило раскрытия скобок выглядит следующим образом:

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Итак, мы видим что в выражении 8+(−9+3) перед скобками стоит плюс. Этот плюс нужно опустить вместе со скобками. Иными словами, скобки исчезнут вместе с плюсом, который перед ними стоял. А то, что было в скобках запишется без изменений:

8−9+3 . Данное выражение равно 2 , как и предыдущее выражение со скобками было равно 2 .

8+(−9+3) и 8−9+3

8 + (−9 + 3) = 8 − 9 + 3

Пример 2. Раскрыть скобки в выражении 3 + (−1 − 4)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

3 + (−1 − 4) = 3 − 1 − 4

Пример 3. Раскрыть скобки в выражении 2 + (−1)

В данном примере раскрытие скобок стало своего рода обратной операцией замене вычитания сложением. Как это понимать?

В выражении 2−1 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 2+(−1) . Но если в выражении 2+(−1) раскрыть скобки, то получится изначальное 2−1 .

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после каких-нибудь преобразований. То есть, избавить его от скобок и сделать проще.

Например, упростим выражение 2a+a−5b+b .

Чтобы упростить данное выражение, можно привести подобные слагаемые. Напомним, что для приведения подобных слагаемых, нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:

Получили выражение 3a+(−4b) . В этом выражении раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок, то есть опускаем скобки вместе с плюсом, который стоит перед этими скобками:

Таким образом, выражение 2a+a−5b+b упрощается до 3a−4b .

Раскрыв одни скобки, по пути могут встретиться другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в следующем выражении:

Здесь два места, где нужно раскрыть скобки. В данном случае применимо первое правило раскрытия скобок, а именно опускание скобок вместе с плюсом, который стоит перед этими скобками:

2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6

Пример 3. Раскрыть скобки в выражении 6+(−3)+(−2)

В обоих местах, где имеются скобки, перед ними стоит плюс. Здесь опять же применяется первое правило раскрытия скобок:

Иногда первое слагаемое в скобках записано без знака. Например, в выражении 1+(2+3−4) первое слагаемое в скобках 2 записано без знака. Возникает вопрос, а какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ напрашивается сам — перед двойкой будет стоять плюс.

На самом деле даже будучи в скобках перед двойкой стоит плюс, но мы его не видим по причине того, что его не записывают. Мы уже говорили, что полная запись положительных чисел выглядит как +1, +2, +3. Но плюсы по традиции не записывают, поэтому мы и видим привычные для нас положительные числа 1, 2, 3 .

Поэтому, чтобы раскрыть скобки в выражении 1+(2+3−4) , нужно как обычно опустить скобки вместе с плюсом, стоящим перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

1 + (2 + 3 − 4) = 1 + 2 + 3 − 4

Пример 4. Раскрыть скобки в выражении −5 + (2 − 3)

Перед скобками стоит плюс, поэтому применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед этими скобками. Но первое слагаемое, которое в скобках записываем со знаком плюс:

−5 + (2 − 3) = −5 + 2 − 3

Пример 5. Раскрыть скобки в выражении (−5)

Перед скобки стоит плюс, но он не записан по причине того, что до него не было других чисел или выражений. Наша задача убрать скобки, применив первое правило раскрытия скобок, а именно опустить скобки вместе с этим плюсом (даже если он невидим)

Пример 6. Раскрыть скобки в выражении 2a + (−6a + b)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:

2a + (−6a + b) = 2a −6a + b

Пример 7. Раскрыть скобки в выражении 5a + (−7b + 6c) + 3a + (−2d)

В данном выражении имеется два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:

5a + (−7b + 6c) + 3a + (−2d) = 5a −7b + 6c + 3a − 2d

Второе правило раскрытия скобок

Теперь рассмотрим второе правило раскрытия скобок. Оно применяется тогда, когда перед скобками стоит минус.

Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный.

Например, раскроем скобки в следующем выражении

Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, стоящим перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:

Мы получили выражение без скобок 5+2+3 . Данное выражение равно 10, как и предыдущее выражение со скобками было равно 10.

Таким образом, между выражениями 5−(−2−3) и 5+2+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

5 − (−2 − 3) = 5 + 2 + 3

Пример 2. Раскрыть скобки в выражении 6 − (−2 − 5)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, записываем с противоположными знаками:

6 − (−2 − 5) = 6 + 2 + 5

Пример 3. Раскрыть скобки в выражении 2 − (7 + 3)

Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:

Пример 4. Раскрыть скобки в выражении −(−3 + 4)

Пример 5. Раскрыть скобки в выражении −(−8 − 2) + 16 + (−9 − 2)

Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить второе правило раскрытия скобок, а когда очередь доходит до выражения +(−9−2) нужно применить первое правило:

−(−8 − 2) + 16 + (−9 − 2) = 8 + 2 + 16 − 9 − 2

Пример 6. Раскрыть скобки в выражении −(−a − 1)

Пример 7. Раскрыть скобки в выражении −(4a + 3)

Пример 8. Раскрыть скобки в выражении a − (4b + 3) + 15

Пример 9. Раскрыть скобки в выражении 2a + (3b − b) − (3c + 5)

Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить первое правило раскрытия скобок, а когда очередь доходит до выражения −(3c+5) нужно применить второе правило:

2a + (3b − b) − (3c + 5) = 2a + 3b − b − 3c − 5

Пример 10. Раскрыть скобки в выражении −a − (−4a) + (−6b) − (−8c + 15)

Здесь три места, где нужно раскрыть скобки. Вначале нужно применить второе правило раскрытия скобок, затем первое, а затем опять второе:

−a − (−4a) + (−6b) − (−8c + 15) = −a + 4a − 6b + 8c − 15

Механизм раскрытия скобок

Правила раскрытия скобок, которые мы сейчас рассмотрели, основаны на распределительном законе умножения:

На самом деле раскрытием скобок называют ту процедуру, когда общий множитель умножают на каждое слагаемое в скобках. В результате такого умножения скобки исчезают. Например, раскроем скобки в выражении 3×(4+5)

3 × (4 + 5) = 3 × 4 + 3 × 5

Поэтому если нужно умножить число на выражение в скобках (или выражение в скобках умножить на число) надо говорить раскроем скобки .

Но как связан распределительный закон умножения с правилами раскрытия скобок, которые мы рассматривали ранее?

Дело в том, что перед любыми скобками стоит общий множитель. В примере 3×(4+5) общий множитель это 3 . А в примере a(b+c) общий множитель это переменная a .

Если перед скобками нет чисел или переменных, то общим множителем является 1 или −1 , в зависимости от того какой знак стоит перед скобками. Если перед скобками стоит плюс, значит общим множителем является 1 . Если перед скобками стоит минус, значит общим множителем является −1 .

К примеру, раскроем скобки в выражении −(3b−1) . Перед скобками стоит минус, поэтому нужно воспользоваться вторым правилом раскрытия скобок, то есть опустить скобки вместе с минусом, стоящим перед скобками. А выражение, которое было в скобках, записать с противоположными знаками:

Мы раскрыли скобки, воспользовавшись правилом раскрытия скобок. Но эти же скобки можно раскрыть, воспользовавшись распределительным законом умножения. Для этого сначала записываем перед скобками общий множитель 1, который не был записан:

Минус, который раньше стоял перед скобками относился к этой единице. Теперь можно раскрыть скобки, применяя распределительный закон умножения. Для этого общий множитель −1 нужно умножить на каждое слагаемое в скобках и полученные результаты сложить.

Для удобства заменим разность, находящуюся в скобках на сумму:

−1 (3b −1) = −1 (3b + (−1)) = −1 × 3b + (−1) × (−1) = −3b + 1

Как и в прошлый раз мы получили выражение −3b+1 . Каждый согласится с тем, что в этот раз затрачено больше времени на решение столь простейшего примера. Поэтому разумнее пользоваться готовыми правилами раскрытия скобок, которые мы рассматривали в данном уроке:

Но не мешает знать, как эти правила работают.

В данном уроке мы научились ещё одному тождественному преобразованию. Вместе с раскрытием скобок, вынесением общего за скобки и приведением подобных слагаемых можно немного расширить круг решаемых задач. Например:

Здесь нужно выполнить два действия — сначала раскрыть скобки, а потом привести подобные слагаемые. Итак, по порядку:

1) Раскрываем скобки:

2) Приводим подобные слагаемые:

В получившемся выражении −10b+(−1) можно раскрыть скобки:

Пример 2. Раскрыть скобки и привести подобные слагаемые в следующем выражении:

1) Раскроем скобки:

2) Приведем подобные слагаемые. В этот раз для экономии времени и места не будем записывать, как коэффициенты умножаются на общую буквенную часть

Пример 3. Упростить выражение 8m+3m и найти его значение при m=−4

1) Сначала упростим выражение. Чтобы упростить выражение 8m+3m , можно вынести в нём общий множитель m за скобки:

2) Находим значение выражения m(8+3) при m=−4 . Для этого в выражение m(8+3) вместо переменной m подставляем число −4

m (8 + 3) = −4 (8 + 3) = −4 × 8 + (−4) × 3 = −32 + (−12) = −44

Поделись статьей:

Похожие статьи

Как раскрыть скобки со степенью 2. Скобка в скобке

Основная функция скобок – менять порядок действий при вычислениях значений . Например , в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).


Пример. Раскройте скобку: \(-(4m+3)\).
Решение : \(-(4m+3)=-4m-3\).

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Пример. Раскройте скобки \(5(3-x)\).
Решение : В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей .

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение : Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение : У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

Потом второе.

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение , просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

\(=-(x\)\(+3(3x-6)\) \()=\)

Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

\(=-(x\)\(+9x-18\) \()=\)

И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях. 3 \)

    Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

    Этот результат обычно формулируют в виде правила.

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

    Мы уже неоднократно использовали это правило для умножения на сумму.

    Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

    Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

    Обычно пользуются следующим правилом.

    Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

    Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

    С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a — b)^2 \) и \(a^2 — b^2 \), т. 2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

    Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

    Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

    И так вот они:

    Первая х 2 — у 2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

    Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

    Третья (х — у) 2 = х 2 — 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

    Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

    Пятая (х — у) 3 = х 3 — 3х 2 у + 3ху 2 — у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

    Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

    Седьмая х 3 — у 3 = (х — у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

    Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

    О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

    Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

    Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Как свернуть формулу сокращенного умножения. Как раскрыть скобки? Скобка в натуральной степени

    Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

    Yandex.RTB R-A-339285-1

    Что называется раскрытием скобок?

    Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2 · (3 + 4) на выражение вида 2 · 3 + 2 · 4 без скобок. Этот прием носит название раскрытия скобок.

    Определение 1

    Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

    • знаки « + » или « — » перед скобками, в которые заключены суммы или разности;
    • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

    Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5 + (− 3) − (− 7) к 5 − 3 + 7 . Фактически, это тоже раскрытие скобок.

    Точно также мы можем заменить произведение выражений в скобках вида (a + b) · (c + d) на сумму a · c + a · d + b · c + b · d . Такой прием также не противоречит смыслу раскрытия скобок.

    Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x 2 · 1 a — x + sin (b) будет соответствовать выражение без скобок вида x 2 · 1 a — x 2 · x + x 2 · sin (b) .

    Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3 − (5 − 7) мы получаем выражение 3 − 5 + 7 . Оба этих выражения мы можем записать в виде равенства 3 − (5 − 7) = 3 − 5 + 7 .

    Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 или 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

    Правила раскрытия скобок, примеры

    Приступим к рассмотрению правил раскрытия скобок.

    У одиночных чисел в скобках

    Отрицательные числа в скобках часто встречаются в выражениях. Например, (− 4) и 3 + (− 4) . Положительные числа в скобках тоже имеют место быть.

    Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, + (а) на + а, — (а) на – а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5 , выражение 3 + (5) без скобок примет вид 3 + 5 , так как + (5) заменяется на + 5 , а выражение 3 + (− 5) эквивалентно выражению 3 − 5 , так как + (− 5) заменяется на − 5 .

    Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

    Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. + (− a) мы заменяем на − a , − (− a) заменяется на + a . Если выражение начинается с отрицательного числа (− a) , которое записано в скобках, то скобки опускаются и вместо (− a) остается − a .

    Приведем примеры: (− 5) можно записать как − 5 , (− 3) + 0 , 5 принимает вид − 3 + 0 , 5 , 4 + (− 3) превращается в 4 − 3 , а − (− 4) − (− 3) после раскрытия скобок принимает вид 4 + 3 , так как − (− 4) и − (− 3) заменяется на + 4 и + 3 .

    Следует понимать, что записать выражение 3 · (− 5) как 3 · − 5 нельзя. Об этом речь пойдет в следующих пунктах.

    Давайте посмотрим, на чем основываются правила раскрытия скобок.

    Согласно правилу разность a − b равна a + (− b) . На основе свойств действий с числами мы можем составить цепочку равенств (a + (− b)) + b = a + ((− b) + b) = a + 0 = a , которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a + (− b) — это разность a − b .

    Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что − (− a) = a , a − (− b) = a + b .

    Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть − (− ((− (5)))) . Раскроем скобки, продвигаясь изнутри наружу: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 . Также этот пример можно разобрать и в обратном направлении: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

    Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком « + » впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

    К примеру, после раскрытия скобок выражение − (− 2 · x) − (x 2) + (− 1 x) − (2 · x · y 2: z) примет вид 2 · x − x 2 − 1 x − 2 · x · y 2: z . Как мы это сделали? Мы знаем, что − (− 2 · x) есть + 2 · x , а так как это выражение стоит вначале, то + 2 · x можно записать как 2 · x , − (x 2) = − x 2 , + (− 1 x) = − 1 x и − (2 · x · y 2: z) = − 2 · x · y 2: z .

    В произведениях двух чисел

    Начнем с правила раскрытия скобок в произведении двух чисел.

    Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел − a и − b вида (− a) · (− b) мы можем заменить на (a · b) , а произведения двух чисел с противоположными знаками вида (− a) · b и a · (− b) заменить на (− a · b) . Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

    Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

    Рассмотрим несколько примеров.

    Пример 1

    Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел — 4 3 5 и — 2 , вида (- 2) · — 4 3 5 . Для этого заменим исходное выражение на 2 · 4 3 5 . Раскроем скобки и получим 2 · 4 3 5 .

    А если мы возьмем частное отрицательных чисел (− 4) : (− 2) , то запись после раскрытия скобок будет иметь вид 4: 2

    На месте отрицательных чисел − a и − b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

    Раскроем скобки в выражении — 3 · x x 2 + 1 · x · (- ln 5) . Согласно правилу, мы можем произвести следующие преобразования: — 3 · x x 2 + 1 · x · (- ln 5) = — 3 · x x 2 + 1 · x · ln 5 = 3 · x x 2 + 1 · x · ln 5 .

    Выражение (− 3) · 2 можно преобразовать в выражение (− 3 · 2) . После этого можно раскрыть скобки: − 3 · 2 .

    2 3 · — 4 5 = — 2 3 · 4 5 = — 2 3 · 4 5

    Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок: (− 5) : 2 = (− 5: 2) = − 5: 2 и 2 3 4: (- 3 , 5) = — 2 3 4: 3 , 5 = — 2 3 4: 3 , 5 .

    Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

    1 x + 1: x — 3 = — 1 x + 1: x — 3 = — 1 x + 1: x — 3

    sin (x) · (- x 2) = (- sin (x) · x 2) = — sin (x) · x 2

    В произведениях трех и большего количества чисел

    Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

    Пример 2

    Для примера, возьмем выражение 5 · (− 3) · (− 2) , которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5 · 3 · 2) и затем окончательно раскрыть скобки, получив выражение 5 · 3 · 2 .

    В произведении (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) пять чисел являются отрицательными. поэтому (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) = (− 2 , 5 · 3: 2 · 4: 1 , 25: 1) . Окончательно раскрыв скобки, получаем −2,5·3:2·4:1,25:1 .

    Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и — 1 или — 1 заменяем на (− 1) · a .

    Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные − 1 , в начало выражения. Произведение четного числа минус единиц равно 1 , а нечетного – равно − 1 , что позволяет нам использовать знак минус.

    Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении — 2 3: (- 2) · 4: — 6 7 выглядела бы следующим образом:

    2 3: (- 2) · 4: — 6 7 = — 2 3 · — 1 2 · 4 · — 7 6 = = (- 1) · 2 3 · (- 1) · 1 2 · 4 · (- 1) · 7 6 = = (- 1) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = — 2 3 · 1 2 · 4 · 7 6

    Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

    x 2 · (- x) : (- 1 x) · x — 3: 2 .

    Его можно привести к выражению без скобок x 2 · x: 1 x · x — 3: 2 .

    Раскрытие скобок, перед которыми стоит знак +

    Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

    Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

    Пример 3

    Для примера приведем выражение (12 − 3 , 5) − 7 . Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12 − 3 , 5) − 7 = + 12 − 3 , 5 − 7 . В приведенном примере знак перед первым слагаемым ставить не обязательно, так как + 12 − 3 , 5 − 7 = 12 − 3 , 5 − 7 .

    Пример 4

    Рассмотрим еще один пример. Возьмем выражение x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x и проведем с ним действия x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x = = x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x

    Вот еще один пример раскрытия скобок:

    Пример 5

    2 + x 2 + 1 x — x · y · z + 2 · x — 1 + (- 1 + x — x 2) = = 2 + x 2 + 1 x — x · y · z + 2 · x — 1 — 1 + x + x 2

    Как раскрываются скобки, перед которыми стоит знак минус

    Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак « — », скобки со знаком « — » опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

    Пример 6

    К примеру:

    1 2 = 1 2 , — 1 x + 1 = — 1 x + 1 , — (- x 2) = x 2

    Выражения с переменными могут быть преобразованы с использованием того же правила:

    X + x 3 — 3 — — 2 · x 2 + 3 · x 3 · x + 1 x — 1 — x + 2 ,

    получаем x — x 3 — 3 + 2 · x 2 — 3 · x 3 · x + 1 x — 1 — x + 2 .

    Раскрытие скобок при умножении числа на скобку, выражения на скобку

    Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) или b · (a 1 ± a 2 ± … ± a n) = (b · a 1 ± b · a 2 ± … ± b · a n) , где a 1 , a 2 , … , a n и b – некоторые числа или выражения.

    Пример 7

    Например, проведем раскрытие скобок в выражении (3 − 7) · 2 . Согласно правилу, мы можем провести следующие преобразования: (3 − 7) · 2 = (3 · 2 − 7 · 2) . Получаем 3 · 2 − 7 · 2 .

    Раскрыв скобки в выражении 3 · x 2 · 1 — x + 1 x + 2 , получаем 3 x 2 · 1 — 3 · x 2 · x + 3 · x 2 · 1 x + 2 .

    Умножение скобки на скобку

    Рассмотрим произведение двух скобок вида (a 1 + a 2) · (b 1 + b 2) . Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

    Для того, чтобы решить приведенный пример, обозначим выражение (b 1 + b 2) как b . Это позволит нам использовать правило умножения скобки на выражение. Получим (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b . Выполнив обратную замену b на (b 1 + b 2) , снова применим правило умножения выражения на скобку: a 1 · b + a 2 · b = = a 1 · (b 1 + b 2) + a 2 · (b 1 + b 2) = = (a 1 · b 1 + a 1 · b 2) + (a 2 · b 1 + a 2 · b 2) = = a 1 · b 1 + a 1 · b 2 + a 2 · b 1 + a 2 · b 2

    Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

    Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

    Формула будет иметь вид:

    (a 1 + a 2 + . . . + a m) · (b 1 + b 2 + . . . + b n) = = a 1 b 1 + a 1 b 2 + . . . + a 1 b n + + a 2 b 1 + a 2 b 2 + . . . + a 2 b n + + . . . + + a m b 1 + a m b 1 + . . . a m b n

    Проведем раскрытие скобок в выражении (1 + x) · (x 2 + x + 6) Оно представляет собой произведение двух сумм. Запишем решение: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6

    Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1 − x) · (3 · x · y − 2 · x · y 3) .

    Сначала представим выражения в скобках в виде сумм: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) . Теперь мы можем применить правило: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

    Раскроем скобки: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3 .

    Раскрытие скобок в произведениях нескольких скобок и выражений

    При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2 + 4) · 3 · (5 + 7 · 8) .

    В выражении содержится сразу три множителя (2 + 4) , 3 и (5 + 7 · 8) . Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2 + 4) · 3 · (5 + 7 · 8) = ((2 + 4) · 3) · (5 + 7 · 8) .

    В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · (5 + 7 · 8) .

    Умножаем скобку на скобку: (2 · 3 + 4 · 3) · (5 + 7 · 8) = 2 · 3 · 5 + 2 · 3 · 7 · 8 + 4 · 3 · 5 + 4 · 3 · 7 · 8 .

    Скобка в натуральной степени

    Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

    Рассмотрим процесс преобразования выражения (a + b + c) 2 . Его можно записать в виде произведения двух скобок (a + b + c) · (a + b + c) . Произведем умножение скобки на скобку и получим a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c .

    Разберем еще один пример:

    Пример 8

    1 x + 2 3 = 1 x + 2 · 1 x + 2 · 1 x + 2 = = 1 x · 1 x + 1 x · 2 + 2 · 1 x + 2 · 2 · 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 · 2 · 2

    Деление скобки на число и скобки на скобку

    Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x 2 — x) : 4 = x 2: 4 — x: 4 .

    Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

    Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2 3 . Для этого сначала заменим деление умножением на обратное число (x + 2) : 2 3 = (x + 2) · 2 3 . Умножим скобку на число (x + 2) · 2 3 = x · 2 3 + 2 · 2 3 .

    Вот еще один пример деления на скобку:

    Пример 9

    1 x + x + 1: (x + 2) .

    Заменим деление умножением: 1 x + x + 1 · 1 x + 2 .

    Выполним умножение: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

    Порядок раскрытия скобок

    Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

    Порядок выполнения действий:

    • первым делом необходимо выполнить возведение скобок в натуральную степень;
    • на втором этапе производится раскрытие скобок в произведениях и частных;
    • заключительным шагом будет раскрытие скобок в суммах и разностях.

    Рассмотрим порядок выполнения действий на примере выражения (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) . Намнем преобразование с выражений 3 · (− 2) : (− 4) и 6 · (− 7) , которые должны принять вид (3 · 2: 4) и (− 6 · 7) . При подстановке полученных результатов в исходное выражение получаем: (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) = (− 5) + (3 · 2: 4) − (− 6 · 7) . Раскрываем скобки: − 5 + 3 · 2: 4 + 6 · 7 .

    Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ: формулы сокращённого умножения . В краткой записи — ФСУ.

    Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т. д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

    Разбираемся?)

    Откуда берутся формулы сокращённого умножения?

    Равенства 6 и 7 записаны не очень привычно. Как бы наоборот. Это специально.) Любое равенство работает как слева направо, так и справа налево. В такой записи понятнее, откуда берутся ФСУ.

    Они берутся из умножения.) Например:

    (a+b) 2 =(a+b)(a+b)=a 2 +ab+ba+b 2 =a 2 +2ab+b 2

    Вот и всё, никаких научных хитростей. Просто перемножаем скобки и приводим подобные. Так получаются все формулы сокращённого умножения. Сокращённое умножение — это потому, что в самих формулах нет перемножения скобок и приведения подобных. Сокращены.) Сразу дан результат.

    ФСУ нужно знать наизусть. Без первых трёх можно не мечтать о тройке, без остальных — о четвёрке с пятёркой.)

    Зачем нужны формулы сокращённого умножения?

    Есть две причины, выучить, даже зазубрить эти формулы. Первая — готовый ответ на автомате резко уменьшает количество ошибок. Но это не самая главная причина. А вот вторая…

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    Основная функция скобок – менять порядок действий при вычислениях значений . Например , в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).


    Пример. Раскройте скобку: \(-(4m+3)\).
    Решение : \(-(4m+3)=-4m-3\).

    Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
    Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

    Пример. Раскройте скобки \(5(3-x)\).
    Решение : В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей .

    Пример. Раскройте скобки \(-2(-3x+5)\).
    Решение : Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

    Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
    Решение : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

    Осталось рассмотреть последнюю ситуацию.

    При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

    \((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

    Пример. Раскройте скобки \((2-x)(3x-1)\).
    Решение : У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
    Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

    Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
    — сначала первое…

    Потом второе.

    Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

    Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

    Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

    Скобка в скобке

    Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

    Чтобы успешно решать подобные задания, нужно:
    — внимательно разобраться во вложенности скобок – какая в какой находиться;
    — раскрывать скобки последовательно, начиная, например, с самой внутренней.

    При этом важно при раскрытии одной из скобок не трогать все остальное выражение , просто переписывая его как есть.
    Давайте для примера разберем написанное выше задание.

    Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
    Решение:

    Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
    Решение :

    \(-(x+3(2x-1\)\(+(x-5)\) \())\)

    Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

    \(-(x+3(2x-1\)\(+x-5\) \())\)

    Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

    \(=-(x\)\(+3(3x-6)\) \()=\)

    Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

    \(=-(x\)\(+9x-18\) \()=\)

    И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

    Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

    Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

    Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

    При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


    Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) — формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) — формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

    Дополнительные формулы

    В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

    Сферы применения формул сокращенного умножения (фсу) и примеры

    Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. {2}+2 a b+2 a c+2 b c$

    Читать следующую тему: формула «квадрат разности».

    Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

    правила и примеры (7 класс)

    В данной статье мы подробно рассмотрим основные правила такой важной темы курса математики, как раскрытие скобок. Знать правила раскрытия скобок нужно для того, чтобы верно решать уравнения, в которых они используются.

    Как правильно раскрывать скобки при сложении

    Раскрываем скобки, перед которыми стоит знак « + »

    Эта самый простой случай, ибо если перед скобками стоит знак сложения, при раскрытии скобок знаки внутри них не меняются. Пример:

    (9 + 3) + (1 — 6 + 9) = 9 + 3 + 1 — 6 + 9 = 16.

    Как раскрыть скобки, перед которыми стоит знак « — »

    В данном случае нужно переписать все слагаемые без скобок, но при этом сменить все знаки внутри них на противоположные. Знаки меняются только у слагаемых из тех скобок, перед которыми стоял знак « — ». Пример:

    (9 + 3) — (1 — 6 + 9) = 9 + 3 — 1 + 6 — 9 = 8.

    Как раскрыть скобки при умножении

    Перед скобками стоит число-множитель

    В данном случае нужно умножить каждое слагаемое на множитель и раскрыть скобки, не меняя знаков. Если множитель имеет знак « — », то при перемножении знаки слагаемых меняются на противоположные. Пример:

    3 * (1 — 6 + 9) = 3 * 1 — 3 * 6 + 3 * 9 = 3 — 18 + 27 = 12.

    Как раскрыть две скобки со знаком умножения между ними

    В данном случае нужно каждое слагаемое из первых скобок перемножить с каждым слагаемым из вторых скобок и затем сложить полученные результаты. Пример:

    (9 + 3) * (1 — 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 — 54 + 81 + 3 — 18 + 27 = 48.

    Как раскрыть скобки в квадрате

    В случае, если сумма или разность двух слагаемых возведена в квадрат, скобки следует раскрывать по следующей формуле:

    (х + у) ^ 2 = х ^ 2 + 2 * х * у + у ^ 2. 3 \)

    Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

    Этот результат обычно формулируют в виде правила.

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

    Мы уже неоднократно использовали это правило для умножения на сумму.

    Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

    Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

    Обычно пользуются следующим правилом.

    Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

    Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

    С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a — b)^2 \) и \(a^2 — b^2 \), т. 2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

    Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

    Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Этот прием носит название раскрытия скобок.

    Раскрыть скобки означает избавить выражение от этих скобок.

    Отдельного внимания заслуживает еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения
    3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

    И еще один важный момент. В математике для сокращения записей принято не писать знак плюс, если он стоит в выражении или в скобках первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не +7+3, а просто 7+3, несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение (5+x) – знайте, что и перед скобкой стоит плюс, который не пишут, и перед пятеркой стоит плюс +(+5+x).

    Правило раскрытия скобок при сложении

    При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

    Пример. Раскрыть скобки в выражении 2 + (7 + 3) Перед скобками плюс, значит знаки перед числами в скобках не меняем.

    2 + (7 + 3) = 2 + 7 + 3

    Правило раскрытия скобок при вычитании

    Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный. Отсутствие знака перед первым слагаемым в скобках подразумевает знак +.

    Пример. Раскрыть скобки в выражении 2 − (7 + 3)

    Перед скобками стоит минус, значит нужно поменять знаки перед числами из скобок. В скобках перед цифрой 7 знака нет, это значит, что семерка положительная, считается, что перед ней знак +.

    2 − (7 + 3) = 2 − (+ 7 + 3)

    При раскрытии скобок убираем из примера минус, который был перед скобками, и сами скобки 2 − (+ 7 + 3) , а знаки, которые были в скобках, меняем на противоположные.

    2 − (+ 7 + 3) = 2 − 7 − 3

    Раскрытие скобок при умножении

    Если перед скобками стоит знак умножения, то каждое число, стоящее внутри скобок, умножается на множитель, стоящий перед скобками. При этом умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

    Таким образом, сскобки в произведениях раскрываются в соответствии с распределительным свойством умножения.

    Пример. 2 · (9 — 7) = 2 · 9 — 2 · 7

    При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй скобки.

    (2 + 3) · (4 + 5) = 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5

    На самом деле, нет необходимости запоминать все правила, достаточно помнить только одно, вот это: c(a−b)=ca−cb. Почему? Потому что если в него вместо c подставить единицу, получится правило (a−b)=a−b. А если подставить минус единицу, получим правило −(a−b)=−a+b. Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

    Раскрываем скобки при делении

    Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок, и наоборот.

    Пример. (9 + 6) : 3=9: 3 + 6: 3

    Как раскрыть вложенные скобки

    Если в выражении присутствуют вложенные скобки, то их раскрывают по порядку, начиная с внешних или внутренних.

    При этом важно при раскрытии одной из скобок не трогать остальные скобки, просто переписывая их как есть.

    Пример. 12 — (a + (6 — b) — 3) = 12 — a — (6 — b) + 3 = 12 — a — 6 + b + 3 = 9 — a + b

    Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

    Yandex.RTB R-A-339285-1

    Что называется раскрытием скобок?

    Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2 · (3 + 4) на выражение вида 2 · 3 + 2 · 4 без скобок. Этот прием носит название раскрытия скобок.

    Определение 1

    Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

    • знаки « + » или « — » перед скобками, в которые заключены суммы или разности;
    • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

    Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5 + (− 3) − (− 7) к 5 − 3 + 7 . Фактически, это тоже раскрытие скобок.

    Точно также мы можем заменить произведение выражений в скобках вида (a + b) · (c + d) на сумму a · c + a · d + b · c + b · d . Такой прием также не противоречит смыслу раскрытия скобок.

    Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x 2 · 1 a — x + sin (b) будет соответствовать выражение без скобок вида x 2 · 1 a — x 2 · x + x 2 · sin (b) .

    Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3 − (5 − 7) мы получаем выражение 3 − 5 + 7 . Оба этих выражения мы можем записать в виде равенства 3 − (5 − 7) = 3 − 5 + 7 .

    Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 или 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

    Правила раскрытия скобок, примеры

    Приступим к рассмотрению правил раскрытия скобок.

    У одиночных чисел в скобках

    Отрицательные числа в скобках часто встречаются в выражениях. Например, (− 4) и 3 + (− 4) . Положительные числа в скобках тоже имеют место быть.

    Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, + (а) на + а, — (а) на – а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5 , выражение 3 + (5) без скобок примет вид 3 + 5 , так как + (5) заменяется на + 5 , а выражение 3 + (− 5) эквивалентно выражению 3 − 5 , так как + (− 5) заменяется на − 5 .

    Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

    Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. + (− a) мы заменяем на − a , − (− a) заменяется на + a . Если выражение начинается с отрицательного числа (− a) , которое записано в скобках, то скобки опускаются и вместо (− a) остается − a .

    Приведем примеры: (− 5) можно записать как − 5 , (− 3) + 0 , 5 принимает вид − 3 + 0 , 5 , 4 + (− 3) превращается в 4 − 3 , а − (− 4) − (− 3) после раскрытия скобок принимает вид 4 + 3 , так как − (− 4) и − (− 3) заменяется на + 4 и + 3 .

    Следует понимать, что записать выражение 3 · (− 5) как 3 · − 5 нельзя. Об этом речь пойдет в следующих пунктах.

    Давайте посмотрим, на чем основываются правила раскрытия скобок.

    Согласно правилу разность a − b равна a + (− b) . На основе свойств действий с числами мы можем составить цепочку равенств (a + (− b)) + b = a + ((− b) + b) = a + 0 = a , которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a + (− b) — это разность a − b .

    Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что − (− a) = a , a − (− b) = a + b .

    Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть − (− ((− (5)))) . Раскроем скобки, продвигаясь изнутри наружу: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 . Также этот пример можно разобрать и в обратном направлении: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

    Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком « + » впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

    К примеру, после раскрытия скобок выражение − (− 2 · x) − (x 2) + (− 1 x) − (2 · x · y 2: z) примет вид 2 · x − x 2 − 1 x − 2 · x · y 2: z . Как мы это сделали? Мы знаем, что − (− 2 · x) есть + 2 · x , а так как это выражение стоит вначале, то + 2 · x можно записать как 2 · x , − (x 2) = − x 2 , + (− 1 x) = − 1 x и − (2 · x · y 2: z) = − 2 · x · y 2: z .

    В произведениях двух чисел

    Начнем с правила раскрытия скобок в произведении двух чисел.

    Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел − a и − b вида (− a) · (− b) мы можем заменить на (a · b) , а произведения двух чисел с противоположными знаками вида (− a) · b и a · (− b) заменить на (− a · b) . Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

    Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

    Рассмотрим несколько примеров.

    Пример 1

    Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел — 4 3 5 и — 2 , вида (- 2) · — 4 3 5 . Для этого заменим исходное выражение на 2 · 4 3 5 . Раскроем скобки и получим 2 · 4 3 5 .

    А если мы возьмем частное отрицательных чисел (− 4) : (− 2) , то запись после раскрытия скобок будет иметь вид 4: 2

    На месте отрицательных чисел − a и − b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

    Раскроем скобки в выражении — 3 · x x 2 + 1 · x · (- ln 5) . Согласно правилу, мы можем произвести следующие преобразования: — 3 · x x 2 + 1 · x · (- ln 5) = — 3 · x x 2 + 1 · x · ln 5 = 3 · x x 2 + 1 · x · ln 5 .

    Выражение (− 3) · 2 можно преобразовать в выражение (− 3 · 2) . После этого можно раскрыть скобки: − 3 · 2 .

    2 3 · — 4 5 = — 2 3 · 4 5 = — 2 3 · 4 5

    Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок: (− 5) : 2 = (− 5: 2) = − 5: 2 и 2 3 4: (- 3 , 5) = — 2 3 4: 3 , 5 = — 2 3 4: 3 , 5 .

    Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

    1 x + 1: x — 3 = — 1 x + 1: x — 3 = — 1 x + 1: x — 3

    sin (x) · (- x 2) = (- sin (x) · x 2) = — sin (x) · x 2

    В произведениях трех и большего количества чисел

    Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

    Пример 2

    Для примера, возьмем выражение 5 · (− 3) · (− 2) , которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5 · 3 · 2) и затем окончательно раскрыть скобки, получив выражение 5 · 3 · 2 .

    В произведении (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) пять чисел являются отрицательными. поэтому (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) = (− 2 , 5 · 3: 2 · 4: 1 , 25: 1) . Окончательно раскрыв скобки, получаем −2,5·3:2·4:1,25:1 .

    Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и — 1 или — 1 заменяем на (− 1) · a .

    Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные − 1 , в начало выражения. Произведение четного числа минус единиц равно 1 , а нечетного – равно − 1 , что позволяет нам использовать знак минус.

    Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении — 2 3: (- 2) · 4: — 6 7 выглядела бы следующим образом:

    2 3: (- 2) · 4: — 6 7 = — 2 3 · — 1 2 · 4 · — 7 6 = = (- 1) · 2 3 · (- 1) · 1 2 · 4 · (- 1) · 7 6 = = (- 1) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = — 2 3 · 1 2 · 4 · 7 6

    Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

    x 2 · (- x) : (- 1 x) · x — 3: 2 .

    Его можно привести к выражению без скобок x 2 · x: 1 x · x — 3: 2 .

    Раскрытие скобок, перед которыми стоит знак +

    Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

    Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

    Пример 3

    Для примера приведем выражение (12 − 3 , 5) − 7 . Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12 − 3 , 5) − 7 = + 12 − 3 , 5 − 7 . В приведенном примере знак перед первым слагаемым ставить не обязательно, так как + 12 − 3 , 5 − 7 = 12 − 3 , 5 − 7 .

    Пример 4

    Рассмотрим еще один пример. Возьмем выражение x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x и проведем с ним действия x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x = = x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x

    Вот еще один пример раскрытия скобок:

    Пример 5

    2 + x 2 + 1 x — x · y · z + 2 · x — 1 + (- 1 + x — x 2) = = 2 + x 2 + 1 x — x · y · z + 2 · x — 1 — 1 + x + x 2

    Как раскрываются скобки, перед которыми стоит знак минус

    Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак « — », скобки со знаком « — » опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

    Пример 6

    К примеру:

    1 2 = 1 2 , — 1 x + 1 = — 1 x + 1 , — (- x 2) = x 2

    Выражения с переменными могут быть преобразованы с использованием того же правила:

    X + x 3 — 3 — — 2 · x 2 + 3 · x 3 · x + 1 x — 1 — x + 2 ,

    получаем x — x 3 — 3 + 2 · x 2 — 3 · x 3 · x + 1 x — 1 — x + 2 .

    Раскрытие скобок при умножении числа на скобку, выражения на скобку

    Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) или b · (a 1 ± a 2 ± … ± a n) = (b · a 1 ± b · a 2 ± … ± b · a n) , где a 1 , a 2 , … , a n и b – некоторые числа или выражения.

    Пример 7

    Например, проведем раскрытие скобок в выражении (3 − 7) · 2 . Согласно правилу, мы можем провести следующие преобразования: (3 − 7) · 2 = (3 · 2 − 7 · 2) . Получаем 3 · 2 − 7 · 2 .

    Раскрыв скобки в выражении 3 · x 2 · 1 — x + 1 x + 2 , получаем 3 x 2 · 1 — 3 · x 2 · x + 3 · x 2 · 1 x + 2 .

    Умножение скобки на скобку

    Рассмотрим произведение двух скобок вида (a 1 + a 2) · (b 1 + b 2) . Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

    Для того, чтобы решить приведенный пример, обозначим выражение (b 1 + b 2) как b . Это позволит нам использовать правило умножения скобки на выражение. Получим (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b . Выполнив обратную замену b на (b 1 + b 2) , снова применим правило умножения выражения на скобку: a 1 · b + a 2 · b = = a 1 · (b 1 + b 2) + a 2 · (b 1 + b 2) = = (a 1 · b 1 + a 1 · b 2) + (a 2 · b 1 + a 2 · b 2) = = a 1 · b 1 + a 1 · b 2 + a 2 · b 1 + a 2 · b 2

    Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

    Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

    Формула будет иметь вид:

    (a 1 + a 2 + . . . + a m) · (b 1 + b 2 + . . . + b n) = = a 1 b 1 + a 1 b 2 + . . . + a 1 b n + + a 2 b 1 + a 2 b 2 + . . . + a 2 b n + + . . . + + a m b 1 + a m b 1 + . . . a m b n

    Проведем раскрытие скобок в выражении (1 + x) · (x 2 + x + 6) Оно представляет собой произведение двух сумм. Запишем решение: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6

    Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1 − x) · (3 · x · y − 2 · x · y 3) .

    Сначала представим выражения в скобках в виде сумм: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) . Теперь мы можем применить правило: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

    Раскроем скобки: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3 .

    Раскрытие скобок в произведениях нескольких скобок и выражений

    При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2 + 4) · 3 · (5 + 7 · 8) .

    В выражении содержится сразу три множителя (2 + 4) , 3 и (5 + 7 · 8) . Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2 + 4) · 3 · (5 + 7 · 8) = ((2 + 4) · 3) · (5 + 7 · 8) .

    В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · (5 + 7 · 8) .

    Умножаем скобку на скобку: (2 · 3 + 4 · 3) · (5 + 7 · 8) = 2 · 3 · 5 + 2 · 3 · 7 · 8 + 4 · 3 · 5 + 4 · 3 · 7 · 8 .

    Скобка в натуральной степени

    Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

    Рассмотрим процесс преобразования выражения (a + b + c) 2 . Его можно записать в виде произведения двух скобок (a + b + c) · (a + b + c) . Произведем умножение скобки на скобку и получим a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c .

    Разберем еще один пример:

    Пример 8

    1 x + 2 3 = 1 x + 2 · 1 x + 2 · 1 x + 2 = = 1 x · 1 x + 1 x · 2 + 2 · 1 x + 2 · 2 · 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 · 2 · 2

    Деление скобки на число и скобки на скобку

    Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x 2 — x) : 4 = x 2: 4 — x: 4 .

    Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

    Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2 3 . Для этого сначала заменим деление умножением на обратное число (x + 2) : 2 3 = (x + 2) · 2 3 . Умножим скобку на число (x + 2) · 2 3 = x · 2 3 + 2 · 2 3 .

    Вот еще один пример деления на скобку:

    Пример 9

    1 x + x + 1: (x + 2) .

    Заменим деление умножением: 1 x + x + 1 · 1 x + 2 .

    Выполним умножение: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

    Порядок раскрытия скобок

    Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

    Порядок выполнения действий:

    • первым делом необходимо выполнить возведение скобок в натуральную степень;
    • на втором этапе производится раскрытие скобок в произведениях и частных;
    • заключительным шагом будет раскрытие скобок в суммах и разностях.

    Рассмотрим порядок выполнения действий на примере выражения (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) . Намнем преобразование с выражений 3 · (− 2) : (− 4) и 6 · (− 7) , которые должны принять вид (3 · 2: 4) и (− 6 · 7) . При подстановке полученных результатов в исходное выражение получаем: (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) = (− 5) + (3 · 2: 4) − (− 6 · 7) . Раскрываем скобки: − 5 + 3 · 2: 4 + 6 · 7 .

    Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    На этом уроке вы узнаете, как из выражения, содержащего скобки, путем преобразования получить выражение, в котором скобок нет. Вы научитесь раскрывать скобки, перед которыми стоит знак плюс и знак минус. Мы вспомним, как раскрывать скобки, используя распределительный закон умножения. Рассмотренные примеры позволят связать новый и ранее изученный материал в единое целое.

    Тема: Решение уравнений

    Урок: Раскрытие скобок

    Как раскрыть скобки, перед которыми стоит знак «+». Использование сочетательного закона сложения.

    Если к числу нужно прибавить сумму двух чисел, то можно к этому числу прибавить сначала первое слагаемое, а затем второе.

    Слева от знака равно выражение со скобками, а справа — выражение без скобок. Значит, при переходе от левой части равенства к правой произошло раскрытие скобок.

    Рассмотрим примеры.

    Пример 1.

    Раскрыв скобки, мы изменили порядок действий. Считать стало удобнее.

    Пример 2.

    Пример 3.

    Заметим, что во всех трех примерах мы просто убирали скобки. Сформулируем правило:

    Замечание.

    Если первое слагаемое в скобках стоит без знака, то его надо записать со знаком «плюс».

    Можно выполнить пример по действиям. Сначала к 889 прибавить 445. Это действие в уме выполнить можно, но это не очень просто. Раскроем скобки и увидим, что изменённый порядок действий значительно упростит вычисления.

    Если следовать указанному порядку действий, то нужно сначала из 512 вычесть 345, а затем к результату прибавить 1345. Раскрыв скобки, мы изменим порядок действий и значительно упростим вычисления.

    Иллюстрирующий пример и правило.

    Рассмотрим пример: . Найти значение выражения можно, сложив 2 и 5, а затем взять полученное число с противоположным знаком. Получим -7.

    С другой стороны, тот же самый результат можно получить, сложив числа, противоположные исходным.

    Сформулируем правило:

    Пример 1.

    Пример 2.

    Правило не изменяется, если в скобках не два, а три или более слагаемых.

    Пример 3.

    Замечание. Знаки меняются на противоположные только перед слагаемыми.

    Для того чтобы раскрыть скобки, в данном случае нужно вспомнить распределительное свойство.

    Сначала умножим первую скобку на 2, а вторую — на 3.

    Перед первой скобкой стоит знак «+», значит, знаки нужно оставить без изменения. Перед второй стоит знак «-», следовательно, все знаки нужно поменять на противоположные

    Список литературы

    1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012.
    2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. — Гимназия, 2006.
    3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. — Просвещение, 1989.
    4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс — ЗШ МИФИ, 2011.
    5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. — ЗШ МИФИ, 2011.
    6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. — Просвещение, 1989.
    1. Онлайн тесты по математике ().
    2. Можно скачать указанные в п. 1.2. книги ().

    Домашнее задание

    1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. — М.: Мнемозина, 2012. (ссылка см. 1.2)
    2. Домашнее задание: № 1254, № 1255, № 1256 (б,г)
    3. Другие задания: № 1258(в), № 1248

    Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

    Формула сокращенного умножения четвертой степени. Формулы сокращенного умножения

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Для того что бы упростить алгебраические многочлены, существуют формулы сокращенного умножения . Их не так уж и много и они легко запоминаются, а запомнить их нужно. Обозначения которые используются в формулах, могут принимать любой вид (число или многочлен).

    Первая формула сокращенного умножения называется разность квадратов . Она заключается в том что из квадрата одного числа отнимается квадрат второго числа равен величине разности данных чисел, а также их произведению.

    а 2 — b 2 = (а — b)(a + b)

    Разберем для наглядности:

    22 2 — 4 2 = (22-4)(22+4)=18 * 26 = 468
    9а 2 — 4b 2 c 2 = (3a — 2bc)(3a + 2bc)

    Вторая формула о сумме квадратов . Звучит она как, сумма двух величин в квадрате равняется квадрату первой величины к ней прибавляется двойное произведение первой величины умноженное на вторую, к ним прибавляется квадрат второй величины.

    (а + b) 2 = a 2 +2ab + b 2

    Благодаря данной формуле, становится намного проще вычислять квадрат от большого числа, без использования вычислительной техники.

    Так к примеру: квадрат от 112 будет равен
    1) В начале разберем 112 на числа квадраты которых нам знакомы
    112 = 100 + 12
    2) Вписываем полученное в скобки возведенные в квадрат
    112 2 = (100+12) 2
    3) Применяя формулу, получаем:
    112 2 = (100+12) 2 = 100 2 + 2 * 100 * 12 + 122 = 10000 + 2400+ 144 = 12544

    Третья формула это квадрат разности . Которая гласит о том, что две вычитаемые друг друга величины в квадрате равняются, тому что, от первой величины в квадрате отнимаем двойное произведение первой величины умноженное на вторую, прибавляя к ним квадрат второй величины.

    (а +b) 2 = а 2 — 2аb + b 2

    где (а — b) 2 равняется (b — а) 2 . В доказательство чему, (а-b) 2 = а 2 -2аb+b 2 = b 2 -2аb + а 2 = (b-а) 2

    Четвертая формула сокращенного умножения называется куб суммы . Которая звучит как: две слагаемые величины в кубе равны кубу 1 величины прибавляется тройное произведение 1 величины в квадрате умноженное на 2-ую величину, к ним прибавляется тройное произведение 1 величины умноженной на квадрат 2 величины, плюс вторая величина в кубе.

    (а+b) 3 = а 3 + 3а 2 b + 3аb 2 + b 3

    Пятая, как вы уже поняли называется куб разности . Которая находит разности между величинами, как от первого обозначения в кубе отнимаем тройное произведение первого обозначения в квадрате умноженное на второе, к ним прибавляется тройное произведение первого обозначения умноженной на квадрат второго обозначения, минус второе обозначение в кубе.

    (а-b) 3 = а 3 — 3а 2 b + 3аb 2 — b 3

    Шестая называется — сумма кубов . Сумма кубов равняется произведению двух слагаемых величин, умноженных на неполный квадрат разности, так как в середине нет удвоенного значения.

    а 3 + b 3 = (а+b)(а 2 -аb+b 2)

    По другому можно сказать сумму кубов можно назвать произведение в двух скобках.

    Седьмая и заключительная, называется разность кубов (ее легко перепутать с формулой куба разности, но это разные вещи). Разность кубов равняется произведению от разности двух величин, умноженных на неполный квадрат суммы, так как в середине нет удвоенного значения.

    а 3 — b 3 = (а-b)(а 2 +аb+b 2)

    И так формул сокращенного умножения всего 7, они похожи друг на друга и легко запоминаются, единственно важно не путаться в знаках. Они так же рассчитаны на то, что их можно использовать в обратном порядке и в учебниках собрано довольно много таких заданий. Будьте внимательны и все у вас получится.

    Если у вас появились вопросы по формулам, обязательно пишите их в комментариях. Будем рады ответить вам!

    Если Вы находитесь в декретном отпуске, но хотите зарабатывать деньги. Просто перейдите по ссылке Интернет бизнес с Орифлейм . Там все очень подробно написано и показано. Будет интересно!

    Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

    Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

    Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

    При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


    Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) — формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) — формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

    Дополнительные формулы

    В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

    Сферы применения формул сокращенного умножения (фсу) и примеры

    Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

    Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений . Наиболее часто эти формулы используются в процессе упрощения выражений .

    Пример.

    Упростите выражение 9·y−(1+3·y) 2 .

    Решение.

    В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y) 2 =9·y−(1 2 +2·1·3·y+(3·y) 2) . Остается лишь раскрыть скобки и привести подобные члены: 9·y−(1 2 +2·1·3·y+(3·y) 2)= 9·y−1−6·y−9·y 2 =3·y−1−9·y 2 .

    В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ: формулы сокращённого умножения . В краткой записи — ФСУ.

    Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

    Разбираемся?)

    Откуда берутся формулы сокращённого умножения?

    Равенства 6 и 7 записаны не очень привычно. Как бы наоборот. Это специально.) Любое равенство работает как слева направо, так и справа налево. В такой записи понятнее, откуда берутся ФСУ.

    Они берутся из умножения.) Например:

    (a+b) 2 =(a+b)(a+b)=a 2 +ab+ba+b 2 =a 2 +2ab+b 2

    Вот и всё, никаких научных хитростей. Просто перемножаем скобки и приводим подобные. Так получаются все формулы сокращённого умножения. Сокращённое умножение — это потому, что в самих формулах нет перемножения скобок и приведения подобных. Сокращены.) Сразу дан результат.

    ФСУ нужно знать наизусть. Без первых трёх можно не мечтать о тройке, без остальных — о четвёрке с пятёркой. )

    Зачем нужны формулы сокращённого умножения?

    Есть две причины, выучить, даже зазубрить эти формулы. Первая — готовый ответ на автомате резко уменьшает количество ошибок. Но это не самая главная причина. А вот вторая…

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    Заказ математических операций, БОДМАС | SkillsYouNeed

    Для расчета, который имеет только одну математическую операцию с двумя числами, это простой случай сложения, вычитания, умножения или деления, чтобы найти ответ.

    А как быть, когда номеров несколько, а операции разные? Может быть, вам нужно делить и умножать или складывать и делить. Что вы делаете тогда?

    К счастью, математика — дисциплина, основанная на логике. Как это часто бывает, есть несколько простых правил, которые помогут вам определить порядок выполнения вычислений. Они известны как «Порядок действий» .


    Правила упорядочения в математике — BODMAS

    BODMAS — полезная аббревиатура, указывающая порядок решения математических задач. Важно, чтобы вы следовали правилам BODMAS, потому что без них ваши ответы могут быть неверными.

    Аббревиатура BODMAS означает:

    • B ракетки (части расчета в скобках всегда идут первыми).
    • O заказы (числа, включающие степени или квадратные корни).
    • D ivision.
    • M умножение.
    • Дополнение .
    • S вычитание.

    БОДМАС, БИДМАС или ПЕМДАС?


    Вы можете часто видеть BIDMAS вместо BODMAS. Они точно такие же. В BIDMAS «I» относится к индексам, которые аналогичны ордерам. Для получения дополнительной информации см. нашу страницу, посвященную специальным номерам и понятиям.


    ПЕМДАС

    PEMDAS обычно используется в США, он работает так же, как BODMAS. Акроним PEMDAS:

    P аркады,

    E экспоненты (степени и корни),

    M умножение и D ivision,

    Дополнение и удаление S .



    Дополнительное чтение из навыков, которые вам нужны


    Руководство по необходимым навыкам счета

    Это руководство, состоящее из четырех частей, знакомит вас с основами счета от арифметики до алгебры, с промежуточными остановками на дробях, десятичных дробях, геометрии и статистике.

    Если вы хотите освежить свои знания или помочь своим детям в обучении, эта книга для вас.


    Использование БОДМАС

    Кронштейны

    Начните с чего угодно внутри квадратных скобок слева направо.

    Пример:

    4 × (3 + 2) = ?

    Нужно сделать операцию, в скобках сначала 3+2, потом умножить ответ на 4.

    3 + 2 = 5.
    4 × 5 = 20

    Если вы проигнорируете скобки и произведете расчет слева направо 4 × 3 + 2, вы получите 14.Вы можете видеть, как скобки влияют на ответ.

    Заказов

    Затем сделайте что-нибудь, связанное со степенью или квадратным корнем (они также известны как порядков ), снова работая слева направо, если их больше одного.

    Пример:

    3 2 + 5 = ?

    Сначала вам нужно рассчитать мощность, прежде чем вы сможете добавить 5.

    3 2 = 3 × 3 = 9
    9 + 5 = 14

    Деление и умножение

    После того, как вы сделали какие-либо части вычислений с использованием скобок или степеней, следующим шагом будет деление и умножение .

    Умножение и деление имеют одинаковый ранг, поэтому вы работаете слева направо в сумме, выполняя каждую операцию в том порядке, в котором она указана.

    Пример:

    6 ÷ 2 + 7 × 4 = ?

    Сначала вам нужно выполнить деление и умножение, но у вас есть по одному тому и другому.

    Начните слева и двигайтесь вправо, что означает, что вы начинаете с 6 ÷ 2 = 3. Затем выполните умножение, 7 × 4 = 28.

    Ваш расчет теперь равен 3 + 28.

    Завершите вычисление сложения, чтобы найти ответ, 31 .

    См. наши страницы: Умножение и Деление , чтобы узнать больше.

    Сложение и вычитание

    Последним шагом является вычисление любого сложения или вычитания . Опять же, вычитание и сложение имеют одинаковый ранг, и вы просто работаете слева направо.

    Пример:

    4 + 6 — 7 + 3 = ?

    Вы начинаете слева и идете поперек.

    4 + 6 = 10
    10 — 7 = 3
    3 + 3 = 6
    Ответ: 6 .

    См. наши страницы: Сложение и Вычитание , чтобы узнать больше.

    Собираем все вместе

    Этот окончательный рабочий пример включает в себя все элементы BODMAS.

    Пример:

    4 + 8 2 × (30 ÷ 5) = ?

    Начните с вычисления в скобках.

    30 ÷ 5 = 6
    Это дает вам 4 + 8 2 × 6 = ?

    Затем посчитайте порядки — в данном случае квадрат 8.

    8 2 = 64
    Ваш расчет теперь равен 4 + 64 × 6

    Затем перейти к умножению 64 × 6 = 384

    Наконец выполнить сложение. 4 + 384 = 388

    Ответ: 388 .



    Тестовые вопросы BODMAS

    Правила BODMAS легче всего понять с некоторой практикой и примерами.

    Попробуйте эти расчеты самостоятельно, а затем откройте окно (щелкните символ + слева), чтобы увидеть работу и ответы.

    3 + 20 × 3

    В этом расчете нет скобок или порядков.

    1. Умножение предшествует сложению, поэтому начните с 20 × 3 = 60.
    2. Расчет теперь выглядит как 3 + 60

    Таким образом, ответ будет 63 .

    25 − 5 ÷ (3 + 2)

    1. Начните со скобок.(3 + 2) = 5.
    2. Расчет теперь выглядит как 25 − 5 ÷ 5
    3. Деление предшествует вычитанию. 5 ÷ 5 = 1,
    4. Расчет теперь выглядит как 25 − 1

    Таким образом, ответ будет 24 .

    10 + 6 × (1 + 10)

    1. Начните со скобок. (1+10) = 11.
    2. Расчет теперь выглядит как 10 + 6 × 11
    3. Умножение предшествует сложению.6 × 11 = 66,
    4. Расчет теперь выглядит как 10 + 66.

    Таким образом, ответ будет 76 .

    5 (3 + 2) + 5 2

    Когда нет такого знака, как в этом вычислении, оператор является умножением, таким же, как запись 5 × (3 + 2) + 5 2 .

    1. Сначала выполните вычисления внутри скобок: (3 + 2) = 5.
    2. Это дает вам 5 × 5 + 5 2 .
    3. Следующий шаг — заказы, в данном случае квадратные. 5 2 = 5 × 5 = 25. Теперь у вас есть 5 × 5 + 25.
    4. Деление и умножение предшествуют сложению и вычитанию, поэтому ваш следующий шаг — 5 × 5 = 25. Теперь вычисление выглядит так: 25 + 25 = 50.

    Ответ: 50 .

    (105 + 206) — 550 ÷ 5 2 + 10

    В этом есть все! Но не паникуйте.BODMAS по-прежнему применяется, и все, что вам нужно сделать, это отменить расчет.

    1. Начните со скобок. (105 + 206) = 311.
    2. Расчет теперь выглядит как 311 – 550 ÷ 5 2 + 10
    3. Далее, приказы или полномочия. В данном случае это 5 2 = 25,
    4. .
    5. Расчет теперь выглядит как 311 – 550 ÷ 25 + 10
    6. Далее, деление и умножение. Умножения нет, а деление 550 ÷ 25 = 22.
    7. Теперь расчет выглядит так: 311 – 22 + 10.
    8. Хотя у вас еще осталось две операции, сложение и вычитание имеют одинаковый ранг, поэтому вы просто выполняете слева направо. 311 – 22 = 289 и 289 + 10 = 299.

    Ответ: 299 .

    7 + 7 ÷ 7 + 7 × 7 – 7 = ?

    Подобные проблемы часто циркулируют в социальных сетях с надписями типа «90% людей понимают это неправильно». Просто следуйте правилам BODMAS, чтобы получить правильный ответ.

    1. Здесь нет скобок или порядков, поэтому начните с деления и умножения.
    2. 7 ÷ 7 = 1 и 7 × 7 = 49.
    3. Расчет теперь выглядит как 7 + 1 + 49 – 7
    4. Теперь выполните сложение и вычитание. 7 + 1 + 49 = 57 – 7 = 50

    Таким образом, ответ будет 50 .


    Как дела?

    Надеюсь, вы правильно ответили на все вопросы. Если нет, вернитесь и просмотрите, где вы ошиблись, и перечитайте правила еще раз.

    Чем больше вы практикуетесь, тем проще становится БОДМАС, и в конечном итоге вам даже не придется об этом думать.

    Алгебра — Расширение

    «Расширение» означает удаление ( ) . .. но мы должны сделать это правильно!

    ( ) называются «скобками» или «квадратными скобками»

    Все, что находится внутри ( ), должно рассматриваться как «пакет».

    Итак, при умножении: умножайте на все, что находится внутри «пакета».

     

    Пример: Расширить 3 × (5+2)

    Ответ:

    Теперь он расширен.

    Мы также можем завершить расчет:

    3 × (5+2) = 3 × 5 + 3 × 2
        = 15 + 6
    = 21  

    По алгебре

    В алгебре сложение двух вещей рядом обычно означает умножение.

    Итак, 3(a+b) означает умножить 3 на (a+b)

    Вот пример расширения с использованием переменных a , b и c вместо чисел:

    А вот еще один пример с некоторыми числами.Обратите внимание, что «·» между 3 и 6 означает умножение, поэтому 3·6 = 18 :

    Умножение отрицательных чисел имеет особые правила: умножение отрицательного числа на положительное дает отрицательное значение, а умножение двух отрицательных значений дает положительное значение:

    В этом случае −3 · -5 = +15 (положительный ответ), но вот пример, где вторая часть отрицательна:

    Таким образом, второй член оказался отрицательным, потому что 2x · -a = -2ax , (также лучше писать «-2ax», а не «-2xa»).

    Это было также интересно, потому что x было возведено в квадрат (x 2 )

    Наконец, у нас есть пример с тремя терминами внутри:

    Применяется то же правило: умножайте на все, что находится внутри ().

    И вот подсказка: когда умножение очевидно (например, a · 2 ), делайте это сразу, но когда над этим нужно подумать (например, a · −b ), оставьте его для следующей строки.

    Много раз Много

    Как нам сделать что-то подобное?

    (х + 2у) (3х — 4у)

    Прочтите многочлены умножения, чтобы узнать!

    Заключение

    Умножить на все, что внутри ()

    Сделать это в два этапа:

    • Запишите умножение
    • Затем выполните умножение

     

    открытых учебников | Сиявула

    Математика

    Наука

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 7А

          • Класс 7Б

          • Класс 7 (объединенные А и В)

        • Африкаанс

          • Граад 7А

          • Граад 7Б

          • Graad 7 (A en B saam)

      • Пособия для учителей

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 8А

          • Класс 8Б

          • Класс 8 (объединенные А и В)

        • Африкаанс

          • Граад 8А

          • Граад 8Б

          • Graad 8 (A en B saam)

      • Пособия для учителей

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 9А

          • Класс 9Б

          • Класс 9 (объединенные А и В)

        • Африкаанс

          • Граад 9А

          • Граад 9Б

          • Graad 9 (A en B saam)

      • Пособия для учителей

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 4А

          • Класс 4Б

          • Класс 4 (объединенные А и В)

        • Африкаанс

          • Граад 4А

          • Граад 4Б

          • Graad 4 (A en B saam)

      • Пособия для учителей

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 5А

          • Класс 5Б

          • Класс 5 (объединенные А и В)

        • Африкаанс

          • Граад 5А

          • Граад 5Б

          • Graad 5 (A en B saam)

      • Пособия для учителей

      • Читать онлайн
      • Учебники

        • Английский

          • Класс 6А

          • Класс 6Б

          • Класс 6 (объединенные А и В)

        • Африкаанс

          • Граад 6А

          • Граад 6Б

          • Graad 6 (A en B saam)

      • Пособия для учителей

    Лицензирование нашей книги

    Эти книги не только бесплатны, но и имеют открытую лицензию! Один и тот же контент, но разные версии (фирменные или нет) имеют разные лицензии, как объяснено:

    CC-BY-ND (фирменные версии)

    Вам разрешается и поощряется свободное копирование этих версий. Вы можете копировать, распечатывать и распространять их столько раз, сколько захотите. Вы можете загрузить их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете каким-либо образом адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, логотипы спонсоров и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

    Узнайте здесь больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

    CC-BY (версии без торговой марки)

    Эти небрендированные версии одного и того же контента доступны для совместного использования, адаптации, преобразования, изменения или дальнейшего развития любым способом, при единственном требовании — отдать должное Сиявуле. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

    Видео с вопросами

    : Упрощение алгебраического выражения с отрицательными показателями

    Стенограмма видео

    Упростите выражение два 𝑥 до отрицательной степени два 𝑦 до степени пять, возведя все в степень отрицательной двойки.

    Чтобы ответить на этот вопрос, нам нужно вспомнить некоторые законы показателей или индексов. Во-первых, напомним, что 𝑎𝑏 в степени 𝑐 равно 𝑎 в степени 𝑐, умноженному на 𝑏 в степени 𝑐. Это означает, что мы можем разделить выражение внутри круглых или квадратных скобок. Выражение можно переписать как два в степени отрицательной двойки, умноженной на 𝑥 в степени отрицательной двойки, возведенной в степень отрицательной двойки, умноженной на 𝑦 в пятой степени, возведенной в степень отрицательной двойки.

    Далее мы вспоминаем степенное правило показателей. Это означает, что 𝑎 в степени 𝑏, возведенной в степень 𝑐, равно 𝑎 в степени 𝑏, умноженной на 𝑐. Во втором члене нашего выражения мы можем умножить минус два на минус два. Это равно четырем. Таким образом, эта часть упрощается до 𝑥 в четвертой степени или 𝑥 в степени четыре. Мы можем сделать то же самое с 𝑦-частью нашего выражения. Пять, умноженное на минус два, равно минус 10. Итак, мы имеем 𝑦 в степени минус 10.Выражение упрощается до двух в степени минус два, умноженной на 𝑥 в степени четыре, умноженной на 𝑦 в степени минус 10.

    Далее мы вспомним, что происходит, когда у нас отрицательный показатель степени. 𝑎 в отрицательной степени 𝑛 равно единице над 𝑎 в степени 𝑛. Мы просто находим обратное. Два в степени минус два равно одному на два в квадрате. Третью часть нашего выражения можно записать как единицу над 𝑦 в 10-й степени. Два в квадрате равно четырем.А затем умножение трех частей нашего выражения дает нам 𝑥 в четвертой степени над четырьмя 𝑦 в 10-й степени. Это упрощенная форма выражения два 𝑥 в степени отрицательной двойки 𝑦 в пятой степени, возведенной в степень отрицательной двойки.

    Обозначение интервалов — как и где его использовать

    В математике мы хотим быть максимально эффективными и точными при объяснении определенных принципов. Одним из таких примеров является интервальная нотация. Интервал — это диапазон действительных чисел между a и b в a Интервальная запись может быть очень полезна в алгебре и описании наборов чисел.

    Интервальная запись описывает множество, содержащее все действительные числа между нижней и верхней границами, которые могут не включаться. Значения конечной точки указаны в скобках/квадратных скобках. Квадратные скобки указывают, что они находятся внутри набора, а круглые скобки указывают, что они не лежат внутри набора. Например, учитывая (3,15), 3 не включено, а 15 включено.

    Типы обозначений интервалов

    Существует несколько различных типов интервалов, называемых открытыми интервалами и закрытыми интервалами, которые обычно встречаются при изучении математики и называются (a, b) и [a, b] соответственно.

    Открытый интервал использует круглые скобки. Это означает, что диапазон содержит все действительные числа x, находящиеся точно между числами a и b. То есть диапазон фактически не имеет чисел a и b. Другой способ указать открытый интервал — для всех наборов x, таких что a

    Для закрытых диапазонов квадратные скобки указывают, что конечные точки лежат в пределах диапазона. Следовательно, закрытые интервалы можно обозначить как множество a ≤ x ≤ b.

    Полуоткрытый интервал

    Несколько более сложный интервал называется полуоткрытым интервалом и обозначается как (a, b] и [a, b]. Это их соответствующие наборы всех x, например, a < x < b и a ≤ x ≤ b. Для каждой точки x в интервале, если существует фактическое положительное число M со следующими свойствами, интервал ограничен, как x | <М.

    Расчет и интервал

    Интервалы регулярно встречаются в исчислении. Интервал, на котором определяется функция, например теорема о промежуточном значении, замкнут и ограничен. Замкнутые и разделенные интервалы касаются компактности, которая является одним из наиболее важных понятий в более широком изучении вычислений. Многие из основных теорий вычислений вращаются вокруг компактных множеств. Компактное множество — это точно замкнутое граничное расстояние в реальной обстановке.

    Обозначение интервала представляет собой упрощенную форму, описывающую решение неравенства или системы неравенств с использованием круглых и квадратных скобок вместо символа неравенства.Диапазон в скобках называется открытым диапазоном. Это означает, что переменная не может иметь значение конечной точки.

    Например, решение 3

    Как описать набор значений
    • Определите, где толстая линия перекрывается с фактической линией, чтобы определить, что включить в набор.
    • В левом конце каждого диапазона используйте [. Каждое конечное значение включается в набор (сплошная точка) или (для каждого исключающего конечного значения (белая точка)).
    • В правом конце каждого диапазона используйте] для включения каждого конечного значения в набор (полная точка) или) каждого исключенного конечного значения (белая точка).

    Определите значение переменной, при котором выполняется неравенство. Например, значение x, которое делает неравенство 3x-6 <3 верным, равно x <2.

    Пример решения неравенства X<2

    Нанесите эти значения на график, используя открытые точки для < и > и закрытые точки для ≤ и ≥.В приведенном выше примере открытая точка нарисована на 2 на числовой прямой, а стрелка, указывающая влево от числовой прямой, нарисована, чтобы указать x <2.

    Нижняя граница переменной помечается левой квадратной скобкой «[», если переменная может иметь это значение, или левой скобкой «(», если не может или нижняя граница равна отрицательной бесконечности. Тогда, поскольку x отрицательно бесконечность, нижний предел описывается как «(-∞».

    Запятая ставится после нижней границы, затем верхняя граница переменной, а если переменная может содержать свое значение, но правая скобка «]», если нет, или если верхняя граница положительна, то правая скобка») ” описывается.В приведенном выше примере верхний предел равен 4, и x не может иметь такое значение, поэтому напишите «, 4)» и дайте ответ в интервальной записи (-∞, 4), что означает диапазон чисел от отрицательной бесконечности до 4».

    Символ Союза

    Наконец, если переменные имеют другой интервал, соедините их символом объединения «v». Расставьте интервалы от минимума к максимуму. Например, если x ≥ 6 является другим решением неравенства в этом примере, запишите (-∞, 3) v [6, ∞) в качестве обозначения интервала.

    Чтобы получить дополнительную помощь, ознакомьтесь с некоторыми из наших курсов Gooroo по математике!

    Автор: Anonymous Gooroo Blogger

    Об авторе

    Сэм Кан

    Сэм — создатель контента и специалист по SEO в Gooroo, платформе для репетиторства и онлайн-обучения, которая подбирает студентов к репетиторам, идеально подходящим для них, исходя из их уникальных потребностей в обучении. Gooroo предлагает репетиторство по математике, английскому языку, ESL, испанскому языку и многому другому.


    Удаление символов группировки: круглые скобки, фигурные скобки, фигурные скобки

    7

    Правила снятия скобок

    Кронштейны и скобы

    2-й уровень

    Отношение a b к b a

    Правила снятия скобок

    Скобкам будет предшествовать знак плюс +

    а + ( б в + д )

    или знак минус —

    а — ( б в + д ).

    Если скобкам предшествует знак плюс +
    , просто удалите их. Ничего не меняется.

    a + ( b c + d ) = a + b c + d .

    Когда скобкам предшествует знак минус —
    изменить знак каждого члена в скобках.
    Изменить + на — и — на + .

    а — ( б с + d ) = а б + с d .

    Под знаком b в скобках понимается + . Следовательно, после удаления круглых скобок этот термин становится — b .

    c в скобках становится + c . И + д становится — д .

    Другими словами: Чтобы вычесть сумму, вычтите каждый член суммы .

    а — ( б с + d ) = а б + с d .

    Вычесть b . Вычесть − c — то есть прибавить. И вычесть d .

    Мы можем обосновать эти две возможности примерами из арифметики, потому что алгебра абстрагирована — взята из — арифметики.

    Например, вот как мы можем вычислить 256 + 98:

      256 + 98  =  256 + 100 − 2
     
       =  356 − 2
     
       =  354.
    То есть  
     
      256 + (100 − 2)  =  256 + 100 − 2.
     
    Когда мы убираем эти скобки, ничего не меняется.
     
    А вот как посчитать 256 − 98:
     
      256 − 98  =  256 − 100 + 2
     
       =  156 + 2
     
       =  158.
     
    То есть  
     
      256 – (100 – 2)  =  256 − 100 + 2.
     
    Когда мы удаляем эти скобки, знак каждого члена
    в скобках меняется.

    Проблема 1.Удалите скобки.

    а)   p + ( q r + s ) = p + q r + с

    b)   p − ( q r + s ) = p q + r с

    В каждой из следующих задач удалите скобки, а затем упростите
    , добавив числа.

    Например,

    ( х — 3) — ( у — 4)   =   х — 3 — у + 4
     
        =   х у + 1.

    Знак перед  ( x − 3)  понимается как + . Поэтому знаки в этих скобках не меняются.

    Но перед ( y − 4) стоит минус. Следовательно, y меняется на -y, а -4 меняется на +4.

    Наконец, в алгебре принято писать буквенные термины x y слева от числового термина.

       Проблема 2.  ( x + 2) + ( y + 8)   =   х + 2 + у + 8
     
        =   х + у + 10.
       Проблема 3.  ( x + 2) − ( y + 8)   =   х + 2 — у — 8
     
        =   х у — 6.
       Проблема 4.  ( x − 2) + ( y + 8)   =   х — 2 + у + 8
     
        =   х + у + 6.
       Задача 5.  ( x − 2) − ( y + 8)   =   х — 2 — у — 8
     
        =   х у — 10.
       Задача 6.  ( x − 2) − ( y − 8)   =   х — 2 — у + 8
     
        =   х у + 6.
       Задача 7.  ( x − 2) + ( y − 8)   =   х — 2 + у — 8
     
        =   х + у — 10.
       Задача 8.  ( a − 2) + ( b + 3) − ( c − 7)   =   а − 2 + б + 3 − в + 7
     
        =   а + б в + 8.
       Задача 9.  ( a − 5) − ( b + 6) − ( c − 9)   =   а − 5 − б − 6 − в + 9
     
        =   а б в − 2.
      Проблема 10.( а + 2) — ( б — 3) + ( в — 8) — ( г + 1)
     
        =   а + 2 − б + 3 + в − 8 − г − 1
     
        =   а б + в г − 4.

    Опять же, когда перед скобками стоит знак минус, все знаки внутри них меняются. Мы видели это раньше в правиле Урока 3:

    .

    a − (− b ) = a + b .

       Задача 11.   −(− x + y )   =   х у .
       Задача 12.−( х у )   =   х + у .
       Задача 13.   −( x + y − 2)   =   х у + 2.

    Задача 14.   Напишите отрицательное число

    .

    а б + в г .

    а + б в + г .

    Пример 1. Расстановка скобок. Правила алгебры работают в обоих направлениях. Следовательно, поскольку мы можем удалить круглые скобки, мы также можем поставить их. Мы можем написать

    а б + в г

    следующими способами:

    а — ( б в + д )

    ( а б ) — (- в + г )

    а − ( б в ) − д

    И так далее.

    Задача 15.   Перепишите каждое из следующих утверждений, расставив скобки.

    а) − x + y = −( x y ).

    б)   — х у = −( х + у )

    в) — а + б в + г = −( a b + c d ).

    d)  Заключите скобки вокруг b и c :

    а б + в г = а — ( б в ) — д .

    Кронштейны и скобы

    Скобки  [   ]  и фигурные скобки  { }  выполняют те же функции, что и круглые скобки. Все они являются группирующими символами. После того, как скобки использованы, то для ясности мы используем скобки.После скобок, скобки.

    Удаление скобок или фигурных скобок выполняется по тем же правилам, что и удаление скобок.

    Пример 2.    a − [ b − ( c d + e )]

    Мы удалим все символы группировки. Мы сделаем это, удалив сначала скобки. Затем мы сделаем это снова, сначала удалив скобки. Студент должен уметь делать это в любом случае.

    Итак, после снятия скобок:

    а — [ б — ( с д + д )] = а б + ( в г + е ).

    В скобках два термина. Первый член — b . Второй член — ( c d + e ).(См. задачу 1c выше.)  Поскольку скобкам предшествует  — , знак каждого из двух членов меняется. Знаки внутри терма ( c d + e ) не меняются.

    Наконец, мы удаляем круглые скобки, которым предшествует +:

      = а б + в г + д .

    Теперь давайте решим ту же задачу, сначала удалив скобки:

    а — [ б — ( с д + д )] = a − [ b c + d e ]
     
      = а б + в г + д .

    Поскольку скобкам предшествует  — , каждый знак внутри них меняется. А так как скобкам также предшествует  — , каждый знак внутри них меняется.

    Задача 16.

    а)   Сначала удалите скобки, а затем удалите скобки.

    w + [ x − ( y + z )]  =  с + х — ( у + с )
     
       =  с + х у с

         Сначала удалите круглые скобки, а затем удалите квадратные скобки.

    w + [ x − ( y + z )]  =  с + [ x у с )]
     
       =  с + х у с

    b)   Сначала удалите квадратные скобки, а затем удалите скобки.

    с — [ х + ( у z )]  =  с х — ( у с )
     
       =  с x у + с

         Сначала удалите круглые скобки, а затем удалите квадратные скобки.

    с — [ х + ( у z )]  =  с — [ х + у с ]
     
       =  с x у + с

    c)   Сначала снимите квадратные скобки, а затем удалите скобки.

    w — [ x — ( y + z )]  =  с х + ( у + с )
     
       =  с x + у + с

         Сначала удалите круглые скобки, а затем удалите квадратные скобки.

    w — [ x — ( y + z )]  =  с — [ х у с )]
     
       =  с x + у + с

    d)   Сначала удалите квадратные скобки, а затем удалите скобки.

    w + [ x — ( y z )]  =  с + х — ( у с )
     
       =  с + х у + с

         Сначала удалите круглые скобки, а затем удалите квадратные скобки.

    w + [ x — ( y z )]  =  w + [ x y + z ) [
     
       =  с + х у + с

    Задача 17. Удалите все символы группировки. Упрощайте, когда вы идете, оценивая числа. Сначала снимите скобы.

      а)  5 − [3 − ( x − 2)] = 5 — 3 + ( х — 2)
     
      = 2 + х — 2
     
      = х .
      b)  5 − [3 − ( x + 2)] = 5 − 3 + ( х + 2)
     
      = 2 + х + 2
     
      = х + 4.
      c)  −5 + [3 − ( x − 2)] = -5 + 3 — ( х — 2)
     
      = −2 − x + 2
     
      = х .
      d)  5 − [−3 − ( x + 2)] = 5 + 3 + ( х + 2)
     
      = 8 + х + 2
     
      = х + 10.

    Задача 18.

    а)   Сначала удалите фигурные скобки, затем квадратные скобки, затем круглые скобки.
    а)   Упростите, добавив числа.

          10 − {2 + [3 − ( x − 5)]} = 10 — 2 — [3 — ( х — 5)]
     
      = 8 — 3 + ( х — 5)
     
      = 5 + х — 5
     
      = х .

    Сначала удалите круглые скобки, затем квадратные скобки, затем фигурные скобки.

          10 − {2 + [3 − ( x − 5)]} = 10 — {2 + [3 — x + 5]}
     
      = 10 — {2 + 3 — х + 5}
     
      = 10 − 10 + х
     
      = х .

    b)  Сначала удалите фигурные скобки, затем квадратные скобки, затем круглые скобки.

           8 + {2 − [12 + ( x − 2)]} = 8 + 2 — [12 + ( х — 2)]
     
      = 10 — 12 — ( х — 2)
     
      = −2 − x + 2
     
      = х .

    Сначала удалите круглые скобки, затем квадратные скобки, затем фигурные скобки.

           8 + {2 − [12 + ( x − 2)]} = 8 + {2 − [12 + x − 2]}
     
      = 8 + {2 − 12 − x + 2}
     
      = 8 + 2 — 12 — х + 2
     
      = х .

    2-й уровень

    Следующий урок: добавление похожих терминов

    Содержание | Дом


    Пожалуйста, сделайте пожертвование, чтобы TheMathPage оставался онлайн.
    Даже 1 доллар поможет.


    Copyright © 2021 Лоуренс Спектор

    Вопросы или комментарии?

    Электронная почта:  [email protected] com


    Объяснение BODMAS — Порядок математических операций

    Ник Валентайн | Последнее обновление: 01 октября 2021 г.

    Когда вам дана сумма, состоящая из двух чисел и одного оператора, вычисление ответа кажется простым (25 × 3 = 75).Но что произойдет, если кто-то добавит еще пару чисел и операторов: (5 + 25 × 3 − 2 = …..)? Какую часть вы делаете в первую очередь? К счастью, существует набор простых правил для решения математических сумм. Вот тут-то и появляется БОДМАС.

    Что такое БОДМАС?

    BODMAS — это аббревиатура, обозначающая порядок математических операций. Когда сумма содержит несколько чисел и операций, вам нужно знать, какую часть решить первой, чтобы решить ее в правильном порядке.Если вы этого не сделаете, вы получите неверный ответ.

    Bodmas STASS за

        • B Ракетки (любая часть, содержащаяся в скобках на первом месте)
        • O R1
        • 2 D Ivision
        • M Ultiplication
        • A добавление
        • S удаление

        Насколько хорошо известен BODMAS?

        В 2012 году доктор Питер Прайс, соучредитель веб-сайта Classroom Professor, разместил на своей странице в Facebook математический вопрос. Вот что он спросил:

        Вы можете ответить на это?

        7 — 1 х 0 + 3 ÷ 3 = ?

        Пост быстро распространился по Facebook, его увидели более 70 000 человек, а 6 000 оставили ответы и комментарии. Через 2 недели Питер подвел итоги — результаты, которые его удивили. Только 26% респондентов дали правильный ответ (правильный ответ — 8).

        Реклама

        Если учесть, что с психологической точки зрения люди, скорее всего, будут комментировать что-то публичное, подобное этому, если они достаточно уверены в своем ответе, чтобы не показаться глупыми, это, кажется, многое говорит о математическом понимании населения как целое.Действительно, кажется, что подавляющее большинство людей (вероятно, гораздо больше, чем 74%) не понимают концепции BODMAS и порядка операций .

        Суммы последовательности: BODMAS


        Как часто вы встречали подобные вопросы на Facebook? Правильный ответ — 12.

        В арифметике есть два типа компонентов: сами числа и операторы (также называемые операциями), которые говорят вам, что делать с этими числами.

        Итак, в сумме 7 х 3 + 5 есть три числа; 7, 3 и 5 и два оператора, умножение (x) и сложение (+).

        Вы также можете видеть, что эта сумма может дать два разных ответа в зависимости от того, в каком порядке вы используете операторы.

        • Если семь умножить на три и прибавить пять, получится 26.
        • Но если семь умножить на сумму трех и пяти (восемь), получится 56.

        Итак, как же Вы знаете, в каком порядке действовать? Подготовленные математики знают, что существует определенная иерархия операций и стандартный порядок выполнения основных арифметических операций: сложение, вычитание, умножение и деление).

        БОДМАС или ПЕМДАС?

        Окончательный порядок операций подытожен аббревиатурой BODMAS , что означает скобки, порядок, деление, умножение, сложение, вычитание. Было бы проще, если бы BODMAS был признан во всем мире, но, к сожалению, это не так.

        В США это обычно называется PEMDAS (скобка, экспонента, умножение, деление, сложение, вычитание) или PIDMAS (скобка, индекс, деление, умножение, сложение, вычитание). Другие места в мире могут использовать BIDMAS (скобки, индекс, деление, умножение, сложение, вычитание), в то время как канадцы сидят посередине с BEMDAS (скобки, экспонента, умножение, деление, сложение, вычитание).

        BODMAS и PEMDAS — это одно и то же?

        Да. Терминология аббревиатуры может быть разной, но последовательность остается прежней. BODMAS и PEMDAS (и другие подобные аббревиатуры) представляют собой порядок, в котором умножение и деление являются одним и тем же шагом (как при сложении и вычитании).

        Применение порядка операций

        Последовательность операций (будь то BODMAS, PEMDAS, PIDMAS, BIDMAS или BEMDAS) остается прежней:

        Шаг 1: Скобки

        Порядок высшего уровня определяется чем угодно содержится в скобках.Эти суммы всегда рассчитываются первыми. Но что, если есть более одного набора скобок? Тогда правило состоит в том, чтобы начать с самого внутреннего набора и работать вовне. Выполнение каждого вычисления в квадратных скобках должно оставить вас с одним числом, позволяющим удалить этот набор скобок.

        Шаг 2: Порядок или Индекс

        Все термины Порядок или Индекс относятся к операциям, содержащим степени или индексы, таким как возведение в квадрат или извлечение квадратного корня. Все эти расчеты выполняются во вторую очередь.

        Шаги 3 и 4: Деление и умножение

        Третий и четвертый шаги, деление и умножение, имеют одинаковый вес и поэтому образуют порядок операций третьего уровня, которые выполняются одновременно.Важно отметить, что когда две или более операций одного порядка появляются одна за другой, операции должны выполняться слева направо.

        Итак, если вы столкнулись с суммой вроде:

        18 ÷ 6 × 4 ÷ 8

        , вы просто работаете слева направо. Восемнадцать на шесть равно трем, умножить на четыре равно двенадцати, разделить на восемь равно 1,5.

        Шаги 5 и 6: Сложение и вычитание

        Опять же, они имеют одинаковый вес. Следовательно, сложение и вычитание образуют порядок операций четвертого и последнего уровня. Третий и четвертый этапы, деление и умножение, имеют равный вес и, таким образом, образуют порядок операций третьего уровня, которые выполняются одновременно, снова работая слева направо. правильно.

        Подводя итог, после того как вы выполнили все расчеты «B» и «O/E/I» в указанном порядке, просто работайте слева направо, выполняя любые «D» или «Ms» по мере их нахождения, а затем переходите к следующему шагу. вернитесь к началу и работайте слева направо над всеми суммами «A» или «S».

        Использование BODMAS — пример

        Как помогает BODMAS? Если мы вернемся к нашей первоначальной сумме; 7 х 3 + 5; мы видим, что теперь есть только один ответ. Сначала выполните 7 x 3 как умножение (21), а затем прибавьте 5, чтобы получить 26.Если бы намерение было другим, тогда необходимо было бы вставить скобки, таким образом: 7 х (3 + 5), так что сначала выполняется сложение в скобках, чтобы получить 7 х 8 = 56.

        Давайте попробуем гораздо больше сложная сумма, чтобы увидеть всю систему в действии. Чтобы упростить поиск и различение, символы деления выделены синим цветом, а дополнения — оранжевым.

        Вот такой умопомрачительный расчет:

        8 6 x (15 + 92) — (37 — 18) ÷ ((9 + 9. 5) – 8)
        ——————————————————
        27 + (15 x 3) x ((72 — 15) x 3,6)

        Обратите внимание, что у нас есть два вычисления с двойными скобками. Кроме того, вся сумма является дробью. Если у вас есть двойные скобки, внутренние разрешаются перед внешними. В тех случаях, когда у вас есть деление типа общей дроби, суммы разрешаются выше и ниже строки, разрешая общее деление в конце.

        Теперь, с BODMAS, вся эта арифметика становится простой (хотя и несколько трудоемкой).

        Работая изнутри наружу, мы сначала разрешаем все эти вычисления в квадратных скобках, получая:

        8 6 x (15 + 92) – (37 – 18) ÷ (18,5 – 8)
        —— ——————
        27 + (15 x 3) x (57 x 3,6)

        Тогда , работая слева направо, как над, так и под чертой, разрешаем все оставшиеся расчеты в квадратных скобках:

        8 6 x 107 – 19 ÷ 10,5
        —————- ————————
        27 + 45 х 205.2

        Теперь мы обрабатываем оставшуюся операцию Order (8 6 ), чтобы получить:

        262144 x 107 – 19 ÷ 10,5
        ——————— ——————-
        27 + 45 x 205,2

        Далее мы вычисляем все умножения и деления выше и ниже строки слева направо. Обратите внимание, что верхняя строка содержит двусмысленность, подобную той, которую мы встретили в начале. Может ли это быть 262144 х (107 — 19), что дает 23 068 672?

        Используя формулу BODMAS , однако умножения (262144 x 107 и 45 x 205.2) явно имеет приоритет.

        Получается:

        28 049 408 – 19 ÷ 10,5
        —————————————————- —
        27 + 9234

        Опять же, мы остаемся с тем, что было бы двусмысленностью без BODMAS. Однако правила гласят, что разделение имеет приоритет. Таким образом, мы подойдем к этому как:

        28049408 – (19 ÷ 10,5)
        ———————————————- ———
        27 + 9234

        Применяя их, получаем:

        28049408 – 1,8095
        ————————————— —————-
        27 + 9234

        Наконец, применяя сложения и вычитания, по адресу:

        28049406.1905
        ——————————————————
        9261

        Наконец-то мы осталось с общим разделением, которое сводится к окончательному ответу (с округлением до трех знаков после запятой):

        3028,766

        Особые случаи

        пара особых случаев, связанных с порядками или показателями.

        В первом случае вы получаете показатель степени внутри заключенной в квадратные скобки части вычисления, например:

        25 + (5 × 8 2 + 7)

        сумма, показатель степени имеет приоритет над всем остальным, поэтому мы разрешаем это в первую очередь.

        25 + (5 × 64 + 7)

        Аналогично, в скобках умножение теперь имеет приоритет, поэтому:

        25 + (320 + 7)

        Теперь дополнение, чтобы обойтись без скобок:

        25 + 327

        Окончательный ответ: 352

        Экспоненты

        Есть последний частный случай, связанный с экспонентами экспонент.

        Просто изредка можно встретить вычисление, содержащее что-то вроде этого:

        7 2 3

        Другими словами, семь в степени двойки в кубе.

        Только в этом случае мы нарушаем правило слева направо, чтобы работать справа налево или снаружи внутрь.

        Сначала соберите куб двойки, который равен: 2 x 2 x 2 = 8

        Теперь снова двигайтесь влево, чтобы вычислить семь в степени восьмерки. Здесь нам нужно быть осторожными и понимать, что «показатель степени» означает, сколько раз использовать базовое число при умножении самого на себя.

        Таким образом, в семерке в степени восемь (7 8 ) семь — это «основание» — то, что умножается, а восемь — показатель степени, сколько раз оно используется.

        Довольно просто — и я сделал именно эту ошибку в предыдущем черновике этой статьи — повторить базовую операцию 7×7 восемь раз, чтобы получить 40 353 607. НЕПРАВИЛЬНО!

        При этом упускается из виду, что первые семь являются не только основанием, но и первым показателем степени. 7 1 (семь в степени один) это… семь.

        Таким образом, первое умножение (7×7) равно 7 2 или семь в квадрате. Следовательно, 7 8 можно представить следующим образом:

        7 = семь в степени 1
        7×7 = 49 (семь в степени 2)
        49 x 7 = 343 (семь в степени 3)
        343 x 7 = 2401 (семь в степени 4)
        2401 x 7 = 16807 (семь в степени 5)
        16807 x 7 = 117649 (семь в степени 6)
        117649 x 7 = 823543 (семь в степени 7)
        823543 x 7 = 5764801 (семь в степени 8) 
        Итак, окончательный ответ на эту сложную сумму нескольких операций PEDMAS:

        5 764 801

        Вот как мы это делаем, дамы и господа.

        Размещение кронштейнов

        Из всего этого должно быть ясно несколько вещей. Во-первых, вам нужны скобки в сложных расчетах. Скобки — это ваши навигационные путевые точки через сумму.

        Во-вторых, расставьте скобки неправильно, и вы получите неверный ответ. В этом плане математика очень неумолима.

        Следовательно, и, наконец, сложные суммы необходимо планировать и планировать, как сложные путешествия. Прежде чем достать свой верный калькулятор, вам, вероятно, потребуется набросать всю сумму на бумаге, чтобы убедиться, что все ваши утки (или скобки) правильно выстроены в ряд, прежде чем вы начнете фактический расчет.

        Тест БОДМАС

        Вы концентрировались? Пришло время выяснить это, задав небольшой вопрос, призванный проверить ваше понимание БОДМАС и порядка операций.

        Попробуйте ответить на вопрос ниже. Нет никакого приза, кроме права хвастаться тем, что он лучший в классе (ты, умник!).

        Счастливый БОДМАС!

        Реклама


        Оцените эту статью

        Пожалуйста, оцените эту статью ниже.

        Добавить комментарий

        Ваш адрес email не будет опубликован.

        2015-2019 © Игровая комната «Волшебный лес», Челябинск
        тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск