Как узнать функцию по графику – Как найти функцию по ее графику 🚩 Линейная функция y=kx 🚩 Математика

Онлайн калькулятор: Аппроксимация функции одной переменной

Данный калькулятор по введенным данным строит несколько моделей регрессии: линейную, квадратичную, кубическую, степенную, логарифмическую, гиперболическую, показательную, экспоненциальную. Результаты можно сравнить между собой по корреляции, средней ошибке аппроксимации и наглядно на графике. Теория и формулы регрессий под калькулятором.

PLANETCALC, Аппроксимация функции одной переменной
Аппроксимация функции одной переменной
83 71 64 69 69 64 68 59 81 91 57 65 58 62

Значения x, через пробел

183 168 171 178 176 172 165 158 183 182 163 175 164 175

Значения y, через пробел

Линейная аппроксимация Квадратичная аппроксимация Кубическая аппроксимация Аппроксимация степенной функцией Показательная аппроксимация Логарифмическая аппроксимация Гиперболическая аппроксимация Экспоненциальная аппроксимацияТочность вычисления

Знаков после запятой: 4

Линейная регрессия

 

Коэффициент линейной парной корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Квадратичная регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Кубическая регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Степенная регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Показательная регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Логарифмическая регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Гиперболическая регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

Экспоненциальная регрессия

 

Коэффициент корреляции

 

Коэффициент детерминации

 

Средняя ошибка аппроксимации, %

 

save Сохранить share Поделиться extension Виджет

Линейная регрессия

Уравнение регрессии:

Коэффициент a:

Коэффициент b:

Коэффициент линейной парной корреляции:

Коэффициент детерминации:

Средняя ошибка аппроксимации:

Квадратичная регрессия

Уравнение регрессии:

Система уравнений для нахождения коэффициентов a, b и c:

Коэффициент корреляции:
,
где

Коэффициент детерминации:

Средняя ошибка аппроксимации:

Кубическая регрессия

Уравнение регрессии:

Система уравнений для нахождения коэффициентов a, b, c и d:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Степенная регрессия

Уравнение регрессии:

Коэффициент b:

Коэффициент a:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Показательная регрессия

Уравнение регрессии:

Коэффициент b:

Коэффициент a:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Гиперболическая регрессия

Уравнение регрессии:

Коэффициент b:

Коэффициент a:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Логарифмическая регрессия

Уравнение регрессии:

Коэффициент b:

Коэффициент a:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Экспоненциальная регрессия

Уравнение регрессии:

Коэффициент b:

Коэффициент a:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Вывод формул

Сначала сформулируем задачу:
Пусть у нас есть неизвестная функция y=f(x), заданная табличными значениями (например, полученными в результате опытных измерений).
Нам необходимо найти функцию заданного вида (линейную, квадратичную и т. п.) y=F(x), которая в соответствующих точках принимает значения, как можно более близкие к табличным.

На практике вид функции чаще всего определяют путем сравнения расположения точек с графиками известных функций.

Полученная формула y=F(x), которую называют эмпирической формулой, или уравнением регрессии y на x, или приближающей (аппроксимирующей) функцией, позволяет находить значения f(x) для нетабличных значений x, сглаживая результаты измерений величины y.

Для того, чтобы получить параметры функции F, используется метод наименьших квадратов. В этом методе в качестве критерия близости приближающей функции к совокупности точек используется суммы квадратов разностей значений табличных значений y и теоретических, рассчитанных по уравнению регрессии.

Таким образом, нам требуется найти функцию F, такую, чтобы сумма квадратов S была наименьшей:

Рассмотрим решение этой задачи на примере получения линейной регрессии F=ax+b.
S является функцией двух переменных, a и b. Чтобы найти ее минимум, используем условие экстремума, а именно, равенства нулю частных производных.

Используя формулу производной сложной функции, получим следующую систему уравнений:

Для функции вида частные производные равны:
,

Подставив производные, получим:

Далее:

Откуда, выразив a и b, можно получить формулы для коэффициентов линейной регрессии, приведенные выше.
Аналогичным образом выводятся формулы для остальных видов регрессий.

planetcalc.ru

Графики функций — ГИА В3

Здравствуйте, уважаемый посетитель! В этой статье будут разобраны задания В3 из ГИА, те, что связаны с графиками функций. Мы научимся определять все коэффициенты параболы по графику, находить точки пересечения прямой с осями координат и ее коэффициент наклона, а также ближе познакомимся с гиперболой.


Давайте начнем разбор этих заданий со знакомства с прямой и ее уравнением.

Прямая задается уравнением: y=kx+b. В этом уравнении коэффициент k отвечает за наклон прямой, а коэффициент b – за смещение по оси y вверх или вниз.

коэффициенты уравнения прямой

Уравнение прямой и его коэффициенты

И тот, и другой коэффициенты могут быть как положительными, так и отрицательными. В случае с коэффициентом b все понятно: [stextbox id=”alert” bwidth=”1″ bcolor=”5e56a9″ bgcolor=”0cb2f2″]если он положительный, то прямая пересекает ось y выше оси х, а если отрицательный – то ниже[/stextbox]. На рисунке этот коэффициент равен 2 для красной прямой (b=2

), для зеленой – b=-3, для розовой – b=-1

коэффициенты прямой

Прямые с различными значениями коэффициентов

А как быть с k? Давайте разберемся. Как узнать по графику, положительный ли коэффициент k или он меньше 0? Посмотрим на графики на рисунке выше: они наклонены в разные стороны. Вот за наклон-то как раз и отвечает коэффициент k, и по наклону прямой мы “вычислим” его знак.

Признак такой: если прямая образует острый угол с положительным направлением оси х, то коэффициент k – положительный. Если прямая образует тупой угол с положительным направлением оси х, то коэффициент k – отрицательный

Посмотрим на наш рисунок:

коэффициенты прямой

Коэффициенты уравнения прямой и их значение

У красной и розовой прямых – положительный коэффициент наклона, у зеленой – отрицательный.

Чтобы определить оба коэффициента (а не только их знаки), нужно взять 2 точки на прямой (любые) и подставить их координаты в уравнение прямой. Тогда мы получим систему уравнений, которая позволит определить оба коэффициента. В отдельных случаях можно обойтись и одним уравнением: если прямая проходит через начало координат, или если можно определить коэффициент b по рисунку. Примеры:

Определим коэффициент k для прямой, изображенной на рисунке:

коэффициенты прямой

Определение коэффициента наклона прямой

Так как прямая проходит через начало координат, то b=0. Тогда, чтобы определить k, потребуется всего одно уравнение. Возьмем любую точку, принадлежащую прямой, например, точку (1;3) – точки удобно брать с целыми координатами. Подставляем координаты точки в уравнение прямой вместо x и y:

коэффициенты прямой

Еще пример:

коэффициенты прямой

Определение обоих коэффициентов уравнения прямой

Определим уравнение прямой, для этого найдем коэффициенты b и k ее уравнения. Возьмем две точки на прямой, хорошо, если координаты точек целые. У нас это точки (5;0) и (-3;-2). В общее уравнение прямой подставим координаты этих точек:

koeff_parab8

Вычтем второе уравнение из первого, это позволит определить коэффициент k:

koeff_parab9

Чтобы найти b, подставим найденный коэффициент наклона в любое из двух уравнений:

koeff_parab10

Тогда уравнение этой прямой будет таким:

koeff_parab11

Иногда коэффициент наклона помогает определить знание следующего факта: если прямая лежит под углом 45 или 135 градусов к оси х (то есть проходит по диагоналям клеточек – как красные прямые на рисунке) – то модуль ее коэффициента наклона равен 1. Если прямая “прижимается” к оси y – желтая область на рисунке – то модуль ее коэффициента наклона больше 1. Если же она “жмется” к оси х (зеленая область) – модуль ее коэффициента k меньше 1. Данный факт помогает при решении таких задач, где необходимо сопоставить графики нескольких прямых и данные уравнения. Тем не менее, чтобы не ошибиться, лучше все же определить коэффициент аналитически: подставив координаты выбранной точки в уравнение.

коэффициенты прямой

Коэффициенты прямой, которые превосходят 1 по модулю, и меньше 1 по модулю

Пример такого задания:

Один из графиков на рисунке – график функции y=3x. Каким цветом он изображен?

коэффициенты прямой

Определение коэффициента наклона по графику

Рассуждаем так: коэффициент наклона положительный – угол наклона прямой к оси х будет острым – ни зеленый, ни желтый графики не подходят. Модуль коэффициента наклона больше 1 (равен 3) – прямая будет располагаться ближе к оси у, чем к оси х: значит, это график голубого цвета. После этих рассуждений надо обязательно (!) проверить их правильность: просто теперь нам придется проверять не все графики, а только один: голубому графику принадлежит точка (1;3). Подставим ее в уравнение:

коэффициенты прямой

Получилось тождество, значит, мы правы. Посмотрите видео-исследование прямой:

Переходим теперь к параболе. Парабола задается квадратичной функцией:ax^2+bx+c=0. Коэффициент а определяет форму параболы, а также направление ее ветвей: если он положителен – то ветви параболы смотрят вверх, если отрицателен – вниз. От коэффициента b зависит расположение вершины параболы, то есть, в конечном счете, сдвиг по оси х вправо-влево. Наконец, коэффициент с показывает, какова ордината точки, в которой парабола пересечет ось y.

Рассмотрим несколько графиков, чтобы отработать определение последнего коэффициента – с, как наиболее простого.

коэффициенты параболы

Общий вид парабол с разными коэффициентами

Итак, с – точка пересечения параболой оси y. Для первой параболы на рисунке это 8, для второй – 3, для третьей – 6, для четвертой – (-5). А вот точка пересечения  пятого графика с осью y только угадывается. Можно сказать с определенностью, что коэффициент с для нее меньше ноля. Однако его точное значение зависит также и от формы параболы, которая определяется величиной коэффициента a. Если этот коэффициент задан и  равен (-1), то можно догадаться, что с для нее равен (-19). Однако. чтобы точно определить все коэффициенты, необходимо взять несколько точек, принадлежащих этому графику функции, и, подставив их координаты в уравнение квадратичной функции, решить систему уравнений, которая и позволит точно найти a,b и с.

Разберем такое задание: график какой из приведенных ниже функций изображен на рисунке?

коэффициенты квадратного трехчлена

Подбор формулы, задающей график функции

коэффициенты прараболы

Посмотрим на график. Ветви параболы направлены вверх, значит, коэффициент a – положительный. Тогда нам не подойдут ни первая, ни последняя функция. Две оставшиеся отличаются одним лишь знаком коэффициента b, поэтому найдем абсциссу вершины параболы. Для второй:

коэффициенты квадратного трехчлена

Для третьей:

коэффициенты квадратного трехчлена

Тогда, значит, подходит вторая функция, так как видно, что вершина лежит в области отрицательных значений х.

Следующая задача такая: найдите значение а по графику функции ax^2+bx+c=0, изображенному на рисунке.

koeff_parab19

Парабола, у которой коэффициент а=1

Есть два пути для решения данной задачи. Первый – рациональный. Находим точки, принадлежащие графику, подставляем их координаты в уравнение, получаем систему (как минимум, понадобится три точки, чтобы определить три коэффициента, и система будет из трех уравнений), решаем систему.

Есть и второй путь – эмпирический. Этот метод “тыка” иногда упрощает задачу очень существенно, тем более что “тык” будет у нас вполне обоснованным, а не случайным.

Давайте рассуждать:ветви направлены вверх? – коэффициент а – положительный. Где находится вершина параболы? Правильно, в точке (2;0). Значит, ее ось симметрии –

коэффициенты параболы

Парабола, у которой коэффициент а=1

 прямая х=2. Тогда все ее точки должны располагаться  симметрично по обе стороны от этой прямой.

Возьмем две точки на оси х, отстоящие на единицу от оси симметрии параболы – точки х=1, х=3. Какие им соответствуют ординаты? y=1 в обоих случаях. Теперь возьмем точки, отстоящие на 2 единицы от оси симметрии – х=0 и х=4. Какие ординаты будут им соответствовать? y=4!  Иными словами, ординаты точек этого графика получаются, если просто возводить в квадрат разность абсцисс точки и  вершины параболы: 1^2=1,2^2=4 и т.д. Тогда коэффициент a этой параболы равен 1!

Наши рассуждения можно пояснить рисунком:

Теперь рассмотрим задачи более сложные, связанные как раз с необходимостью составлять систему уравнений.

Иногда вершина предлагаемого графика располагается не в пересечении клеточек, то есть координаты вершины – дробные числа. Кроме того, форма параболы отличается от “классической”, которую мы получаем, если а=1. Тогда “метод научного тыка” не годится, “на глазок” коэффициенты уже не определить. Вот здесь необходимо найти принадлежащие графику точки, лучше, если они будут находиться на пересечении клеток, то есть их координаты будут целыми. Сколько же потребуется таких точек? Если возможно определить коэффициент с по графику, то две, а если нельзя – три.

Рассмотрим задачу: необходимо найти все коэффициенты уравнения, задающего график:

коэффициенты параболы

Найти все коэффициенты по графику функции

Подставляем в уравнение:koeff_parab24координаты выбранных точек, например, таких: (2;2), (5;2), (4;-3). Получается:

Найти все коэффициенты по графику функции

Последние два уравнения вычтем:

Найти все коэффициенты по графику функции

Данное выражение подставим в первое и второе уравнения:

Найти все коэффициенты по графику функции

Вычтем два получившихся уравнения:

Найти все коэффициенты по графику функцииЗная а, можем найти и остальные коэффициенты:

Найти все коэффициенты по графику функции

Следующая задача: найти коэффициенты уравнения, задающего график функции, изображенный на рисунке:

Найти все коэффициенты по графику функции

Найти все коэффициенты по графику функции

Здесь будет немного попроще, так как определить коэффициент с можно по рисунку: с=-5. Это значит, что потребуется только две точки, и система будет состоять только из двух уравнений. Возьмем для ее составления точки (1;-3) и (2;-3):

Найти все коэффициенты по графику функции

Вычтем получившиеся уравнения (второе – из первого) и определим коэффициенты а и b:

Найти все коэффициенты по графику функции

Найти все коэффициенты по графику функции

Найти все коэффициенты по графику функции

Наконец, еще одно такое же задание. Снова необходимо определить все коэффициенты функции, график которой представлен на рисунке:

Зададимся точками. Их будет три, уравнений тоже три, так как нам необходимо найти три коэффициента – a, b и c.

Точки будут: (-2; -3),(-5; -3) и  (-3; -5) . Тогда уравнения:

Найти все коэффициенты по графику функции

Из первого уравнения вычитаем второе:

koeff_parab35

Полученное подставим в первое и третье:

Найти все коэффициенты по графику функции

Полученные уравнения вычтем вновь, и найдем искомое:

Найти все коэффициенты по графику функции

Посмотрите видео-исследование параболы:

Наконец, нужно познакомиться с гиперболой. График ее задается функцией: y=k/x. Он интересен тем, что располагается всегда в двух квадрантах: в первом и третьем, либо во втором и четвертом. От знака коэффициента k зависит вид функции: если знак положителен, то ветви гиперболы расположатся в первом и третьем квадрантах, если отрицателен – во втором и четвертом. Кроме того, от этого коэффициента зависит и форма гиперболы. Если k=1, то гипербола непременно пройдет через точки (1;1), (-1;-1). Если k<1, то гипербола будет “прижиматься” к осям координат, а если , то наоборот, точки графика будут лежать дальше от начала координат. Это иллюстрирует рисунок (одна клеточка – единичный отрезок):

коэффициент гиперболы

Коэффициент гиперболы

Здесь зеленая область – область, где лежат точки гипербол с положительным коэффициентом k, меньшим 1. Желтая область – область точек гипербол с положительным коэффициентом k, большим 1. Черным цветом изображена “классическая” гипербола, k=1.

Для отрицательных k (одна клеточка – единичный отрезок):

Коэффициент гиперболы

Коэффициент гиперболы

Разберем задачу: нужно определить, график какой из приведенных ниже функций изображен на рисунке.

Коэффициент гиперболы

Коэффициент гиперболы

Коэффициент гиперболы

Рассмотрим график. Все его точки лежат во второй и четвертой четвертях, это означает, что положительным х соответствуют отрицательные y, а отрицательным – положительные, то есть коэффициент у функции, задающей этот график, должен быть отрицательным. Тогда ни первая, ни третья функции не подходят. Значит, надо выбирать из второй и четвертой, причем у второй delim{, а у четвертой delim{. Значит, график второй функции должен быть расположен ближе к осям координат, чем точка (1;-1) – голубая область на предыдущем рисунке. У нас график расположен не так, если бы мы перенесли его на предыдущий рисунок, он бы попал в серую область, значит, предположительно, изображен график четвертой функции, однако, в этом надо быть уверенным наверняка. Поэтому возьмем точку на графике и подставим ее координаты в уравнение, например, точку (3;-1):

Коэффициент гиперболы

Получилось тождество, значит, уравнение выбрано верно.

Еще задача:

На одном из графиков изображен график функции y=-1/3x. Какой это рисунок?

Коэффициент гиперболы

Определение графика по заданной функции

Во-первых, не все изображенные графики – гиперболы. Сразу отбросим “лишние” – это розовый график функции  y=sqrt{x} – номер 2, и фиолетовый – номер 1, который расположен “не в тех” квадрантах. Остаются два графика – 3 и 4 – которые очень похожи друг на друга. Поскольку коэффициент перед х в заданной функции отрицательный, нам нужен 4 график – тот, что изображен черным цветом.

Последняя задача: найдите коэффициент k по графику функции  y=k/x, изображенному на рисунке:

Определение графика по заданной функции

Определение коэффициента функции по графику

Здесь достаточно взять только одну точку, принадлежащую графику, и подставить ее координаты в уравнение:

Определение графика по заданной функции

Посмотрите  короткое видео с исследованием гиперболы:

Надеюсь, эта статья поможет вам в подготовке к экзамену! Всего вам хорошего, вопросы можно задать в комментариях, я постараюсь ответить.

easy-physic.ru

По графику функции найти y по x

В прошлый раз мы находили значение функции по значению аргумента с помощью формулы.

Рассмотрим, как по данному графику функции найти y по x.

Рисунок 1

 1) Пользуясь графиком линейной функции, изображенной на рисунке 1, найдите значение функции,если значение аргумента равно 1; 3; -3, -1; 0.

Решение:

Аргумент — это x, функция — y.

Найти значение функции по значению аргумента — значит, по данному значению x найти, чему равен y.

Начнём с x=1. На оси абсцисс Ox находим x=1. Чтобы найти соответствующее значение y, надо из точки на Ox идти либо вверх, либо вниз, чтобы попасть на график.

От x=1 идём вверх. От полученной точки на графике надо двигаться либо влево, либо вправо, чтобы попасть на ось Oy. В данном случае идем влево и попадаем с ординатой y=2 (стрелочки помогают увидеть направление движения).

Следовательно, при x=1  y=2.

Аналогично, если x=3, идем вверх до пересечения с графиком, затем влево до пересечения с осью ординат Oy.

Получаем, что при x=3  y=4.

Если x=-3, чтобы попасть на график функции, нужно идти вниз, затем — вправо, до пересечения с осью Oy.

При x=-3 н=-2.

При x=-1 ни вверх, ни вниз двигаться не надо — эта точка уже на графике функции. Следовательно, y=0.

Записываем: при x=-1  y=0.

При x=0 идем до графика вверх и попадаем в точку с ординатой y=2.

 

2) На рисунке 2 изображен график функции y=f(x).

Пользуясь графиком, найдите значение функции, если значение аргумента равно 1; 3; 5; 7; -1; -5.

Рисунок 2

Решение:

Чтобы по графику функции найти y по x, сначала надо от точки с данной абсциссой попасть на график, двигаясь вверх либо вниз, а затем от точки на графике идти к оси Oy, двигаясь влево или вправо.

При  x=1 идем до графика функции вверх, затем влево — на ось Oy. Попадаем в точку с ординатой y=2.

Пишем: при x=1  y=2.

При x равном  -1 и -5 идем сначала вверх, затем — вправо.

При x= -1  y=4.

При x= -5  y=6.

При иксах равных 3; 5 и 7 идём вниз и влево.

При x=3  y= -3.

При x=5  y= -6.

При x=7  y= -3.

Обратите внимание: различным значениям икса может соответствовать одно значение y:

(при x=3 и x=7 y= -3).

www.algebraclass.ru

Как найти график функции?

С задачей построения графика функции школьники сталкиваются в самом начале изучения алгебры и продолжают строить их из года в год. Начиная с графика линейной функции, для построения которой нужно знать всего две точки, к параболе, для которой нужно уже 6 точек, гиперболе и синусоиде. С каждым годом функции становятся все сложнее и построения их графиков уже невозможно выполнить по шаблону, необходимо проводить более сложные исследования, пользуясь производными и пределами.

Давайте разберемся, как найти график функции? Для этого начнем с самых простых функций, графики которых строятся по точкам, а потом рассмотрим план для построения более сложных функций.

Построение графика линейной функции

Для построения простейших графиков используют таблицу значений функции. Графиком линейной функции является прямая. Давайте попробуем найти точки графика функции y=4x+5.

  1. Для это возьмем два произвольных значения переменной x, подставим их поочередно в функцию, найдем значение переменной y и занесем все в таблицу.
  2. Возьмем значение x=0 и подставим в функцию вместо x — 0. Получим: y=4*0+5, то есть y=5 запишем это значение в таблицу под 0. Аналогично возьмем x=0 получим y=4*1+5, y=9.
  3. Теперь, чтобы построить график функции нужно нанести на координатную плоскость эти точки. Затем необходимо провести прямую.

Построение графика квадратичной функции

Квадратичная функция — это функция вида y=ax2+bx +c, где x-переменная, a,b,c — числа (a не равно 0). Например: y=x2, y=x2+5, y=(x-3)2, y=2x2+3x+5.

Для построения простейшей квадратичной функции y=x2 обычно берут 5-7 точек. Возьмем значения для переменной x: -2, -1, 0, 1, 2 и найдем значения y также как и при построении первого графика.

График квадратичной функции называют параболой. После построения графиков функции у учеников появляются новые задачи, связанные с графиком.

Пример 1: найдите абсциссу точки графика функции y=x2, если ордината равна 9. Для решения задачи необходимо в функцию вместо y подставить ее значение 9. Получим 9=x2 и решить это уравнение. x=3 и x=-3. Это можно увидеть и на графике функции.

Исследование функции и построение ее графика

Для построения графиков более сложных функций необходимо выполнить несколько шагов, направленных на ее исследование. Для этого необходимо:

  1. Найти область определения функции. Область определения — это все значения которые может принимать переменная x. Из области определения следует исключить те точки, в которых знаменатель обращается в 0 или подкоренное выражение становится отрицательным.
  2. Установить четность или нечетность функции. Напомним, что четной является та функция, которая отвечает условию f(-x)=f(x). Ее график является симметричным относительно Оу. Функция будет нечетной, если она отвечает условию f(-x)=-f(x). В этом случае график симметричен относительно начала координат.
  3. Найти точки пересечения с осями координат. Для того, чтобы найти абсциссу точки пересечения с осью Ох, необходимо решить уравнение f(x)=0 (ордината при этом равна 0). Чтобы найти ординату точки пересечения с осью Оу, необходимо в функцию вместо переменной x подставить 0 (абсцисса равна 0).
  4. Найти асимптоты функции. Асиптота — прямая, к которой график бесконечно приближается , но никогда ее не пересечет. Давайте разберемся, как найти асимптоты графика функции.
    • Вертикальная асимптота прямая вида х=а
    • Горизонтальная асимптота — прямая вида у=а
    • Наклонная асимптота — прямая вида y=kx+b
  5. Найти точки экстремума функции, промежутки возрастания и убывания функции. Найдем точки экстремума функции. Для этого необходимо найти первую производную и приравнять ее к 0. Именно в этих точках функция может поменяться с возрастающей на убывающую. Определим знак производной на каждом интервале. Если производная положительна, то график функции возрастает, если отрицательна — убывает.
  6. Найти точки перегиба графика функции, промежутки выпуклости вверх и вниз.

Найти точки перегиба теперь проще простого. Нужно лишь найти вторую производную, затем приравнять ее к нулю. Следом находим знак второй производной на каждом интервале. Если положительный, то график функции выпуклый вниз, если отрицательна — вверх.

elhow.ru

Алгоритм нахождения коэффициентов a, b, c квадратичной функции по графику

Алгоритм

нахождения значений коэффициентов a, b, c

по графику квадратичной функции

у=ax2 +bx+c.

Автор: Храмова Ирина Михайловна

МБОУ Луговская ООШ

Источники : алгебра 9 класс, Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова под редакцией А.С.Теляковского,

Москва «Просвещение», 2013г.

I. Нахождение коэффициента a :

hello_html_35fa44ea.png

1) по графику параболы определяем координаты вершины (m, n)

2) по графику параболы определяем координаты любой точки А(х11)

3) подставляем эти значения в формулу квадратичной функции, заданной в другом виде:

y=a(х-m)2+n

4) решаем полученное уравнение.

II. Нахождение коэффициента b:

  1. Сначала находим значение коэффициента a(шаг I, смотри выше)

  2. В формулу для абсциссы параболы m= —b/2a подставляем значения m и a

  3. Находим значение коэффициента b.

III. Нахождение коэффициента с:

  1. Находим ординату у точки пересечения параболы с осью Оу, это значение равно коэффициенту с, т.е. точка (0;с) — точка пересечения параболы с осью Оу.

  2. Если по графику невозможно найти точку пересечения с осью Оу, то выполняем шаги I, II (находим коэффициенты a, b)

  3. Подставляем найденные значения a, b , А(х1 ;у1) в уравнение у=ax2 +bx+c и находим с.

infourok.ru

как по графику определить ее функцию (нужно уравнение!), желательно проделать это в excel

Попробуй построить табличку, потом график (точечный наприменр) , а на графике подбор линии тренда. Перебери варианты чтоб р было минимально, или выбереш что понравится. Точного графика вряд ли получишь, но это будет наилучше описывать набор статданных.

саша, так вопросы не решаются. .. 1 самый простой способ: налепить апроксимированных участков прямых и окружностей. … сложный муторный способ 2. изъебствовать с кривыми, порядка числа имеющихся точек. дальше кривых пятого порядка влезать не советую, потому что могут быть неоднозначные решения. (с порядком разнообразности всяких кривых тоже растут) — это не к\Х — 100% ПОТОМУ ЧТО ПРИРАЩЕНИЕ НЕ не одинаковое. шаги 4, 9, 16, 32, 64( скопейками — подъебашь препода) то что ет не линейная фнкция — 100 % .. какая — ищи сам.

Ищем кривую в виде y=a*x^n + b. 61=a*1^n + b 65=a*2^n + b 90=a*3^n + b 122.8=a*4^n + b 187=a*5^n + b 285.3=a*6^n + b 418.8=a*7^n + b Решив эту систему уравнений, найдём: a = 0.91926948, b = 60.080731, n = 3.0662855, x = 0.95522773, при максимальной ошибке апроксимации 3.2240912, потому что кривая в точке х=3 должна быть у=86.775909

Excel для таких вещей слабоват. Нужен какой нибудь специальный статпакет. Для приведенных данных достаточно высоким коэффициентом детерминации 98,57% обладает уравнение вида Y=1/(A+B*X) После него идет экспоненциальное уравнение Y=exp(A+B*X) c коэффициентом детерминации 94,35. Вот это можно сделать в Excell. Построив график и добавив в него линию тренда. Там есть большой выбор — выбирайте экспонециальную зависимость. Запросите показ уравнения. И будет Вам счастье. Y=1/(A+B*X) <img src=»//otvet.imgsmail.ru/download/6268c36248967b1a6a0dde7cee0fe0e1_i-38.jpg» >

touch.otvet.mail.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о