Как выглядит тупоугольный треугольник: Тупоугольный треугольник – площадь, определение, свойства

Содержание

длина сторон, сумма углов. Описанный тупоугольный треугольник

Еще дети дошкольного возраста знают, как выглядит треугольник. А вот с тем, какие они бывают, ребята уже начинают разбираться в школе. Одним из видов является тупоугольный треугольник. Понять, что это такое, проще всего, если увидеть картинку с его изображением. А в теории это так называют «простейший многоугольник» с тремя сторонами и вершинами, одна из которых является

Разбираемся с понятиями

В геометрии различают такие виды фигур с тремя сторонами: остроугольный, прямоугольный и тупоугольный треугольники. При этом свойства этих простейших многоугольников одинаковы для всех. Так, для всех перечисленных видов будет соблюдаться такое неравенство. Сумма длин любых двух сторон обязательно будет больше протяженности третьей стороны.

Но для того чтобы быть уверенным, что речь идет именно о законченной фигуре, а не о наборе отдельных вершин, необходимо проверить, чтобы соблюдалось основное условие: сумма углов тупоугольного треугольника равняется 180 о. Это же верно и для других видов фигур с тремя сторонами. Правда, в тупоугольном треугольнике один из углов будет еще больше 90 о, а два оставшихся обязательно будут острыми. При этом именно наибольший угол будет находиться напротив самой длинной стороны. Правда, это далеко не все свойства тупоугольного треугольника. Но и зная лишь эти особенности, школьники могут решать многие задачи по геометрии.

Для каждого многоугольника с тремя вершинами верно и то, что, продолжая любую из сторон, мы получим угол, размер которого будет равен сумме двух несмежных с ним внутренних вершин. Периметр тупоугольного треугольника рассчитывается так же, как и для других фигур. Он равняется сумме длин всех его сторон. Для определения математиками были выведены различные формулы, в зависимости от того, какие изначально присутствуют данные.

Правильное начертание

Одним из важнейших условий решения задач по геометрии является верный рисунок. Часто учителя математики говорят о том, что он поможет не только наглядно представить, что дано и что от вас требуется, но на 80% приблизиться к правильному ответу. Именно поэтому важно знать, как построить тупоугольный треугольник. Если вам нужна просто гипотетическая фигура, то вы можете нарисовать любой многоугольник с тремя сторонами так, чтобы один из углов был больше 90 о.

Если даны определенные значения длин сторон или градусы углов, то чертить тупоугольный треугольник необходимо в соответствии с ними. При этом необходимо стараться максимально точно изобразить углы, высчитывая их при помощи транспортира, и пропорционально данным в задании условиям отобразить стороны.

Основные линии

Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

Так, биссектрисы делят угол пополам, а противоположную сторону — на отрезки, которые пропорциональны прилегающим сторонам.

Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

Серединный перпендикуляр — это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

Работа с окружностями

В начале изучения геометрии детям достаточно понять, как начертить тупоугольный треугольник, научиться отличать его от остальных видов и запомнить его основные свойства. А вот старшеклассникам этих знаний уже мало. Например, на ЕГЭ часто встречаются вопросы про описанные и вписанные окружности. Первая из них касается всех трех вершин треугольника, а вторая имеет по одной общей точке со всеми сторонами.

Построить вписанный или описанный тупоугольный треугольник уже намного сложнее, ведь для этого необходимо для начала выяснить, где должен находиться центр окружности и ее радиус. Кстати, необходимым инструментом станет в этом случае не только карандаш с линейкой, но и циркуль.

Те же сложности возникают при построении вписанных многоугольников с тремя сторонами. Математиками были выведены различные формулы, которые позволяют определить их месторасположение максимально точно.

Вписанные треугольники

Как уже было сказано ранее, если круг проходит через все три вершины, то это называется описанной окружностью. Главным ее свойством является то, что она единственная. Чтобы выяснить, как должна располагаться описанная окружность тупоугольного треугольника, необходимо помнить, что ее центр находится на пересечении трех серединных перпендикуляров, которые идут к сторонам фигуры. Если в остроугольном многоугольнике с тремя вершинами эта точка будет находиться внутри него, то в тупоугольном — за его пределами.

Зная, например, что одна из сторон тупоугольного треугольника равна его радиусу, можно найти угол, который лежит напротив известной грани. Его синус будет равен результату от деления длины известной стороны на 2R (где R — это радиус окружности). То есть sin угла будет равен ½. Значит, угол будет равен 150 о.

Если вам необходимо найти радиус описанной окружности тупоугольного треугольника, то вам пригодятся сведения о длине его сторон (c, v, b) и его площади S. Ведь радиус высчитывается так: (c х v х b) : 4 х S. Кстати, неважно, какого именно у вас вида фигура: разносторонний тупоугольный треугольник, равнобедренный, прямо- или остроугольный. В любой ситуации, благодаря приведенной формуле, вы можете узнать площадь заданного многоугольника с тремя сторонами.

Описанные треугольники

Также довольно часто приходится работать со вписанными окружностями. По одной из формул, радиус такой фигуры, умноженный на ½ периметра, будет равняться площади треугольника. Правда, для ее выяснения вам необходимо знать стороны тупоугольного треугольника. Ведь для того чтобы определить ½ периметра, необходимо сложить их длины и разделить на 2.

Чтобы понять, где должен находиться центр круга, вписанного в тупоугольный треугольник, необходимо провести три биссектрисы. Это линии, которые делят углы пополам. Именно на их пересечении и будет находиться центр окружности. При этом он будет равноудален от каждой из сторон.

Радиус такой окружности, вписанной в тупоугольный треугольник, равняется из частного (p-c) х (p-v) х (p-b) : p. При этом p — это полупериметр треугольника, c, v, b — его стороны.

Как начертить треугольник?

Построение различных треугольников — обязательный элемент школьного курса геометрии. У многих это задание вызывает страх. Но на самом деле, все довольно просто. Далее в статье описано, как начертить треугольник любого типа с помощью циркуля и линейки.

Треугольники бывают

  • разносторонние;
  • равнобедренные;
  • равносторонние;
  • прямоугольные;
  • тупоугольные;
  • остроугольные;
  • вписанные в окружность;
  • описанные вокруг окружности.

Построение равностороннего треугольника

Равносторонним называется треугольник, у которого все стороны равны. Из всех видов треугольников, начертить равносторонний проще всего.

  1. С помощью линейки начертите одну из сторон, заданной длины.
  2. Измерьте ее длину с помощью циркуля.
  3. Поместите острие циркуля в один из концов отрезка и проведите окружность.
  4. Переставьте острие в другой конец отрезка и проведите окружность.
  5. У нас получилось 2 точки пересечения окружностей. Соединяя любую из них с краями отрезка, мы получаем равносторонний треугольник.

Построение равнобедренного треугольника

Данный тип треугольников можно построить по основанию и боковым сторонам.

Равнобедренным называется треугольник, у которого две стороны равны. Для того чтобы начертить равнобедренный треугольник по данным параметрам, необходимо выполнить следующие действия:

  1. С помощью линейки откладываем отрезок, равный по длине основанию. Обозначаем его буквами АС.
  2. Циркулем измеряем необходимую длину боковой стороны.
  3. Рисуем из точки А, а затем из точки С, окружности, радиус которых равен длине боковой стороны.
  4. Получаем две точки пересечения. Соединив одну из них с точками А и С, получаем необходимый треугольник.

Построение прямоугольного треугольника

Треугольник, у которого один угол прямой, называют прямоугольным. Если нам даны катет и гипотенуза, начертить прямоугольный треугольник не составит труда. Его можно построить по катету и гипотенузе.

Построение тупоугольного треугольника по углу и двум прилегающим сторонам

Если один из углов треугольника тупой (больше 90 градусов), его называют тупоугольным. Чтобы начертить по указанным параметрам тупоугольный треугольник необходимо сделать следующее:

  1. С помощью линейки откладываем отрезок, равный по длине одной из сторон треугольника. Обозначим его буквами А и D.
  2. Если в задании уже нарисован угол, и вам необходимо начертить такой же, то на его изображении отложить два отрезка, оба конца которых лежат в вершине угла, а длина равняется указанным сторонам. Соедините полученные точки. У нас получился искомый треугольник.
  3. Чтобы его перенести на свой чертеж, вам необходимо измерить длину третьей стороны.

Построение остроугольного треугольника

Остроугольный треугольник (все углы меньше 90 градусов) строится по тому же принципу.

  1. Нарисуйте две окружности. Центр одной из них лежит в точке D, а радиус равен длине третьей стороны, а у второй центр находится в точке А, а радиус равен длине указанной в задании стороны.
  2. Соедините одну из точек пересечения окружности с точками А и D. Искомый треугольник построен.

Вписанный треугольник

Для того чтобы начертить треугольник в окружности, нужно помнить теорему, в которой говорится, что центр описанной окружности лежит на пересечении серединных перпендикуляров:

У тупоугольного треугольника центр описанной окружности лежит за пределами треугольника, а у прямоугольного — на середине гипотенузы.

Чертим описанный треугольник

Описанный треугольник — это треугольник, в центре которого нарисована окружность, касающаяся всех его сторон. Центр вписанной окружности лежит на пересечении биссектрис. Для их построения необходимо:

Остроугольный, прямоугольный и тупоугольный треугольники

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Соотношения между сторонами и углами треугольника
  5. Остроугольный, прямоугольный и тупоугольный треугольники

В любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

Данный вывод можно сделать на основе теоремы о сумме углов треугольника, так как если в треугольнике один из углов тупой или прямой, то сумма других двух не будет превосходить 900, т.е. каждый из них будет являться острым.

  1. Остроугольный треугольник — это треугольник, у которого все три угла острые.

  1. Тупоугольный треугольник — это треугольник, у которого один из углов тупой.

  1. Прямоугольный треугольник — это треугольник, у которого один из углов прямой. У данного треугольника сторона, лежащая напротив прямого угла, называется гипотенузой, а две другие стороны — катетами.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Теорема о сумме углов треугольника

Теорема о соотношениях между сторонами и углами треугольника

Неравенство треугольника

Некоторые свойства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Уголковый отражатель

Расстояние от точки до прямой

Расстояние между параллельными прямыми

Построение треугольника по двум сторонам и углу между ними

Построение треугольника по стороне и двум прилежащим к ней углам

Построение треугольника по трем его сторонам

Соотношения между сторонами и углами треугольника

Правило встречается в следующих упражнениях:

7 класс

Задание 257, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 262, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 17, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 314, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 439, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 518, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 881, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 890, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1251, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1282, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


© budu5. com, 2022

Пользовательское соглашение

Copyright

Как расположены высоты в тупоугольном треугольнике

Как расположены высоты в тупоугольном треугольнике.

 

Если треугольник – тупоугольный, то высота из тупого угла будет лежать внутри треугольника, высоты, проведенные из острых углов будут лежать вне треугольника (на продолжении сторон треугольника).

Расположение высот в прямоугольном треугольнике

Доказательство

 

Шаг 1

 

Рассмотрим тупоугольный треугольник АВС, с тупым углом В:

 

Высоты в тупоугольном треугольнике. Доказательство. Шаг 1

Шаг 2

 

Докажем, что высота ВВ1, проведенная из тупого угла В лежит внутри треугольника. Для этого докажем, что основание высоты (точка В1) является внутренней точкой стороны АС.

Будем доказывать методом от противного.

Предположим, что точка В1 лежит на продолжении стороны АС:

Высоты в тупоугольном треугольнике. Доказательство. Шаг  2

Шаг 3

 

Рассмотрим прямоугольный треугольник ВВ1С.

Угол ВСА – внешний угол для угла ВСВ1.

По свойству внешнего угла, внешний угол равен сумме внутренних углов треугольника, несмежных с ним:

Но по условию, ∠С< 90°, следовательно, основание высоты, проведенной из тупого угла не может лежать за пределами стороны.

Высоты в тупоугольном треугольнике. Доказательство. Шаг 3

Шаг 4

 

Следовательно, высота, проведенная из тупого угла лежит внутри треугольника.

Высоты в тупоугольном треугольнике. Доказательство. Шаг 4

Шаг 5

 

Докажем, что высота, проведенная из острого угла тупоугольного треугольника, лежит за пределами треугольника. Для этого докажем, что основание высоты не является внутренней точкой стороны треугольника.

Будем доказывать методом от противного.

Проведем из острого угла А высоту АА1 на сторону ВС. И пусть точка А1 будет лежать внутри треугольника.

Высоты в тупоугольном треугольнике. Доказательство. Шаг 5

Шаг 6

 

Рассмотрим прямоугольный треугольник АВА1.

По свойству прямоугольного треугольника сумма двух углов треугольника (отличных от прямого угла) равна 90°:

Но по условию ∠В>90°, значит:

В результате получили противоречие. Значит, высота, проведенная из острого угла тупоугольного треугольника не может лежать внутри этого треугольника.

Аналогично доказывается и для острого угла С.

 

Свойство доказано.

Высоты в тупоугольном треугольнике. Доказательство. Шаг  6

9E09BEAE0A118E93DED3D74128EA2C147A65428915829EB11235F7758F7B38C3

Виды треугольников: прямоугольный, остроугольный, тупоугольный

Задачи:

1. Познакомить учащихся с разными видами треугольников в зависимости от вида углов (прямоугольный, остроугольный, тупоугольный). Учиться находить на чертежах треугольники и их виды. Закреплять основные геометрические понятия и их свойства: прямая линия, отрезок, луч, угол.

2. Развитие мышления, воображения, математической речи.

3. Воспитание внимания, активности.

Ход урока

I. Организационный момент.

Много ль надо нам, ребята,
Для умелых наших рук?
Нарисуем два квадрата,
А на них огромный круг.
А потом ещё кружочки,
Треугольник колпачок.
Вот и вышел очень — очень
Развесёлый Чудачок.

II. Объявление темы урока.

Сегодня на уроке мы с вами совершим путешествие по городу Геометрии и побываем в микрорайоне Треугольники (т.е. познакомимся с разными видами треугольников в зависимости от их углов, будем учиться находить эти треугольники на чертежах.) Проведём урок в форме “игры-соревнования” по командам.

1 команда — “Отрезок”.

2 команда — “Луч”.

3 команда — “Угол”.

А гости будут представлять жюри.

Жюри нас по пути направит

И без вниманья не оставит. (Оценивать по баллам 5,4,3,…).

А на чём же мы будем путешествовать по городу Геометрии? Вспомните, какие виды пассажирского транспорта есть в городе? Нас очень много, какой же мы выберем? (Автобус).

Автобус. Чётко, кратко. Начинается посадка.

Усаживаемся поудобнее и начнём наше путешествие. Капитаны команд получите билеты.

Но билеты эти непростые, а билеты — “задания”.

III. Повторение пройденного материала.

Первая остановка “ Повторяй-ка”.

Вопрос всем командам.

Найти на чертеже прямую линию и назвать её свойства.

Без конца и края линия прямая!
Хоть сто лет по ней иди,
Не найдёшь конца пути!

  • Прямая не имеет ни начала, ни конца — она бесконечна, поэтому её измерить нельзя.

Начинаем наше соревнование.

Защита названий своих команд.

(Все команды читают первые вопросы и обсуждают. По очереди капитаны команд зачитывают вопросы, 1 команда читает 1 вопрос).

1. Показать на чертеже отрезок. Что называется отрезком. Назвать его свойства.

  • Часть прямой, ограниченная двумя точками, называется отрезком. У отрезка есть начало и конец, потому его можно измерить при помощи линейки.

(2 команда читает 1 вопрос).

1. Показать на чертеже луч. Что называется лучом. Назвать его свойства.

  • Если отметить точку и из неё провести часть прямой, то получится изображение луча. Точка, из которой проведена часть прямой, называется началом луча.

Конца у луча нет, поэтому его измерить нельзя.

(3 команда читает 1 вопрос).

1 .Показать на чертеже угол. Что называется углом. Назвать его свойства.

  • Проведя из одной точки два луча, получается геометрическая фигура, которая называется углом. У угла есть вершина, а сами лучи называются сторонами угла. Углы измеряются в градусах с помощью транспортира.

Физкультминутка (под музыку).

IV. Подготовка к изучению нового материала.

Вторая остановка “Сказочная”.

На прогулке Карандаш встретил разные углы. Хотел с ними поздороваться, да забыл, как зовут каждого из них. Придётся Карандашу помочь.

(Углы уч-ся проверяют с помощью модели прямого угла).

Задание командам. Прочитайте вопросы №2, обсудите.

1 команда читает 2 вопрос.

2. Найти прямой угол, дать определение.

  • Угол величиной 90°называется прямым углом.

2 команда читает 2 вопрос.

2. Найти острый угол, дать определение.

  • Угол меньше прямого, называется острым.

3 команда читает 2 вопрос.

2. Найти тупой угол, дать определение.

Угол больше прямого, называется тупым.

В микрорайоне, где любил гулять Карандаш, все углы отличались от других жителей тем, что гуляли всегда втроём, пили чай втроём, ходили в кино втроём. И Карандаш никак не мог понять, что за геометрическую фигуру вместе составляют три угла?

А подсказкой вам будет стихотворение.

Ты на меня, ты на него,
На всех нас посмотри.
У нас всего, у нас всего,
У нас всего по три!

О свойствах какой фигуры говорится?

  • О треугольнике.

Какая же фигура называется треугольником?

  • Треугольник — это геометрическая фигура, у которой три вершины, три угла, три стороны.

(Уч-ся показывают на чертеже треугольник, называют вершины, углы и стороны).

Вершины: А, В, С (точки)

Углы: ВАС, АВС, ВСА.

Стороны: АВ, ВС, СА (отрезки).

V. Физкультминутка:

8 раз ногою топнем,
9 раз руками хлопнем,
мы присядем 10 раз,
и наклонимся 6 раз,
мы подпрыгнем ровно
столько (показ треугольника)
Ай, да, счёт! Игра и только!

VI. Изучение нового материала.

Скоро углы подружились и стали неразлучны.

И теперь микрорайон мы будем так и называть: микрорайон Треугольники.

Третья остановка “Знайка”.

А как зовут эти треугольники?

Давайте дадим им имена. И попробуем сами сформулировать определение.

3 команда отвечает.

АВС - прямоугольный.

Треугольник, в котором один угол прямой, называется прямоугольным.

1 команда отвечает.

MNO - остроугольный.

Треугольник, в котором все углы острые, называется остроугольным.

2 команда отвечает.

DEF - тупоугольный.

Треугольник, в котором один угол тупой, называется тупоугольным.

Задание всем командам.

Начертите в тетрадях все виды треугольников.

VII. Четвёртая остановка “Закрепляйка”.

1. Найдите на чертеже треугольники, назовите их по видам в зависимости от вида углов.

По первому чертежу отвечает 2 команда.

По второму чертежу 3 команда, по третьему — 1 команда.

2. Найди треугольники разных видов

1 команда найдет и покажет тупоугольные треугольники.

2 команда найдёт и покажет прямоугольные треугольники.

3 команда найдёт и покажет остроугольные треугольники.

VIII. Следующая остановка “Соображай-ка”.

Задание всем командам.

Переложив 6 палочек, составьте из фонаря 4 равных треугольника.

Какие по виду углов получились треугольники? (Остроугольные).

IX. Итог урока.

В каком же микрорайоне мы с вами побывали?

С какими видами треугольников познакомились?

Слово жюри.

Равносторонний остроугольный треугольник. Свойства треугольника.

В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника — формулы вычисления, прямоугольный треугольник, равнобедренн. Какая фигур

Деление треугольников на остроугольные, прямоугольные и тупоугольные. Классификация по соотношению сторон делит треугольники на разносторонние, равносторонние и равнобедренные. Причем каждый треугольник одновременно принадлежит к двум . Например, он может быть прямоугольным и разносторонним одновременно.

Определяя вид по типу углов, очень внимательны. Тупоугольным будет называться такой треугольник, у которого один из углов является , то есть составляет боле 90 градусов. Прямоугольный треугольник может быть вычислен по наличию одного прямого (равного 90 градусам) угла. Однако чтобы классифицировать треугольник как остроугольный, вам нужно будет убедиться, что все три его угла острыми.

Определяя вид треугольника по соотношению сторон, для начала вам придется узнать длины всех трех сторон. Однако если по условию длины сторон вам не даны, помочь вам смогут углы. Разносторонним будет являться треугольник, все три стороны которого имеют разную длину. Если длины сторон неизвестны, то треугольник может быть классифицирован как разносторонний в случае, если все три его угла являются разными. Разносторонний треугольник может быть тупоугольным, прямоугольным и остроугольным.

Равнобедренным будет являться треугольник, две из трех сторон которого равны между собой. Если длины сторон вам не даны, ориентируйтесь по двум равным между собой углам. Равнобедренный треугольник, как и разносторонний, может быть и тупоугольным, и прямоугольным и остроугольным.

Равносторонним может быть только такой треугольник, все три стороны которого имеют одинаковую длину. Все его углы также равны между собой, и каждый из них равен 60-ти градусам. Отсюда ясно, что равносторонние треугольники всегда являются остроугольными.

Простейший из многоугольников – это треугольник. Он образуется при помощи трех точек, лежащих в одной плоскости, но не лежащих на одной прямой, попарно соединенных отрезками. Тем не менее, треугольники бывают разных типов, а значит, обладают разными свойствами.

Инструкция

Принято выделять три типа : тупоугольные, остроугольные и прямоугольные. Это по типу углов. Тупоугольным называется треугольник, у которого один из углов является тупым. Тупым называется угол, имеющий величину больше девяноста градусов, но меньше ста восьмидесяти. Например, в треугольнике ABC угол ABC равен 65°, угол BCA равен 95°, угол CAB равен 20°. Углы ABC и CAB меньше 90°, но угол BCA больше, значит, треугольник тупоугольный.

Остроугольным называется треугольник, у которого все углы являются острыми. Острым называется угол, имеющий величину меньше девяноста и больше нуля градусов. Например, в треугольнике ABC угол ABC равен 60°, угол BCA равен 70°, угол CAB равен 50°. Все три угла меньше 90°, значит треугольник . Если вам известно, что у треугольника все стороны равны, это значит, что все углы у него тоже равны между собой, при этом равны шестидесяти градусам. Соответственно, все углы в таком треугольнике меньше девяноста градусов, а следовательно такой треугольник является остроугольным.

Если в треугольнике один из углов равен девяноста градусам, это значит, что он не относится ни широкоугольному типу, ни к остроугольному. Это прямоугольный треугольник.

Если вид треугольника определять по соотношению сторон, они будут равносторонние, разносторонние и равнобедренные. В равностороннем треугольнике все стороны равны, а это, как вы выяснили, говорит о том, что треугольник остроугольный. Если у треугольника равны только две стороны или стороны не равны между собой, он может быть и тупоугольным, и прямоугольным, и остроугольным. Значит, в этих случаях необходимо вычислить или измерить углы и делать умозаключения, согласно пунктам 1, 2 или 3.

Видео по теме

Источники:

  • тупоугольный треугольник

Равенство двух или более треугольников соответствует случаю, когда все стороны и углы данных треугольников равны. Однако существует ряд более простых критериев для доказательства данного равенства.

Вам понадобится

  • Учебник по геометрии, лист бумаги, простой карандаш, транспортир, линейка.

Инструкция

Откройте учебник по геометрии седьмого класса на параграфе о признаках равенства треугольников. Вы увидите, что существует ряд основных признаков, доказывающих равенство двух треугольников. Если два треугольника, равенство которых проверяется, являются произвольными, то для них существует три основных признака равенства. Если же известна какая-то дополнительная информация о треугольниках, то основные три признака дополняются еще несколькими. Это относится, например, к случаю равенства прямоугольных треугольников.

Прочитайте первое правило о равенстве треугольников. Как известно, оно позволяет считать треугольники равными, если можно доказать, что какой-либо один угол и две прилегающие к нему стороны двух треугольников равны. Для того чтобы понять, данный закон, начертите на листе бумаги с помощью транспортира два одинаковых определенных угла, образованных двумя лучами, исходящими из одной точки. Отмерьте линейкой одинаковые стороны от вершины нарисованного угла в обоих случаях. Используя транспортир, измерьте величины полученных углов двух образованных треугольников, убедитесь, что они равны.

Для того чтобы не прибегать к таким практическим мерам для понимания признака равенства треугольников, прочитайте доказательство первого признака равенства. Дело в том, что каждое правило о равенстве треугольников имеет строгое теоретическое доказательство, просто его не удобно использовать в целях запоминания правил.

Прочитайте второй признак равенства треугольников. Он гласит, что два треугольника будут равны в том случае, если какая-либо одна сторона и два прилегающие к ней угла двух таких треугольников равны. Для того чтобы запомнить данное правило, представьте нарисованную сторону треугольника и два прилежащих к ней угла. Представьте, что длины сторон углов постепенно увеличиваются. В конце концов, они пересекутся, образуя третий угол. В данной мысленной задаче важным является то, что точка пересечения сторон, которые мысленно увеличиваются, а также полученный угол однозначно определяются третьей стороной и двумя прилегающими к ней углами.

Если вам не дана никакая информация об углах исследуемых треугольников, то используйте третий признак равенства треугольников. По данному правилу, два треугольника считаются равными, если все три стороны одно из них равны соответствующим трем сторонам другого. Таким образом, данное правило говорит о том, что длины сторон треугольника однозначно определяют все углы треугольника, а значит, они однозначно определяют и сам треугольник.

Видео по теме

Треугольники

Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Виды треугольников

Треугольник называется равнобедренным, если у него две сторны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.

Треугольник, у которого все сторны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.

Треугольник называется остроугольным, если все три его угла — острые, то есть меньше 90°.

Треугольник называется тупоугольным, если один из его углов — тупой, то есть больше 90°.

Основные линии треугольника

Медиана

Медиана треугольника — это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

    Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектриса угла — это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

Высота

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

Срединный перпендикуляр

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

    Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

    Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника .

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Формулы и соотношения

Признаки равенства треугольников

Два треугольника равны, если у них соответственно равны:

    две стороны и угол между ними;

    два угла и прилежащая к ним сторона;

    три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если у них соответственно равны:

    гипотенуза и острый угол;

    катет и противолежащий угол;

    катет и прилежащий угол;

    два катета ;

    гипотенуза и катет .

Подобие треугольников

Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:

    два угла одного треугольника равны двум углам другого треугольника;

    две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;

    три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты , медианы , биссектрисы и т. п.) пропорциональны.

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности :

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a 2 = b 2 + c 2 — 2bc cos

Формулы площади треугольника

    Произвольный треугольник

a, b, c — стороны; — угол между сторонамиa и b ;- полупериметр;R — радиус описанной окружности; r — радиус вписанной окружности; S — площадь; h a высота, проведенная к стороне a .

При изучении математики ученики начинаются знакомиться с различными видами геометрических фигур. Сегодня речь пойдет о различных видах треугольников.

Определение

Геометрические фигуры, которые состоят из трех точек, которые не находятся на одной прямой, называются треугольниками.

Отрезки, соединяющие точки, называются сторонами, а точки – вершинами. Вершины обозначаются большими латинскими буквами, например: A, B, C.

Стороны обозначаются названиями двух точек, из которых они состоят – AB, BC, AC. Пересекаясь, стороны образуют углы. Нижняя сторона считается основанием фигуры.

Рис. 1. Треугольник ABC.

Виды треугольников

Треугольники классифицируют по углам и сторонам. Каждый из видов треугольника имеет свои свойства.

Существует три вида треугольников по углам:

  • остроугольные;
  • прямоугольные;
  • тупоугольные.

Все углы остроугольного треугольника острые, то есть градусная мера каждого составляет не более 90 0 .

Прямоугольный треугольник содержит прямой угол. Два других угла всегда будут острыми, так как иначе сумма углов треугольника превысит 180 градусов, а это невозможно. Сторона, которая, находится напротив прямого угла, называется гипотенузой, а две другие катетами. Гипотенуза всегда больше катета.

Тупоугольный треугольник содержит тупой угол. То есть угол, величиной больше 90 градусов. Два других угла в таком треугольника будут острыми.

Рис. 2. Виды треугольников по углам.

Пифагоровым треугольником называется прямоугольник, стороны которого равны 3, 4, 5.

Причем, большая сторона является гипотенузой.

Такие треугольники часто используются для составления простых задач в геометрии. Поэтому, запомните: если две стороны треугольника равны 3, то третья обязательно будет 5. Это упростит расчеты.

Виды треугольников по сторонам:

  • равносторонние;
  • равнобедренные;
  • разносторонние.

Равносторонний треугольник – это треугольник, у которого все стороны равны. Все углы такого треугольника равны 60 0 , то есть он всегда является остроугольным.

Равнобедренный треугольник – треугольник, у которого только две стороны равны. Эти стороны называются боковыми, а третья – основанием. Кроме того, углы при основании равнобедренного треугольника равны и всегда являются острыми.

Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.

Если в задаче нет никаких уточнений по поводу фигуры, то принято считать, что речь идет о произвольном треугольнике.

Рис. 3. Виды треугольников по сторонам.

Сумма всех углов треугольника, независимо от его вида, равна 1800.

Напротив большего угла находится большая сторона. А также длина любой стороны всегда меньше суммы двух других его сторон. Эти свойства подтверждаются теоремой о неравенстве треугольника.

Существует понятие золотого треугольника. Это равнобедренный треугольник, у которого две боковые стороны пропорциональны основе и равны определенному числу. В такой фигуре углы пропорциональны соотношению 2:2:1.

Задача:

Существует ли треугольник, стороны которого равны 6 см., 3 см., 4 см.?

Решение:

Для решения данного задания нужно использовать неравенство a

Что мы узнали?

Из данного материала из курса математики 5 класса, мы узнали, что треугольники классифицируются по сторонам и величине углов. Треугольники имеют определенные свойства, которые можно использовать при решении заданий.

Еще дети дошкольного возраста знают, как выглядит треугольник. А вот с тем, какие они бывают, ребята уже начинают разбираться в школе. Одним из видов является тупоугольный треугольник. Понять, что это такое, проще всего, если увидеть картинку с его изображением. А в теории это так называют «простейший многоугольник» с тремя сторонами и вершинами, одна из которых является

Разбираемся с понятиями

В геометрии различают такие виды фигур с тремя сторонами: остроугольный, прямоугольный и тупоугольный треугольники. При этом свойства этих простейших многоугольников одинаковы для всех. Так, для всех перечисленных видов будет соблюдаться такое неравенство. Сумма длин любых двух сторон обязательно будет больше протяженности третьей стороны.

Но для того чтобы быть уверенным, что речь идет именно о законченной фигуре, а не о наборе отдельных вершин, необходимо проверить, чтобы соблюдалось основное условие: сумма углов тупоугольного треугольника равняется 180 о. Это же верно и для других видов фигур с тремя сторонами. Правда, в тупоугольном треугольнике один из углов будет еще больше 90 о, а два оставшихся обязательно будут острыми. При этом именно наибольший угол будет находиться напротив самой длинной стороны. Правда, это далеко не все свойства тупоугольного треугольника. Но и зная лишь эти особенности, школьники могут решать многие задачи по геометрии.

Для каждого многоугольника с тремя вершинами верно и то, что, продолжая любую из сторон, мы получим угол, размер которого будет равен сумме двух несмежных с ним внутренних вершин. Периметр тупоугольного треугольника рассчитывается так же, как и для других фигур. Он равняется сумме длин всех его сторон. Для определения математиками были выведены различные формулы, в зависимости от того, какие изначально присутствуют данные.

Правильное начертание

Одним из важнейших условий решения задач по геометрии является верный рисунок. Часто учителя математики говорят о том, что он поможет не только наглядно представить, что дано и что от вас требуется, но на 80% приблизиться к правильному ответу. Именно поэтому важно знать, как построить тупоугольный треугольник. Если вам нужна просто гипотетическая фигура, то вы можете нарисовать любой многоугольник с тремя сторонами так, чтобы один из углов был больше 90 о.

Если даны определенные значения длин сторон или градусы углов, то чертить тупоугольный треугольник необходимо в соответствии с ними. При этом необходимо стараться максимально точно изобразить углы, высчитывая их при помощи транспортира, и пропорционально данным в задании условиям отобразить стороны.

Основные линии

Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

Так, биссектрисы делят угол пополам, а противоположную сторону — на отрезки, которые пропорциональны прилегающим сторонам.

Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

Серединный перпендикуляр — это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

Работа с окружностями

В начале изучения геометрии детям достаточно понять, как начертить тупоугольный треугольник, научиться отличать его от остальных видов и запомнить его основные свойства. А вот старшеклассникам этих знаний уже мало. Например, на ЕГЭ часто встречаются вопросы про описанные и вписанные окружности. Первая из них касается всех трех вершин треугольника, а вторая имеет по одной общей точке со всеми сторонами.

Построить вписанный или описанный тупоугольный треугольник уже намного сложнее, ведь для этого необходимо для начала выяснить, где должен находиться центр окружности и ее радиус. Кстати, необходимым инструментом станет в этом случае не только карандаш с линейкой, но и циркуль.

Те же сложности возникают при построении вписанных многоугольников с тремя сторонами. Математиками были выведены различные формулы, которые позволяют определить их месторасположение максимально точно.

Вписанные треугольники

Как уже было сказано ранее, если круг проходит через все три вершины, то это называется описанной окружностью. Главным ее свойством является то, что она единственная. Чтобы выяснить, как должна располагаться описанная окружность тупоугольного треугольника, необходимо помнить, что ее центр находится на пересечении трех серединных перпендикуляров, которые идут к сторонам фигуры. Если в остроугольном многоугольнике с тремя вершинами эта точка будет находиться внутри него, то в тупоугольном — за его пределами.

Зная, например, что одна из сторон тупоугольного треугольника равна его радиусу, можно найти угол, который лежит напротив известной грани. Его синус будет равен результату от деления длины известной стороны на 2R (где R — это радиус окружности). То есть sin угла будет равен ½. Значит, угол будет равен 150 о.

Если вам необходимо найти радиус описанной окружности тупоугольного треугольника, то вам пригодятся сведения о длине его сторон (c, v, b) и его площади S. Ведь радиус высчитывается так: (c х v х b) : 4 х S. Кстати, неважно, какого именно у вас вида фигура: разносторонний тупоугольный треугольник, равнобедренный, прямо- или остроугольный. В любой ситуации, благодаря приведенной формуле, вы можете узнать площадь заданного многоугольника с тремя сторонами.

Описанные треугольники

Также довольно часто приходится работать со вписанными окружностями. По одной из формул, радиус такой фигуры, умноженный на ½ периметра, будет равняться площади треугольника. Правда, для ее выяснения вам необходимо знать стороны тупоугольного треугольника. Ведь для того чтобы определить ½ периметра, необходимо сложить их длины и разделить на 2.

Чтобы понять, где должен находиться центр круга, вписанного в тупоугольный треугольник, необходимо провести три биссектрисы. Это линии, которые делят углы пополам. Именно на их пересечении и будет находиться центр окружности. При этом он будет равноудален от каждой из сторон.

Радиус такой окружности, вписанной в тупоугольный треугольник, равняется из частного (p-c) х (p-v) х (p-b) : p. При этом p — это полупериметр треугольника, c, v, b — его стороны.

Сегодня мы отправляемся в страну Геометрия, где познакомимся с различными видами треугольников.

Рассмотрите геометрические фигуры и найдите среди них «лишнюю» (рис. 1).

Рис. 1. Иллюстрация к примеру

Мы видим, что фигуры № 1, 2, 3, 5 — четырехугольники. Каждая из них имеет свое название (рис. 2).

Рис. 2. Четырехугольники

Значит, «лишней» фигурой является треугольник (рис. 3).

Рис. 3. Иллюстрация к примеру

Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

Точки называются вершинами треугольника , отрезки — его сторонами . Стороны треугольника образуют в вершинах треугольника три угла.

Основными признаками треугольника являются три стороны и три угла. По величине угла треугольники бывают остроугольные, прямоугольные и тупоугольные.

Треугольник называется остроугольным, если все три угла его острые, то есть меньше 90° (рис. 4).

Рис. 4. Остроугольный треугольник

Треугольник называется прямоугольным, если один из его углов равен 90° (рис. 5).

Рис. 5. Прямоугольный треугольник

Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).

Рис. 6. Тупоугольный треугольник

По числу равных сторон треугольники бывают равносторонние, равнобедренные, разносторонние.

Равнобедренным называется треугольник, у которого две стороны равны (рис. 7).

Рис. 7. Равнобедренный треугольник

Эти стороны называются боковыми , третья сторона — основанием . В равнобедренном треугольнике углы при основании равны.

Равнобедренные треугольники бывают остроугольными и тупоугольными (рис. 8).

Рис. 8. Остроугольный и тупоугольный равнобедренные треугольники

Равносторонним называется треугольник, у которого все три стороны равны (рис. 9).

Рис. 9. Равносторонний треугольник

В равностороннем треугольнике все углы равны . Равносторонние треугольники всегда остроугольные.

Разносторонним называется треугольник, у которого все три стороны имеют разную длину (рис. 10).

Рис. 10. Разносторонний треугольник

Выполните задание. Распределите данные треугольники на три группы (рис. 11).

Рис. 11. Иллюстрация к заданию

Сначала распределим по величине углов.

Остроугольные треугольники: № 1, № 3.

Прямоугольные треугольники: № 2, № 6.

Тупоугольные треугольники: № 4, № 5.

Эти же треугольники распределим на группы по числу равных сторон.

Разносторонние треугольники: № 4, № 6.

Равнобедренные треугольники: № 2, № 3, № 5.

Равносторонний треугольник: № 1.

Рассмотрите рисунки.

Подумайте, из какого куска проволоки сделали каждый треугольник (рис. 12).

Рис. 12. Иллюстрация к заданию

Можно рассуждать так.

Первый кусок проволоки разделен на три равные части, поэтому из него можно сделать равносторонний треугольник. На рисунке он изображен третьим.

Второй кусок проволоки разделен на три разные части, поэтому из него можно сделать разносторонний треугольник. На рисунке он изображен первым.

Третий кусок проволоки разделен на три части, где две части имеют одинаковую длину, значит, из него можно сделать равнобедренный треугольник. На рисунке он изображен вторым.

Сегодня на уроке мы познакомились с различными видами треугольников.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Nsportal.ru ().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнее задание

1. Закончите фразы.

а) Треугольником называется фигура, которая состоит из …, не лежащих на одной прямой, и …, попарно соединяющих эти точки.

б) Точки называются , отрезки — его . Стороны треугольника образуют в вершинах треугольника ….

в) По величине угла треугольники бывают … , … , … .

г) По числу равных сторон треугольники бывают … , … , … .

2. Начертите

а) прямоугольный треугольник;

б) остроугольный треугольник;

в) тупоугольный треугольник;

г) равносторонний треугольник;

д) разносторонний треугольник;

е) равнобедренный треугольник.

3. Составьте задание по теме урока для своих товарищей.

длина сторон, сумма углов. Описанный тупоугольный треугольник. Чертим описанный треугольник

Еще дети дошкольного возраста знают, как выглядит треугольник. А вот с тем, какие они бывают, ребята уже начинают разбираться в школе. Одним из видов является тупоугольный треугольник. Понять, что это такое, проще всего, если увидеть картинку с его изображением. А в теории это так называют «простейший многоугольник» с тремя сторонами и вершинами, одна из которых является

Разбираемся с понятиями

В геометрии различают такие виды фигур с тремя сторонами: остроугольный, прямоугольный и тупоугольный треугольники. При этом свойства этих простейших многоугольников одинаковы для всех. Так, для всех перечисленных видов будет соблюдаться такое неравенство. Сумма длин любых двух сторон обязательно будет больше протяженности третьей стороны.

Но для того чтобы быть уверенным, что речь идет именно о законченной фигуре, а не о наборе отдельных вершин, необходимо проверить, чтобы соблюдалось основное условие: сумма углов тупоугольного треугольника равняется 180 о. Это же верно и для других видов фигур с тремя сторонами. Правда, в тупоугольном треугольнике один из углов будет еще больше 90 о, а два оставшихся обязательно будут острыми. При этом именно наибольший угол будет находиться напротив самой длинной стороны. Правда, это далеко не все свойства тупоугольного треугольника. Но и зная лишь эти особенности, школьники могут решать многие задачи по геометрии.

Для каждого многоугольника с тремя вершинами верно и то, что, продолжая любую из сторон, мы получим угол, размер которого будет равен сумме двух несмежных с ним внутренних вершин. Периметр тупоугольного треугольника рассчитывается так же, как и для других фигур. Он равняется сумме длин всех его сторон. Для определения математиками были выведены различные формулы, в зависимости от того, какие изначально присутствуют данные.

Правильное начертание

Одним из важнейших условий решения задач по геометрии является верный рисунок. Часто учителя математики говорят о том, что он поможет не только наглядно представить, что дано и что от вас требуется, но на 80% приблизиться к правильному ответу. Именно поэтому важно знать, как построить тупоугольный треугольник. Если вам нужна просто гипотетическая фигура, то вы можете нарисовать любой многоугольник с тремя сторонами так, чтобы один из углов был больше 90 о.

Если даны определенные значения длин сторон или градусы углов, то чертить тупоугольный треугольник необходимо в соответствии с ними. При этом необходимо стараться максимально точно изобразить углы, высчитывая их при помощи транспортира, и пропорционально данным в задании условиям отобразить стороны.

Основные линии

Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

Так, биссектрисы делят угол пополам, а противоположную сторону — на отрезки, которые пропорциональны прилегающим сторонам.

Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

Серединный перпендикуляр — это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

Работа с окружностями

В начале изучения геометрии детям достаточно понять, как начертить тупоугольный треугольник, научиться отличать его от остальных видов и запомнить его основные свойства. А вот старшеклассникам этих знаний уже мало. Например, на ЕГЭ часто встречаются вопросы про описанные и вписанные окружности. Первая из них касается всех трех вершин треугольника, а вторая имеет по одной общей точке со всеми сторонами.

Построить вписанный или описанный тупоугольный треугольник уже намного сложнее, ведь для этого необходимо для начала выяснить, где должен находиться центр окружности и ее радиус. Кстати, необходимым инструментом станет в этом случае не только карандаш с линейкой, но и циркуль.

Те же сложности возникают при построении вписанных многоугольников с тремя сторонами. Математиками были выведены различные формулы, которые позволяют определить их месторасположение максимально точно.

Вписанные треугольники

Как уже было сказано ранее, если круг проходит через все три вершины, то это называется описанной окружностью. Главным ее свойством является то, что она единственная. Чтобы выяснить, как должна располагаться описанная окружность тупоугольного треугольника, необходимо помнить, что ее центр находится на пересечении трех серединных перпендикуляров, которые идут к сторонам фигуры. Если в остроугольном многоугольнике с тремя вершинами эта точка будет находиться внутри него, то в тупоугольном — за его пределами.

Зная, например, что одна из сторон тупоугольного треугольника равна его радиусу, можно найти угол, который лежит напротив известной грани. Его синус будет равен результату от деления длины известной стороны на 2R (где R — это радиус окружности). То есть sin угла будет равен ½. Значит, угол будет равен 150 о.

Если вам необходимо найти радиус описанной окружности тупоугольного треугольника, то вам пригодятся сведения о длине его сторон (c, v, b) и его площади S. Ведь радиус высчитывается так: (c х v х b) : 4 х S. Кстати, неважно, какого именно у вас вида фигура: разносторонний тупоугольный треугольник, равнобедренный, прямо- или остроугольный. В любой ситуации, благодаря приведенной формуле, вы можете узнать площадь заданного многоугольника с тремя сторонами.

Описанные треугольники

Также довольно часто приходится работать со вписанными окружностями. По одной из формул, радиус такой фигуры, умноженный на ½ периметра, будет равняться площади треугольника. Правда, для ее выяснения вам необходимо знать стороны тупоугольного треугольника. Ведь для того чтобы определить ½ периметра, необходимо сложить их длины и разделить на 2.

Чтобы понять, где должен находиться центр круга, вписанного в тупоугольный треугольник, необходимо провести три биссектрисы. Это линии, которые делят углы пополам. Именно на их пересечении и будет находиться центр окружности. При этом он будет равноудален от каждой из сторон.

Радиус такой окружности, вписанной в тупоугольный треугольник, равняется из частного (p-c) х (p-v) х (p-b) : p. При этом p — это полупериметр треугольника, c, v, b — его стороны.

Как построить равнобедренный треугольник? Это легко сделать с помощью линейки, карандаша и клеточек тетради.

Построение равнобедренного треугольника начинаем с основания. Чтобы рисунок получился ровным, количество клеточек в основании должно быть четным числом.

Делим отрезок — основание треугольника — пополам.

Вершину треугольника можно выбрать на любой высоте от основания, но обязательно ровно над срединой.

Как построить остроугольный равнобедренный треугольник?

Углы при основании равнобедренного треугольника могут быть только острыми. Чтобы равнобедренный треугольник получился остроугольным, угол при вершине тоже должен быть острым.

Для этого вершину треугольника выбираем повыше, подальше от основания.

Чем выше вершина, тем меньше угол при вершине. Углы при основании при этом, соответственно, увеличиваются.

Как построить тупоугольный равнобедренный треугольник?

С приближением вершины равнобедренного треугольника к основанию градусная мера угла при вершине увеличивается.

Значит, чтобы построить равнобедренный тупоугольный треугольник, вершину выбираем пониже.

Как построить равнобедренный прямоугольный треугольник?

Чтобы построить равнобедренный прямоугольный треугольник, надо вершину выбрать на расстоянии, равном половине основания (это обусловлено свойствами равнобедренного прямоугольного треугольника).

Например, если длина основания — 6 клеточек, то вершину треугольника располагаем на высоте 3 клеточек над серединой основания. Обратите внимание: при этом каждая клеточка у углов при основании делится по диагонали.

Построение равнобедренного прямоугольного треугольника можно начать с вершины.

Выбираем вершину, от нее под прямым углом откладываем равные отрезки вверх и вправо. Это — боковые стороны треугольника.

Соединим их и получим равнобедренный прямоугольный треугольник.

Построение равнобедренного треугольника с помощью циркуля и линейки без делений рассмотрим в другой теме.

Инструкция

Поставьте иглу циркуля в отмеченную точку. Нарисуйте ножкой с грифелем дугу окружности отмеренного радиуса.

В любом месте по окружности нарисованной дуги поставьте точку. Это будет вторая вершина B создаваемого треугольника.

Аналогичным способом поставьте ножку на вторую вершину. Проведите еще одну окружность так, чтобы она пресекалась с первой.

В точке пересечения обоих проведенных дуг и находится третья вершина C создаваемого треугольника. Отметьте ее на рисунке.

Получив все три вершины, соедините их прямыми линиями с помощью любой ровной поверхности (лучше линейки). Треугольник ABC построен.

Если окружность касается всех трех сторон данного треугольника, а её центр находится внутри треугольника, то ее называют вписанной в треугольник.

Вам понадобится

  • линейка, циркуль

Инструкция

Из вершин треугольника (стороны противоположной делимому углу) циркулем проводят дуги окружности произвольного радиуса до пересечения их между собой;

Точку пересечения дуг по линейке соединяют с вершиной делимого угла;

Тоже самое проделывают с любым другим углом;

Радиусом вписанной в треугольник окружности будет отношение площади треугольника и его полупериметра: r=S/p , где S — площадь треугольника, а p=(a+b+c)/2 — полупериметр треугольника.

Радиус вписанной в треугольник окружности равноудален от всех сторон треугольника.

Источники:

  • http://www.alleng.ru/d/math/math52.htm

Рассмотрим задачу построения треугольника при условии, что известны три его стороны или одна сторона и два угла.

Вам понадобится

  • — циркуль
  • — линейка
  • — транспортир

Инструкция

Допустим, даны три стороны : a, b и с. Пользуясь , несложно с такими сторонами. Для начала выберем самую длинную из этих сторон, пусть это будет сторона с, и начертим ее. Затем установим раствор циркуля на величину другой стороны, стороны a, и начертим циркулем окружность радиуса a с центром на одном из концов стороны c. Теперь установим раствор циркуля на величину стороны b и начертим окружность с центром на другом конце стороны c. Радиус этой окружности равен b. Соединим точку пересечения окружностей с центрами и получим треугольник с искомыми сторонами.

Чтобы начертить треугольник с заданной стороной и двумя прилегающими углами, возьмите транспортир. Начертите сторону указанной длины. На краях ее отложите транспортиром углы. На пересечении сторон углов получите третью вершину треугольника.

Видео по теме

Обратите внимание

Для сторон треугольника справедливо следующее утверждение: сумма длин двух любых сторон должна быть больше третьей. Если это не выполняется, то построить такой треугольник невозможно.

Окружности в шаге 1 пересекаются в двух точках. Можно выбрать любую, треугольники будут равными.

Правильный треугольник — тот, у которого все стороны обладают одинаковой длиной. Исходя из этого определения, построение подобной разновидности треугольника является нетрудной задачей.

Вам понадобится

  • Линейка, лист разлинованной бумаги, карандаш

Инструкция

С помощью линейки соединить отмеченные на листке точки последовательно, друг за другом так, как это показано на рисунке 2.

Обратите внимание

В правильном (равностороннем) треугольнике все углы равны 60 градусам.

Полезный совет

Равносторонний треугольник так же является и равнобедренным. Если треугольник равнобедренный, то это означает, что 2 из 3-х его сторон равны, а третья сторона считается основанием. Любой правильный треугольник является равнобедренным, в то время как обратное утверждение не верно.

У любого равностороннего треугольника одинаковы не только стороны, но и углы, каждый из которых равен 60 градусам. Однако чертеж такого треугольника, построенный при помощи транспортира, не будет обладать высокой точностью. Поэтому для построения данной фигуры лучше воспользоваться циркулем.

Вам понадобится

  • Карандаш, линейка, циркуль

Инструкция

Затем возьмите циркуль, установите его в из концов (будущей вершине треугольника) и проведите окружность с радиусом, равным длине этого отрезка. Можно не проводить окружность целиком, а начертить лишь ее четверть, от противоположного края отрезка.

Теперь переставьте циркуль в другой конец отрезка и снова начертите окружность того же радиуса. Здесь будет достаточно построить окружности, проходящую от дальнего конца отрезка до пересечения с уже построенной дугой. Полученная точка будет третьей вершиной вашего треугольника.

Чтобы закончить построение, снова возьмите линейку с карандашом и соедините точку пересечения двух окружностей с обоими концами отрезка. Вы получите треугольник, все три стороны которого абсолютно равны, – это можно будет легко проверить с помощью линейки.

Видео по теме

Треугольник – это многоугольник, у которого три стороны. Равносторонним или правильным треугольником называют треугольник, у которого все стороны и углы равны. Рассмотрим, как можно нарисовать правильный треугольник.

Вам понадобится

  • Линейка, циркуль.

Инструкция

С помощью циркуля нарисуйте еще одну окружность, центр которой будет в точке В, а радиус равен отрезку ВА.

Окружности будут пересекаться в двух точках. Выберите любую из них. Назовите ее С. Это будет третьей вершиной треугольника.

Соедините вершины между собой. Получившийся треугольник будет правильным. Убедитесь в этом, померив его стороны линейкой.

Рассмотрим способ построения правильного треугольника с помощью двух линеек. Начертите отрезок ОК, он будет одной из сторон треугольника, а точки О и К его вершинами.

Не сдвигая линейки после построения отрезка ОК, приложите перпендикулярно к ней еще одну линейку. Проведите прямую m пересекающую отрезок ОК в середине.

С помощью линейки отмерьте отрезок ОЕ, равный отрезку ОК так, чтобы один его конец совпадал с точкой О, а другой находился на прямой m. Точка Е буде третьей вершиной треугольника.

Закончите построение треугольника, соединив точки Е и К. Проверьте правильность построения с помощью линейки.

Обратите внимание

Убедиться в том, что треугольник правильный можете с помощью транспортира, измерив углы.

Полезный совет

Равносторонний треугольник так же можно начертить на листе в клетку с помощью одной линейки. Вместо другой линейки используйте перпендикулярные линии.

Источники:

Вписанным называется такой треугольник, все вершины которого находятся на окружности. Построить его можно, если знать хотя бы одну сторону и угол. Окружность называется описанной, и она будет единственной для данного треугольника.

Вам понадобится

  • — окружность;
  • — сторона и угол треугольника;
  • — лист бумаги;
  • — циркуль;
  • — линейка;
  • — транспортир;
  • — калькулятор.

Инструкция

От точки А с помощью транспортира отложите заданный угол. Продолжите сторону угла до пересечения с окружностью и поставьте точку С. Соедините точки В и С. У вас получился треугольник АВС. Он может быть любого типа. Центр окружности у остроугольного треугольника него, у тупоугольного — вне, а у прямоугольного — на гипотенузе. Если вам задан не угол, а, например, три стороны треугольника, вычислите один из углов по радиусу и известной стороне.

Значительно чаще приходится иметь дело с обратным построением, когда задан треугольник и надо вокруг него описать окружность. Вычислите его радиус. Сделать это можно по нескольким формулам, в зависимости от того, что вам дано. Радиус можно найти, например, по стороне и синусу противолежащего угла. В этом случае он равен длине стороны, разделенной на удвоенный синус противолежащего угла. То есть R=a/2sinCAB. Можно его выразить и через произведение сторон, в этом случае R=abc/‭√(‬a+b+c)(a+b-c)(a+c-b)(b+c-a).

Определите центр окружности. Разделите все стороны пополам и проведите серединам перпендикуляры. Точка их пересечения и будет центром окружности. Начертите ее так, чтобы она пересекла все вершины углов.

Две короткие стороны прямоугольного треугольника, которые принято называть катетами, по определению должны быть перпендикулярны между собой. Это свойство фигуры значительно облегчает ее построение. Однако возможность точно определить перпендикулярность есть не всегда. В таких случаях можно рассчитать длины всех сторон — они позволят построить треугольник единственно возможным, а поэтому правильным, способом.

Вам понадобится

  • Бумага, карандаш, линейка, транспортир, циркуль, угольник.

Как начертить треугольник?

Построение различных треугольников — обязательный элемент школьного курса геометрии. У многих это задание вызывает страх. Но на самом деле, все довольно просто. Далее в статье описано, как начертить треугольник любого типа с помощью циркуля и линейки.

Треугольники бывают

  • разносторонние;
  • равнобедренные;
  • равносторонние;
  • прямоугольные;
  • тупоугольные;
  • остроугольные;
  • вписанные в окружность;
  • описанные вокруг окружности.

Построение равностороннего треугольника

Равносторонним называется треугольник, у которого все стороны равны. Из всех видов треугольников, начертить равносторонний проще всего.

  1. С помощью линейки начертите одну из сторон, заданной длины.
  2. Измерьте ее длину с помощью циркуля.
  3. Поместите острие циркуля в один из концов отрезка и проведите окружность.
  4. Переставьте острие в другой конец отрезка и проведите окружность.
  5. У нас получилось 2 точки пересечения окружностей. Соединяя любую из них с краями отрезка, мы получаем равносторонний треугольник.

Построение равнобедренного треугольника

Данный тип треугольников можно построить по основанию и боковым сторонам.

Равнобедренным называется треугольник, у которого две стороны равны. Для того чтобы начертить равнобедренный треугольник по данным параметрам, необходимо выполнить следующие действия:

  1. С помощью линейки откладываем отрезок, равный по длине основанию. Обозначаем его буквами АС.
  2. Циркулем измеряем необходимую длину боковой стороны.
  3. Рисуем из точки А, а затем из точки С, окружности, радиус которых равен длине боковой стороны.
  4. Получаем две точки пересечения. Соединив одну из них с точками А и С, получаем необходимый треугольник.

Построение прямоугольного треугольника

Треугольник, у которого один угол прямой, называют прямоугольным. Если нам даны катет и гипотенуза, начертить прямоугольный треугольник не составит труда. Его можно построить по катету и гипотенузе.

Построение тупоугольного треугольника по углу и двум прилегающим сторонам

Если один из углов треугольника тупой (больше 90 градусов), его называют тупоугольным. Чтобы начертить по указанным параметрам тупоугольный треугольник необходимо сделать следующее:

  1. С помощью линейки откладываем отрезок, равный по длине одной из сторон треугольника. Обозначим его буквами А и D.
  2. Если в задании уже нарисован угол, и вам необходимо начертить такой же, то на его изображении отложить два отрезка, оба конца которых лежат в вершине угла, а длина равняется указанным сторонам. Соедините полученные точки. У нас получился искомый треугольник.
  3. Чтобы его перенести на свой чертеж, вам необходимо измерить длину третьей стороны.

Построение остроугольного треугольника

Остроугольный треугольник (все углы меньше 90 градусов) строится по тому же принципу.

  1. Нарисуйте две окружности. Центр одной из них лежит в точке D, а радиус равен длине третьей стороны, а у второй центр находится в точке А, а радиус равен длине указанной в задании стороны.
  2. Соедините одну из точек пересечения окружности с точками А и D. Искомый треугольник построен.

Вписанный треугольник

Для того чтобы начертить треугольник в окружности, нужно помнить теорему, в которой говорится, что центр описанной окружности лежит на пересечении серединных перпендикуляров:

У тупоугольного треугольника центр описанной окружности лежит за пределами треугольника, а у прямоугольного — на середине гипотенузы.

Чертим описанный треугольник

Описанный треугольник — это треугольник, в центре которого нарисована окружность, касающаяся всех его сторон. Центр вписанной окружности лежит на пересечении биссектрис. Для их построения необходимо:

Типы треугольников и их определения. Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника — формулы вычисления, прямоугольный треугольник, равнобедренн

Сегодня мы отправляемся в страну Геометрия, где познакомимся с различными видами треугольников.

Рассмотрите геометрические фигуры и найдите среди них «лишнюю» (рис. 1).

Рис. 1. Иллюстрация к примеру

Мы видим, что фигуры № 1, 2, 3, 5 — четырехугольники. Каждая из них имеет свое название (рис. 2).

Рис. 2. Четырехугольники

Значит, «лишней» фигурой является треугольник (рис. 3).

Рис. 3. Иллюстрация к примеру

Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

Точки называются вершинами треугольника , отрезки — его сторонами . Стороны треугольника образуют в вершинах треугольника три угла.

Основными признаками треугольника являются три стороны и три угла. По величине угла треугольники бывают остроугольные, прямоугольные и тупоугольные.

Треугольник называется остроугольным, если все три угла его острые, то есть меньше 90° (рис. 4).

Рис. 4. Остроугольный треугольник

Треугольник называется прямоугольным, если один из его углов равен 90° (рис. 5).

Рис. 5. Прямоугольный треугольник

Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).

Рис. 6. Тупоугольный треугольник

По числу равных сторон треугольники бывают равносторонние, равнобедренные, разносторонние.

Равнобедренным называется треугольник, у которого две стороны равны (рис. 7).

Рис. 7. Равнобедренный треугольник

Эти стороны называются боковыми , третья сторона — основанием . В равнобедренном треугольнике углы при основании равны.

Равнобедренные треугольники бывают остроугольными и тупоугольными (рис. 8).

Рис. 8. Остроугольный и тупоугольный равнобедренные треугольники

Равносторонним называется треугольник, у которого все три стороны равны (рис. 9).

Рис. 9. Равносторонний треугольник

В равностороннем треугольнике все углы равны . Равносторонние треугольники всегда остроугольные.

Разносторонним называется треугольник, у которого все три стороны имеют разную длину (рис. 10).

Рис. 10. Разносторонний треугольник

Выполните задание. Распределите данные треугольники на три группы (рис. 11).

Рис. 11. Иллюстрация к заданию

Сначала распределим по величине углов.

Остроугольные треугольники: № 1, № 3.

Прямоугольные треугольники: № 2, № 6.

Тупоугольные треугольники: № 4, № 5.

Эти же треугольники распределим на группы по числу равных сторон.

Разносторонние треугольники: № 4, № 6.

Равнобедренные треугольники: № 2, № 3, № 5.

Равносторонний треугольник: № 1.

Рассмотрите рисунки.

Подумайте, из какого куска проволоки сделали каждый треугольник (рис. 12).

Рис. 12. Иллюстрация к заданию

Можно рассуждать так.

Первый кусок проволоки разделен на три равные части, поэтому из него можно сделать равносторонний треугольник. На рисунке он изображен третьим.

Второй кусок проволоки разделен на три разные части, поэтому из него можно сделать разносторонний треугольник. На рисунке он изображен первым.

Третий кусок проволоки разделен на три части, где две части имеют одинаковую длину, значит, из него можно сделать равнобедренный треугольник. На рисунке он изображен вторым.

Сегодня на уроке мы познакомились с различными видами треугольников.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М. : Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Nsportal.ru ().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнее задание

1. Закончите фразы.

а) Треугольником называется фигура, которая состоит из …, не лежащих на одной прямой, и …, попарно соединяющих эти точки.

б) Точки называются , отрезки — его . Стороны треугольника образуют в вершинах треугольника ….

в) По величине угла треугольники бывают … , … , … .

г) По числу равных сторон треугольники бывают … , … , … .

2. Начертите

а) прямоугольный треугольник;

б) остроугольный треугольник;

в) тупоугольный треугольник;

г) равносторонний треугольник;

д) разносторонний треугольник;

е) равнобедренный треугольник.

3. Составьте задание по теме урока для своих товарищей.

Еще дети дошкольного возраста знают, как выглядит треугольник. А вот с тем, какие они бывают, ребята уже начинают разбираться в школе. Одним из видов является тупоугольный треугольник. Понять, что это такое, проще всего, если увидеть картинку с его изображением. А в теории это так называют «простейший многоугольник» с тремя сторонами и вершинами, одна из которых является

Разбираемся с понятиями

В геометрии различают такие виды фигур с тремя сторонами: остроугольный, прямоугольный и тупоугольный треугольники. При этом свойства этих простейших многоугольников одинаковы для всех. Так, для всех перечисленных видов будет соблюдаться такое неравенство. Сумма длин любых двух сторон обязательно будет больше протяженности третьей стороны.

Но для того чтобы быть уверенным, что речь идет именно о законченной фигуре, а не о наборе отдельных вершин, необходимо проверить, чтобы соблюдалось основное условие: сумма углов тупоугольного треугольника равняется 180 о. Это же верно и для других видов фигур с тремя сторонами. Правда, в тупоугольном треугольнике один из углов будет еще больше 90 о, а два оставшихся обязательно будут острыми. При этом именно наибольший угол будет находиться напротив самой длинной стороны. Правда, это далеко не все свойства тупоугольного треугольника. Но и зная лишь эти особенности, школьники могут решать многие задачи по геометрии.

Для каждого многоугольника с тремя вершинами верно и то, что, продолжая любую из сторон, мы получим угол, размер которого будет равен сумме двух несмежных с ним внутренних вершин. Периметр тупоугольного треугольника рассчитывается так же, как и для других фигур. Он равняется сумме длин всех его сторон. Для определения математиками были выведены различные формулы, в зависимости от того, какие изначально присутствуют данные.

Правильное начертание

Одним из важнейших условий решения задач по геометрии является верный рисунок. Часто учителя математики говорят о том, что он поможет не только наглядно представить, что дано и что от вас требуется, но на 80% приблизиться к правильному ответу. Именно поэтому важно знать, как построить тупоугольный треугольник. Если вам нужна просто гипотетическая фигура, то вы можете нарисовать любой многоугольник с тремя сторонами так, чтобы один из углов был больше 90 о.

Если даны определенные значения длин сторон или градусы углов, то чертить тупоугольный треугольник необходимо в соответствии с ними. При этом необходимо стараться максимально точно изобразить углы, высчитывая их при помощи транспортира, и пропорционально данным в задании условиям отобразить стороны.

Основные линии

Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

Так, биссектрисы делят угол пополам, а противоположную сторону — на отрезки, которые пропорциональны прилегающим сторонам.

Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

Серединный перпендикуляр — это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

Работа с окружностями

В начале изучения геометрии детям достаточно понять, как начертить тупоугольный треугольник, научиться отличать его от остальных видов и запомнить его основные свойства. А вот старшеклассникам этих знаний уже мало. Например, на ЕГЭ часто встречаются вопросы про описанные и вписанные окружности. Первая из них касается всех трех вершин треугольника, а вторая имеет по одной общей точке со всеми сторонами.

Построить вписанный или описанный тупоугольный треугольник уже намного сложнее, ведь для этого необходимо для начала выяснить, где должен находиться центр окружности и ее радиус. Кстати, необходимым инструментом станет в этом случае не только карандаш с линейкой, но и циркуль.

Те же сложности возникают при построении вписанных многоугольников с тремя сторонами. Математиками были выведены различные формулы, которые позволяют определить их месторасположение максимально точно.

Вписанные треугольники

Как уже было сказано ранее, если круг проходит через все три вершины, то это называется описанной окружностью. Главным ее свойством является то, что она единственная. Чтобы выяснить, как должна располагаться описанная окружность тупоугольного треугольника, необходимо помнить, что ее центр находится на пересечении трех серединных перпендикуляров, которые идут к сторонам фигуры. Если в остроугольном многоугольнике с тремя вершинами эта точка будет находиться внутри него, то в тупоугольном — за его пределами.

Зная, например, что одна из сторон тупоугольного треугольника равна его радиусу, можно найти угол, который лежит напротив известной грани. Его синус будет равен результату от деления длины известной стороны на 2R (где R — это радиус окружности). То есть sin угла будет равен ½. Значит, угол будет равен 150 о.

Если вам необходимо найти радиус описанной окружности тупоугольного треугольника, то вам пригодятся сведения о длине его сторон (c, v, b) и его площади S. Ведь радиус высчитывается так: (c х v х b) : 4 х S. Кстати, неважно, какого именно у вас вида фигура: разносторонний тупоугольный треугольник, равнобедренный, прямо- или остроугольный. В любой ситуации, благодаря приведенной формуле, вы можете узнать площадь заданного многоугольника с тремя сторонами.

Описанные треугольники

Также довольно часто приходится работать со вписанными окружностями. По одной из формул, радиус такой фигуры, умноженный на ½ периметра, будет равняться площади треугольника. Правда, для ее выяснения вам необходимо знать стороны тупоугольного треугольника. Ведь для того чтобы определить ½ периметра, необходимо сложить их длины и разделить на 2.

Чтобы понять, где должен находиться центр круга, вписанного в тупоугольный треугольник, необходимо провести три биссектрисы. Это линии, которые делят углы пополам. Именно на их пересечении и будет находиться центр окружности. При этом он будет равноудален от каждой из сторон.

Радиус такой окружности, вписанной в тупоугольный треугольник, равняется из частного (p-c) х (p-v) х (p-b) : p. При этом p — это полупериметр треугольника, c, v, b — его стороны.

Сегодня мы отправляемся в страну Геометрия, где познакомимся с различными видами треугольников.

Рассмотрите геометрические фигуры и найдите среди них «лишнюю» (рис. 1).

Рис. 1. Иллюстрация к примеру

Мы видим, что фигуры № 1, 2, 3, 5 — четырехугольники. Каждая из них имеет свое название (рис. 2).

Рис. 2. Четырехугольники

Значит, «лишней» фигурой является треугольник (рис. 3).

Рис. 3. Иллюстрация к примеру

Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

Точки называются вершинами треугольника , отрезки — его сторонами . Стороны треугольника образуют в вершинах треугольника три угла.

Основными признаками треугольника являются три стороны и три угла. По величине угла треугольники бывают остроугольные, прямоугольные и тупоугольные.

Треугольник называется остроугольным, если все три угла его острые, то есть меньше 90° (рис. 4).

Рис. 4. Остроугольный треугольник

Треугольник называется прямоугольным, если один из его углов равен 90° (рис. 5).

Рис. 5. Прямоугольный треугольник

Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).

Рис. 6. Тупоугольный треугольник

По числу равных сторон треугольники бывают равносторонние, равнобедренные, разносторонние.

Равнобедренным называется треугольник, у которого две стороны равны (рис. 7).

Рис. 7. Равнобедренный треугольник

Эти стороны называются боковыми , третья сторона — основанием . В равнобедренном треугольнике углы при основании равны.

Равнобедренные треугольники бывают остроугольными и тупоугольными (рис. 8).

Рис. 8. Остроугольный и тупоугольный равнобедренные треугольники

Равносторонним называется треугольник, у которого все три стороны равны (рис. 9).

Рис. 9. Равносторонний треугольник

В равностороннем треугольнике все углы равны . Равносторонние треугольники всегда остроугольные.

Разносторонним называется треугольник, у которого все три стороны имеют разную длину (рис. 10).

Рис. 10. Разносторонний треугольник

Выполните задание. Распределите данные треугольники на три группы (рис. 11).

Рис. 11. Иллюстрация к заданию

Сначала распределим по величине углов.

Остроугольные треугольники: № 1, № 3.

Прямоугольные треугольники: № 2, № 6.

Тупоугольные треугольники: № 4, № 5.

Эти же треугольники распределим на группы по числу равных сторон.

Разносторонние треугольники: № 4, № 6.

Равнобедренные треугольники: № 2, № 3, № 5.

Равносторонний треугольник: № 1.

Рассмотрите рисунки.

Подумайте, из какого куска проволоки сделали каждый треугольник (рис. 12).

Рис. 12. Иллюстрация к заданию

Можно рассуждать так.

Первый кусок проволоки разделен на три равные части, поэтому из него можно сделать равносторонний треугольник. На рисунке он изображен третьим.

Второй кусок проволоки разделен на три разные части, поэтому из него можно сделать разносторонний треугольник. На рисунке он изображен первым.

Третий кусок проволоки разделен на три части, где две части имеют одинаковую длину, значит, из него можно сделать равнобедренный треугольник. На рисунке он изображен вторым.

Сегодня на уроке мы познакомились с различными видами треугольников.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Nsportal.ru ().
  2. Prosv.ru ().
  3. Do.gendocs.ru ().

Домашнее задание

1. Закончите фразы.

а) Треугольником называется фигура, которая состоит из …, не лежащих на одной прямой, и …, попарно соединяющих эти точки.

б) Точки называются , отрезки — его . Стороны треугольника образуют в вершинах треугольника ….

в) По величине угла треугольники бывают … , … , … .

г) По числу равных сторон треугольники бывают … , … , … .

2. Начертите

а) прямоугольный треугольник;

б) остроугольный треугольник;

в) тупоугольный треугольник;

г) равносторонний треугольник;

д) разносторонний треугольник;

е) равнобедренный треугольник.

3. Составьте задание по теме урока для своих товарищей.

При изучении математики ученики начинаются знакомиться с различными видами геометрических фигур. Сегодня речь пойдет о различных видах треугольников.

Определение

Геометрические фигуры, которые состоят из трех точек, которые не находятся на одной прямой, называются треугольниками.

Отрезки, соединяющие точки, называются сторонами, а точки – вершинами. Вершины обозначаются большими латинскими буквами, например: A, B, C.

Стороны обозначаются названиями двух точек, из которых они состоят – AB, BC, AC. Пересекаясь, стороны образуют углы. Нижняя сторона считается основанием фигуры.

Рис. 1. Треугольник ABC.

Виды треугольников

Треугольники классифицируют по углам и сторонам. Каждый из видов треугольника имеет свои свойства.

Существует три вида треугольников по углам:

  • остроугольные;
  • прямоугольные;
  • тупоугольные.

Все углы остроугольного треугольника острые, то есть градусная мера каждого составляет не более 90 0 .

Прямоугольный треугольник содержит прямой угол. Два других угла всегда будут острыми, так как иначе сумма углов треугольника превысит 180 градусов, а это невозможно. Сторона, которая, находится напротив прямого угла, называется гипотенузой, а две другие катетами. Гипотенуза всегда больше катета.

Тупоугольный треугольник содержит тупой угол. То есть угол, величиной больше 90 градусов. Два других угла в таком треугольника будут острыми.

Рис. 2. Виды треугольников по углам.

Пифагоровым треугольником называется прямоугольник, стороны которого равны 3, 4, 5.

Причем, большая сторона является гипотенузой.

Такие треугольники часто используются для составления простых задач в геометрии. Поэтому, запомните: если две стороны треугольника равны 3, то третья обязательно будет 5. Это упростит расчеты.

Виды треугольников по сторонам:

  • равносторонние;
  • равнобедренные;
  • разносторонние.

Равносторонний треугольник – это треугольник, у которого все стороны равны. Все углы такого треугольника равны 60 0 , то есть он всегда является остроугольным.

Равнобедренный треугольник – треугольник, у которого только две стороны равны. Эти стороны называются боковыми, а третья – основанием. Кроме того, углы при основании равнобедренного треугольника равны и всегда являются острыми.

Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.

Если в задаче нет никаких уточнений по поводу фигуры, то принято считать, что речь идет о произвольном треугольнике.

Рис. 3. Виды треугольников по сторонам.

Сумма всех углов треугольника, независимо от его вида, равна 1800.

Напротив большего угла находится большая сторона. А также длина любой стороны всегда меньше суммы двух других его сторон. Эти свойства подтверждаются теоремой о неравенстве треугольника.

Существует понятие золотого треугольника. Это равнобедренный треугольник, у которого две боковые стороны пропорциональны основе и равны определенному числу. В такой фигуре углы пропорциональны соотношению 2:2:1.

Задача:

Существует ли треугольник, стороны которого равны 6 см., 3 см., 4 см.?

Решение:

Для решения данного задания нужно использовать неравенство a

Что мы узнали?

Из данного материала из курса математики 5 класса, мы узнали, что треугольники классифицируются по сторонам и величине углов. Треугольники имеют определенные свойства, которые можно использовать при решении заданий.

Деление треугольников на остроугольные, прямоугольные и тупоугольные. Классификация по соотношению сторон делит треугольники на разносторонние, равносторонние и равнобедренные. Причем каждый треугольник одновременно принадлежит к двум . Например, он может быть прямоугольным и разносторонним одновременно.

Определяя вид по типу углов, очень внимательны. Тупоугольным будет называться такой треугольник, у которого один из углов является , то есть составляет боле 90 градусов. Прямоугольный треугольник может быть вычислен по наличию одного прямого (равного 90 градусам) угла. Однако чтобы классифицировать треугольник как остроугольный, вам нужно будет убедиться, что все три его угла острыми.

Определяя вид треугольника по соотношению сторон, для начала вам придется узнать длины всех трех сторон. Однако если по условию длины сторон вам не даны, помочь вам смогут углы. Разносторонним будет являться треугольник, все три стороны которого имеют разную длину. Если длины сторон неизвестны, то треугольник может быть классифицирован как разносторонний в случае, если все три его угла являются разными. Разносторонний треугольник может быть тупоугольным, прямоугольным и остроугольным.

Равнобедренным будет являться треугольник, две из трех сторон которого равны между собой. Если длины сторон вам не даны, ориентируйтесь по двум равным между собой углам. Равнобедренный треугольник, как и разносторонний, может быть и тупоугольным, и прямоугольным и остроугольным.

Равносторонним может быть только такой треугольник, все три стороны которого имеют одинаковую длину. Все его углы также равны между собой, и каждый из них равен 60-ти градусам. Отсюда ясно, что равносторонние треугольники всегда являются остроугольными.

Простейший из многоугольников – это треугольник. Он образуется при помощи трех точек, лежащих в одной плоскости, но не лежащих на одной прямой, попарно соединенных отрезками. Тем не менее, треугольники бывают разных типов, а значит, обладают разными свойствами.

Инструкция

Принято выделять три типа : тупоугольные, остроугольные и прямоугольные. Это по типу углов. Тупоугольным называется треугольник, у которого один из углов является тупым. Тупым называется угол, имеющий величину больше девяноста градусов, но меньше ста восьмидесяти. Например, в треугольнике ABC угол ABC равен 65°, угол BCA равен 95°, угол CAB равен 20°. Углы ABC и CAB меньше 90°, но угол BCA больше, значит, треугольник тупоугольный.

Остроугольным называется треугольник, у которого все углы являются острыми. Острым называется угол, имеющий величину меньше девяноста и больше нуля градусов. Например, в треугольнике ABC угол ABC равен 60°, угол BCA равен 70°, угол CAB равен 50°. Все три угла меньше 90°, значит треугольник . Если вам известно, что у треугольника все стороны равны, это значит, что все углы у него тоже равны между собой, при этом равны шестидесяти градусам. Соответственно, все углы в таком треугольнике меньше девяноста градусов, а следовательно такой треугольник является остроугольным.

Если в треугольнике один из углов равен девяноста градусам, это значит, что он не относится ни широкоугольному типу, ни к остроугольному. Это прямоугольный треугольник.

Если вид треугольника определять по соотношению сторон, они будут равносторонние, разносторонние и равнобедренные. В равностороннем треугольнике все стороны равны, а это, как вы выяснили, говорит о том, что треугольник остроугольный. Если у треугольника равны только две стороны или стороны не равны между собой, он может быть и тупоугольным, и прямоугольным, и остроугольным. Значит, в этих случаях необходимо вычислить или измерить углы и делать умозаключения, согласно пунктам 1, 2 или 3.

Видео по теме

Источники:

  • тупоугольный треугольник

Равенство двух или более треугольников соответствует случаю, когда все стороны и углы данных треугольников равны. Однако существует ряд более простых критериев для доказательства данного равенства.

Вам понадобится

  • Учебник по геометрии, лист бумаги, простой карандаш, транспортир, линейка.

Инструкция

Откройте учебник по геометрии седьмого класса на параграфе о признаках равенства треугольников. Вы увидите, что существует ряд основных признаков, доказывающих равенство двух треугольников. Если два треугольника, равенство которых проверяется, являются произвольными, то для них существует три основных признака равенства. Если же известна какая-то дополнительная информация о треугольниках, то основные три признака дополняются еще несколькими. Это относится, например, к случаю равенства прямоугольных треугольников.

Прочитайте первое правило о равенстве треугольников. Как известно, оно позволяет считать треугольники равными, если можно доказать, что какой-либо один угол и две прилегающие к нему стороны двух треугольников равны. Для того чтобы понять, данный закон, начертите на листе бумаги с помощью транспортира два одинаковых определенных угла, образованных двумя лучами, исходящими из одной точки. Отмерьте линейкой одинаковые стороны от вершины нарисованного угла в обоих случаях. Используя транспортир, измерьте величины полученных углов двух образованных треугольников, убедитесь, что они равны.

Для того чтобы не прибегать к таким практическим мерам для понимания признака равенства треугольников, прочитайте доказательство первого признака равенства. Дело в том, что каждое правило о равенстве треугольников имеет строгое теоретическое доказательство, просто его не удобно использовать в целях запоминания правил.

Прочитайте второй признак равенства треугольников. Он гласит, что два треугольника будут равны в том случае, если какая-либо одна сторона и два прилегающие к ней угла двух таких треугольников равны. Для того чтобы запомнить данное правило, представьте нарисованную сторону треугольника и два прилежащих к ней угла. Представьте, что длины сторон углов постепенно увеличиваются. В конце концов, они пересекутся, образуя третий угол. В данной мысленной задаче важным является то, что точка пересечения сторон, которые мысленно увеличиваются, а также полученный угол однозначно определяются третьей стороной и двумя прилегающими к ней углами.

Если вам не дана никакая информация об углах исследуемых треугольников, то используйте третий признак равенства треугольников. По данному правилу, два треугольника считаются равными, если все три стороны одно из них равны соответствующим трем сторонам другого. Таким образом, данное правило говорит о том, что длины сторон треугольника однозначно определяют все углы треугольника, а значит, они однозначно определяют и сам треугольник.

Видео по теме

Тупоугольный треугольник — определение, формулы, свойства, примеры

Тупоугольный треугольник — это треугольник, один из внутренних углов которого больше 90 градусов. В геометрии треугольники рассматриваются как двумерные замкнутые фигуры с тремя сторонами одинаковой или разной длины и тремя углами одинаковой или разной величины. Основываясь на длине, углах и свойствах, существует шесть видов треугольников, которые мы изучаем в геометрии: разносторонний треугольник, прямоугольный треугольник, остроугольный треугольник, тупоугольный треугольник, равнобедренный треугольник и равносторонний треугольник.

Если один из внутренних углов треугольника больше 90°, то треугольник называется тупоугольным. Давайте узнаем больше о тупоугольных треугольниках, их свойствах, необходимых формулах и решим несколько примеров, чтобы лучше понять концепцию.

Что такое тупоугольный треугольник?

Тупоугольный треугольник или тупоугольный треугольник — это тип треугольника, у которого один из углов при вершине больше 90°. В тупоугольном треугольнике один из углов при вершине тупой, а остальные углы острые, т.е. если один из углов больше 90°, то сумма двух других углов меньше 90°. Сторона, противоположная тупому углу, считается самой длинной. Например, в треугольнике ABC три стороны треугольника измеряют a, b и c, причем c — самая длинная сторона треугольника, поскольку она противоположна тупому углу. Следовательно, треугольник является тупоугольным, где a 2 + b 2 < c 2

Тупоугольный треугольник может быть разносторонним или равнобедренным, но никогда не будет равносторонним, поскольку у равностороннего треугольника равные стороны и углы, где каждый угол равен 60°.Точно так же треугольник не может быть одновременно тупоугольным и прямоугольным, поскольку в прямоугольном треугольнике один угол равен 90°, а два других угла острые. Следовательно, прямоугольный треугольник не может быть тупоугольным и наоборот. Центроид и входящий центр лежат внутри тупоугольного треугольника, а центр описанной окружности и ортоцентр лежат вне треугольника.

В треугольнике ниже один угол больше 90°. Поэтому его называют тупоугольным треугольником или просто тупоугольным треугольником.

Формула тупоугольного треугольника

Существуют отдельные формулы для вычисления периметра и площади тупоугольного треугольника. Изучим каждую из формул подробно.

Периметр тупоугольного треугольника

Периметр тупоугольного треугольника равен сумме мер всех его сторон. Отсюда формула периметра тупоугольного треугольника:

.

Периметр тупоугольного треугольника = (a + b + c) единиц.

Площадь тупоугольного треугольника

Чтобы найти площадь тупоугольного треугольника, перпендикулярная линия строится вне треугольника, где получена высота. Так как в тупоугольном треугольнике значение одного угла больше 90°. Получив высоту, мы можем найти площадь тупоугольного треугольника, применив формулу, указанную ниже.

В данном тупоугольном треугольнике ΔABC мы знаем, что треугольник имеет три высоты от трех вершин до противоположных сторон.Высота или высота от острых углов тупоугольного треугольника лежит вне треугольника. Продлеваем основание, как показано, и определяем высоту тупоугольного треугольника.

Площадь треугольника ΔABC = 1/2 × h × b, где BC — основание, а h — высота треугольника.

Площадь тупоугольного треугольника = 1/2 × основание × высота

Площадь тупоугольного треугольника по формуле Герона

Площадь тупоугольного треугольника также можно найти по формуле Герона.Рассмотрим треугольник ΔABC со сторонами a, b и c.

Формула Герона для нахождения площади тупоугольного треугольника: \(\sqrt {s(s — a)(s — b)(s — c)}\) , где (a + b + c) периметр треугольника, а S — полупериметр, который определяется выражением (s): = (a + b + c)/2

Свойства тупоугольных треугольников

Каждый треугольник имеет свои свойства, которые их определяют. Тупоугольный треугольник имеет четыре различных свойства.Давайте посмотрим, какие они:

Свойство 1: Самая длинная сторона треугольника — это сторона, противоположная тупому углу. Рассмотрим ΔABC, сторона BC — это наибольшая сторона, противоположная тупому углу ∠A. См. изображение ниже для справки.

Свойство 2: В треугольнике может быть только один тупой угол. Мы знаем, что сумма углов треугольника равна 180°. Рассмотрим тупоугольный треугольник, показанный ниже. Мы можем заметить, что один из углов больше 90°, что делает его тупым.Например, если один из углов равен 91°, сумма двух других углов будет равна 89°. Следовательно, в треугольнике не может быть двух тупых углов, так как сумма всех углов не может превышать 180 градусов. Обратите внимание на изображение, приведенное ниже, чтобы понять то же самое с иллюстрацией.

Свойство 3: Сумма двух других углов тупоугольного треугольника всегда меньше 90°. Мы только что узнали, что когда один из углов тупой, сумма двух других углов меньше 90°.

В приведенном выше треугольнике ∠1 > 90°. Мы знаем, что по свойству суммы углов сумма углов треугольника равна 180°. Следовательно, ∠1 + ∠2 + ∠3 = 180° и ∠1 > 90°

Вычитая два предыдущих, мы имеем ∠2 + ∠3 < 90°.

Свойство 4: Центр описанной окружности и ортоцентр тупоугольного треугольника лежат вне треугольника. Ортоцентр (O), точка, в которой пересекаются все высоты треугольника, лежит снаружи тупоугольного треугольника. Как видно на изображении ниже:

Центр окружности (H), срединная точка всех вершин треугольника, лежит снаружи тупоугольного треугольника. Как видно на изображении ниже:

☛Похожие статьи о тупоугольном треугольнике

Ознакомьтесь с этими интересными статьями о тупоугольном треугольнике. Нажмите, чтобы узнать больше!

Часто задаваемые вопросы о тупоугольном треугольнике

Что такое тупоугольный треугольник?

Тупоугольный треугольник – это треугольник, в котором один из внутренних углов больше 90°.У него один из углов при вершине тупой, а другие углы — острые, т. е. когда один угол больше 90°, сумма двух других углов меньше 90°. Тупоугольный треугольник также можно назвать тупоугольным треугольником. В общем, тупоугольный треугольник может быть разносторонним треугольником или равнобедренным треугольником, но не равносторонним треугольником. Центр описанной окружности и ортоцентр лежат вне треугольника, а центроид и центр вписанной окружности находятся внутри тупоугольного треугольника.

Возможен ли треугольник с одним тупым и одним прямым углом?

Нет, в треугольнике не может быть одного тупого и одного прямого угла вместе, так как в прямоугольном треугольнике один угол равен 90°, а два других угла острые.Следовательно, прямоугольный треугольник не может быть тупоугольным и наоборот.

Может ли треугольник иметь два тупых угла?

Нет, в треугольнике не может быть более одного тупого угла, так как угол > 90° + угол > 90° = угол >180°. Поскольку сумма углов треугольника в евклидовой геометрии должна быть равна 180°, ни один евклидов треугольник не может иметь более одного тупого угла.

Как узнать, является ли треугольник тупым по длинам сторон?

Самая длинная сторона треугольника считается противоположной стороной тупого угла.Если a, b, c — три стороны треугольника, такие что a 2 + b 2 < c 2 , то треугольник будет иметь тупой угол и будет тупым треугольником.

Как узнать, что треугольник тупоугольный?

Чтобы определить, является ли треугольник тупым, мы можем посмотреть на упомянутые углы. Если один угол больше 90°, а два других угла меньше, а их сумма меньше 90°, то можно сказать, что треугольник тупоугольный. Например, ΔABC имеет такие угловые меры: ∠A = 120°, ∠A = 40°, ∠A = 20°.Этот треугольник тупоугольный, потому что ∠A = 120°.

Каковы свойства тупоугольного треугольника?

Вот свойства тупоугольных треугольников:

  • Самая длинная сторона треугольника — это сторона, противоположная тупому углу.
  • В треугольнике не может быть более одного тупого угла.
  • Сумма двух других углов тупоугольного треугольника всегда меньше 90°.
  • Центр описанной окружности и ортоцентр тупоугольного треугольника лежат вне треугольника.
  • Сумма квадратов двух сторон меньше квадрата третьей стороны.

Равнобедренный тупоугольный треугольник — свойства, определение, формула и примеры

Равнобедренный тупоугольный треугольник – это треугольник, в котором один из трех углов тупой (лежит между 90 и 180 градусами), а два других острых угла равны по измерению. Один пример углов равнобедренного тупого треугольника составляет 30 °, 30 ° и 120 °.

Определение равнобедренного тупоугольного треугольника

В геометрии равнобедренный тупоугольный треугольник можно рассматривать как треугольник, который сочетает в себе свойства как равнобедренного, так и тупоугольного треугольника.Напомним значение равнобедренных и тупоугольных треугольников.

  • Равнобедренный треугольник — это треугольник, в котором любые два угла треугольника равны по измерению. И две стороны, противоположные этим равным углам, также равны по длине.
  • Тупоугольный треугольник — это треугольник, в котором один из углов лежит в пределах от 90 до 180 градусов, а два других угла острые (меньше 90°).

Посмотрите на изображение тупоугольного равнобедренного треугольника, приведенное ниже, чтобы понять, как он выглядит.△ABC является примером равнобедренного тупоугольного треугольника с тупым углом 120° в вершине A и двумя равными острыми углами в вершинах B и C. Стороны, противоположные равным углам (AB и AC), равны по длине.

Свойства равнобедренного тупоугольного треугольника

Легко идентифицировать тупоугольный равнобедренный треугольник, если мы знаем его свойства. Свойства равнобедренного тупоугольного треугольника перечислены ниже:

  • Он содержит два острых угла и две стороны, противоположные этим углам, равны.
  • Один из углов составляет от 90° до 180°, а два других угла являются острыми углами, каждый из которых меньше 45°.
  • Наибольшей стороной тупоугольного равнобедренного треугольника является сторона, противолежащая тупому углу.
  • Сторона, противоположная тупому углу, является наибольшей стороной. Другими словами, в равнобедренном тупоугольном треугольнике неравная сторона наибольшая.
  • Сумма всех внутренних углов равна 180 градусов.

Формулы равнобедренного тупоугольного треугольника

Формула равнобедренного тупоугольного треугольника полезна для нахождения площади и периметра треугольника.Есть две возможные формулы, которые можно использовать для нахождения площади равнобедренного тупоугольного треугольника на основе предоставленной нам информации.

  • Если длина основания и высота треугольника даны, то площадь = [1/2 × основание × высота] квадратных единиц .
  • Если длина всех трех сторон дана, то площадь = \((sa) \sqrt{s(sb)}\) квадратных единиц , где s = периметр/2 = (2a + b)/2, а — длина равных сторон, а b — длина неравной стороны. {2} (с-б)}\)

    ⇒ \((s-a)\sqrt{(s)(s-b)}\)

    , где a и b — стороны треугольника, а s — полупериметр, который равен (a + a + b)/2 или (2a+b)/2. Посмотрите на приведенное ниже изображение, на котором показаны формулы равнобедренного тупоугольного треугольника для нахождения площади и периметра.

    Чтобы найти периметр равнобедренного тупоугольного треугольника, нам просто нужно сложить длины всех трех сторон. Итак, периметра равнобедренного тупоугольного треугольника = (2a + b) единиц , где a — длина равнобедренной стороны, а b — длина неравнобедренной стороны треугольника.

    Линии симметрии равнобедренного тупоугольного треугольника

    В тупоугольном равнобедренном треугольнике имеется только одна ось симметрии. Она делит треугольник на две равные части. Линия симметрии в тупоугольном равнобедренном треугольнике делит треугольник на две равные части так, что если мы сложим его по линии, то получим две точные копии треугольника. На изображении, приведенном ниже, линия симметрии делит треугольник ABC на две равные части. Угол А, равный 120°, делится на два угла по 60° каждый линией симметрии.

    Также проверьте:

    Часто задаваемые вопросы о равнобедренном тупоугольном треугольнике

    Что такое равнобедренный тупоугольный треугольник?

    Равнобедренный тупоугольный треугольник — это треугольник, относящийся как к тупоугольным, так и к равнобедренным треугольникам. В этом треугольнике один угол тупой, а два других равны по величине и являются острыми углами. Одним из примеров углов тупого равнобедренного треугольника является 40 °, 40 ° и 100 °.

    Возможен ли тупоугольный равнобедренный треугольник?

    Да, равнобедренный тупоугольный треугольник можно нарисовать. Нам просто нужен один тупой угол и два острых угла, каждый меньше 45° и равных по размеру. Некоторые примеры углов равнобедренного тупоугольного треугольника приведены ниже:

    • 30°, 30° и 120°
    • 25°, 25° и 130°
    • 40°, 40° и 100°
    • 15°, 15° и 150°

    Как найти площадь равнобедренного тупоугольного треугольника?

    Площадь тупоугольного равнобедренного треугольника можно рассчитать по формуле: Площадь = 1/2 × основание × высота в квадратных единицах. Основание — это сторона, противоположная вершине, от которой отсчитывается или измеряется высота.

    Каковы свойства равнобедренного тупоугольного треугольника?

    Свойства равнобедренного тупоугольного треугольника перечислены ниже:

    1. Он имеет один тупой угол и два острых угла, равных по размеру и каждый из которых меньше 45 градусов.
    2. Имеют две равные стороны и два равных угла.
    3. Две стороны, противоположные равным углам, равны.
    4. Сторона, противоположная тупому углу, является наибольшей стороной равнобедренного тупоугольного треугольника.
    5. Сумма всех внутренних углов должна быть 180 градусов.
    6. Сумма двух равных острых углов всегда меньше 90 градусов.

    Как нарисовать равнобедренный тупоугольный треугольник?

    Чтобы нарисовать равнобедренный тупоугольный треугольник, проще всего сначала нарисовать отрезок по горизонтали, который будет основанием треугольника.Теперь начертите два угла одинакового размера (каждый должен быть меньше 45 градусов) на обоих концах отрезка. Соедините руки углов. Таким образом, мы получим тупоугольный равнобедренный треугольник.

    Как выглядит равнобедренный тупоугольный треугольник?

    Равнобедренный тупоугольный треугольник выглядит как тупоугольный треугольник с двумя равными сторонами и двумя равными углами, каждый из которых меньше 45 градусов.

    Что такое тупой угол? — Определение и примеры — Видео и стенограмма урока

    Прямые углы

    Говоря о тупых углах, это поможет нам определить прямые углы.Прямой угол равен ровно 90 градусам. Прямой угол легко определить, потому что он образует идеальный квадрат.

    Это распространенные углы, потому что часто люди строят что-то и хотят получить прямой угол. Представьте себе комнаты вашего дома, ваши двери или углы стола без прямых углов!

    Тупые углы

    Тупые углы — это просто углы больше 90 градусов, но меньше 180 градусов.Мы можем заметить их, потому что они простираются за то, что было бы прямым углом.

    Представьте, что вы наклоняете спинку автокресла так, чтобы вам было удобно лечь. Вы толкаете его дальше вертикального положения, ближе к горизонтальному. Там, где встречаются нижняя часть сиденья и спинка, будет тупой угол, потому что вы сдвинули спинку за угол, превышающий 90 градусов. Это может выглядеть примерно так:

    Пунктирная линия указывает на прямой угол. Спинка сиденья явно выдвинута за эту точку, образуя тупой угол.

    Однако тупые углы не обязательно должны быть такими драматичными. Пока угол больше 90 градусов, он тупой, включая этот более тонкий:

    Хотя этот угол едва превышает 90 градусов, он по определению тупой.

    Прямоугольный

    Как насчет этого?

    В то время как угол обычно представляет собой место, где встречаются два отрезка прямой, прямая линия считается углом 180 градусов.

    Если вы снова подумаете о своем автокресле, если вы отодвинете спинку достаточно далеко, все сиденье образует прямую линию. Таким образом, у нас все еще есть два пересекающихся сегмента линии. Когда они это делают, они просто образуют прямую линию. Это 180 градусов или прямая линия, поэтому она не тупая, поскольку угол не меньше 180 градусов.

    Резюме урока

    Тупой угол — это любой угол больше 90 градусов и меньше 180 градусов. Другими словами, если угол, образованный в месте встречи двух отрезков, выходит за пределы прямого угла, он тупой.Думайте об этом как об откинутом автокресле. Все, что находится за пределами идеального вертикального положения под углом 90 градусов, является тупым.

    Ключевые термины

    • угол: пространство, которое образуется в углу при пересечении двух отрезков прямой
    • прямой угол: угол, равный ровно 90 градусам
    • тупой угол: угол, размер которого больше 90 градусов
    Как и в автомобильном кресле с откидной спинкой, тупой угол имеет размер более 90 градусов.

    Результаты обучения

    Этот урок может подготовить вас к демонстрации ваших способностей:

    • Иллюстрировать угол
    • Различать прямые, тупые и специальные тупые углы

    Остроугольные, тупоугольные и прямоугольные треугольники

    Бесплатный урок геометрии для 4 класса об остроугольных, тупоугольных и прямоугольных треугольниках (классификация по углам).Он содержит разнообразные упражнения, в том числе несколько, где учащиеся изучают эти понятия — и даже сумму углов треугольника — рисуя.

    прямые углы
    (ровно 90°)

    тупые углы
    (более 90°, менее 180°)

    острые углы
    (менее 90°)

     
    Прямоугольные треугольники имеют
    ровно один прямой угол.

     

      Тупоугольные треугольники имеют
    ровно одну тупоугольную угол.

    Остроугольные треугольники имеют три
    острые углы. Другими словами,
    ВСЕ углы острые.

     

    1. а. Нарисуйте прямой угол . Тогда
    сделай из него прямоугольный треугольник
    к рисунок с третьей стороны.

         б. Нарисуй еще одну, разные
    прямоугольный треугольник.

     

       в. А право треугольник имеет одну правую сторону
    угол. Два других угла
    в прямоугольном треугольнике острый, правый,
    или тупой?

     

     

     

     

     

    Прямоугольный треугольник имеет один прямой угол. Два других угла _____________________________.

    2.  а. Нарисуйте тупой угол.
    Затем сделайте это в
    тупоугольный треугольник по
    рисунок с третьей стороны.

     

     
     

        б. Нарисуй еще одну, разные
    тупоугольный треугольник.

        в. Ан тупоугольный треугольник имеет один
    тупой угол. Остальные
    два угла тупоугольного треугольника
    острый, правый, или тупой?

     

     

     

    Тупоугольный треугольник имеет один тупой угол. Два других угла _____________________________.

     

    3. а. Нарисуйте остроугольный треугольник.
    Длина сторон может быть любой.

    б. Измерьте его углы.
    Они измеряют _______°,
    _______° и _______°.


     

    4. Обратите внимание на все, что вы сделали до сих пор в этом уроке и заполнить.

    Прямоугольные треугольники имеют ровно 1  _________________ ________________,

    , а два других угла равны _________________ .

    Тупоугольные треугольники имеют ровно 1  _________________ ________________,

    , а два других угла равны _________________ .

    Остроугольные треугольники имеют ___ ____________ углов.

    5. Обозначьте треугольники на картинках как прямоугольный, остроугольный, или тупой.

    а.

    б.

    с.

    д.

    эл.

     

    ф.

     

    г.

     

    7. а. Нарисуйте треугольник с помощью
    Углы 85° и 40°.

    Подсказка: Сначала нарисуйте угол 85°.
             Затем отметьте точку в любом месте
             сторона этого угла должна быть второй
             вершина треугольник.Используйте эту точку
             в качестве вершины для угла 40° и
             нарисуйте угол 40°.

        б. Измерьте третий угол.
    Это _______ градусов.

        в. Что за треугольник это?
    (острый, правильный, тупой)

        д. Чему равна сумма углов?

     

     

     

    8. а. Нарисуйте треугольник с помощью
    Углы 125° и 40°.

        б. Измерьте третий угол.
    Это _______ градусов.

         c. Что это за треугольник?
    (острый, правильный, тупой)

        д. Чему равна сумма углов?

     
     

    9. а. Нарисуйте треугольник с помощью
    Углы 55° и 35°.

        б. Измерьте третий угол.
    Это _______ градусов.

        в. Что это за треугольник?
    (острый, правильный, тупой)

        д. Чему равна сумма углов?

     

     

    Этот урок взят из книги Марии Миллер «Математическая геометрия мамонта 1» и размещен на сайте www. HomeschoolMath.net с разрешения автора. Авторское право © Мария Миллер.




    Тупой угол: что это такое, градусы, примеры и многое другое

    В сегодняшней статье мы узнаем, что такое тупой угол, на различных примерах из повседневной жизни и некоторых упражнениях Smartick.

    Что такое тупой угол?

    Угол — это пространство, разделяемое двумя лучами, которые соединяются в одной вершине. Мы можем найти различные типы углов в зависимости от их амплитуды.

    Если амплитуда больше 90º (90 градусов) и меньше 180º (180 градусов), это говорит нам о том, что это тупой угол .

    Тупой угол также определяется как угол, который образуется, когда луч вращается между 90° и 180° вокруг точки.

    Этот тупой угол равен 130º.

    Если вы хотите освежить память о том, как измерять угол с помощью транспортира, взгляните на этот видеоурок об измерении углов: