Круги эйлера тест – Круги Эйлера (диаграммы Эйлера) ☑️ понятие, виды операций над множествами чисел, примеры и методы решения логических задач, построение диаграммы, онлайн-калькулятор

Тест по теме: "Круги Эйлера". 6 класс

Вариант 1

В классе 38 человек. Из них 16 играют в баскетбол, 17 - в хоккей, 18 - в футбол. Увлекаются двумя видами спорта - баскетболом и хоккеем - четверо, баскетболом и футболом - трое, футболом и хоккеем - пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни футболом. Сколько ребят увлекаются одновременно тремя видами спорта? Сколько ребят увлекается лишь одним из этих видов спорта?

Вариант 2

Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Вариант 3

Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?

Вариант 4

В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры?

Вариант 5

На полке стояло 26 волшебных книг по заклинаниям. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал Рон?

Вариант 6

Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3. Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

Вариант 7

В классе учатся 40 человек. Из них по русскому языку имеют «тройки» 19 человек, по математике – 17 человек и по физике – 22 человека. Только по одному предмету имеют «тройки»: по русскому языку – 4 человека, по математике – 4 человека и по физике – 11 человек. Семь человек имеют «тройки» и по математике и по физике, из них пятеро имеют тройки и по русскому языку. Сколько человек учатся без «троек». Сколько человек имеют «тройки» по двум из трёх предметов.

Вариант 8

В одной семье было много детей. 7 из них любили капусту, 6 – морковь, 5 – горох, 4 – капусту и морковь, 3 – капусту и горох, 2 – морковь и горох, 1 – и капусту, и морковь, и горох. Сколько детей было в семье?

Вариант 9

В группе 29 студентов. Среди них 14 любителей классической музыки, 15-джаза, 14 – народной музыки. Классическую музыку и джаз слушают 6 студентов, народную музыку и джаз – 7, классику и народную – 9. Пятеро студентов слушают всякую музыку, а остальные не любят никакой музыки. Сколько их?

Вариант 10

Учащиеся 5 и 6 классов отправились на экскурсию. Мальчиков было 16, учащихся 6 класса – 24, пятиклассниц столько, сколько мальчиков из 6 класса. Сколько всего детей побывали на экскурсии?

Вариант 11

Из 100 приехавших туристов 75 знали немецкий язык и 83 знали французский. 10 человек не знали ни немецкого, ни французского. Сколько туристов знали оба эти языка?

Вариант 12

Из 40 опрошенных человек 32 любят молоко, 21 – лимонад, а 15 – и молоко, и лимонад. Сколько человек не любят ни молоко, ни лимонад?

Вариант 13

В воскресенье 19 учеников нашего класса побывали в планетарии, 10 – в цирке и 6 – в музее. Планетарий и цирк посетили 5 учеников; планетарий и музей – трое, в цирке и музее был один человек. Сколько учеников в нашем классе, если никто не успел посетить все три места, а трое вообще никуда не ходили?

Вариант 14

В детском лагере отдыхало 70 ребят. Из них 20 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов, а 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке? Сколько ребят заняты спортом?

Вариант 15

4.Из сотрудников фирмы 16 побывали во Франции, 10 – в Италии, 6 – в Англии. В Англии и Италии – пятеро, в Англии и Франции – 6, во всех трёх странах – 5 сотрудников. Сколько человек посетили и Италию, и Францию, если всего в фирме работает 19 человек, и каждый их них побывал хотя бы в одной из названных стран?

Вариант 16

В классе 38 человек. Из них 16 играют в баскетбол, 17 - в хоккей, 18 - в футбол. Увлекаются двумя видами спорта - баскетболом и хоккеем - четверо, баскетболом и футболом - трое, футболом и хоккеем - пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни футболом. Сколько ребят увлекаются одновременно тремя видами спорта? Сколько ребят увлекается лишь одним из этих видов спорта?

Вариант 17

Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Вариант 18

Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?

Вариант 19

В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры?

Вариант 20

На полке стояло 26 волшебных книг по заклинаниям. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал Рон?

Вариант 21

Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3. Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

Вариант 22

В классе учатся 40 человек. Из них по русскому языку имеют «тройки» 19 человек, по математике – 17 человек и по физике – 22 человека. Только по одному предмету имеют «тройки»: по русскому языку – 4 человека, по математике – 4 человека и по физике – 11 человек. Семь человек имеют «тройки» и по математике и по физике, из них пятеро имеют тройки и по русскому языку. Сколько человек учатся без «троек». Сколько человек имеют «тройки» по двум из трёх предметов.

Вариант 23

В одной семье было много детей. 7 из них любили капусту, 6 – морковь, 5 – горох, 4 – капусту и морковь, 3 – капусту и горох, 2 – морковь и горох, 1 – и капусту, и морковь, и горох. Сколько детей было в семье?

Вариант 24

В группе 29 студентов. Среди них 14 любителей классической музыки, 15-джаза, 14 – народной музыки. Классическую музыку и джаз слушают 6 студентов, народную музыку и джаз – 7, классику и народную – 9. Пятеро студентов слушают всякую музыку, а остальные не любят никакой музыки. Сколько их?

Вариант 25

Учащиеся 5 и 6 классов отправились на экскурсию. Мальчиков было 16, учащихся 6 класса – 24, пятиклассниц столько, сколько мальчиков из 6 класса. Сколько всего детей побывали на экскурсии?

Итоговый тест по информатике «Круги Эйлера»


САМОСТОЯТЕЛЬНАЯ РАБОТА: «ЗАДАЧИ НА КРУГИ ЭЙЛЕРА»
1 вариант
Ф.И. класс В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» – символ «&».
В таблице приведены запросы к поисковому серверу. Расположите коды запросов в порядке возрастания количества страниц, которые нашёл поисковый сервер по каждому запросу.
АСолнце | Воздух | Вода
БСолнце & Воздух & Вода
В(Солнце | Воздух) & Вода
ГСолнце | Воздух

ОТВЕТ: В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.
спорт | футбол
спорт | футбол | Петербург | Зенит
спорт & (футбол | Петербург)
спорт | (футбол & Петербург & Зенит)

ОТВЕТ: В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет. Какое количество страниц (в тысячах) будет найдено по запросу: Байрон &Пушкин & Лермонтов
Запрос Найдено страниц (в тысячах)
Байрон &Пушкин 330
Байрон &Лермонтов 220

Байрон &(Пушкин |Лермонтов) 440
Байрон &Пушкин & Лермонтов ?
Решение:
ОТВЕТ:
В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет. Какое количество страниц (в тысячах) будет найдено по запросу Швеция & Норвегия | Финляндия & Норвегия?
Запрос Найдено страниц (в тысячах)
Швеция & Норвегия 330
Финляндия & Норвегия 255
Швеция & Финляндия & Норвегия 220
Швеция & Норвегия | Финляндия &Норвегия ?
Решение:
ОТВЕТ: Миша заполнял таблицу истинности для выражения F. Он успел заполнить лишь небольшой фрагмент таблицы
Каким выражением может быть F?
1) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5
2) ¬x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5
3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5
4) ¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ ¬x5
x1 x2 x3 x4 x5 F
0 1 0 1 1 0
0 1 1 1 0 1
0 1 0 1 0 0
ОТВЕТ: ДОПОЛНИТЕЛЬНО:
Миша заполнял таблицу истинности для выражения F. Он успел заполнить лишь небольшой фрагмент таблицы
Каким выражением может быть F?
1) x1 ∧ x2 ∧ x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6
2) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6
3) ¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ x5 ∧ ¬x6
4) x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ x5 ∨ ¬x6

ОТВЕТ: САМОСТОЯТЕЛЬНАЯ РАБОТА: «ЗАДАЧИ НА КРУГИ ЭЙЛЕРА»
2 вариант
Ф.И. класс В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» – символ «&».
В таблице приведены запросы к поисковому Располжите коды запросов в порядке возрастания количества страниц, которые нашёл поисковый сервер по каждому запросу.
АЛебедь | Рак | Щ

Тест по теме: Круги Эйлера. 6 класс

Вариант 1
В классе 38 человек. Из них 16 играют в баскетбол, 17 - в хоккей, 18 - в футбол. Увлекаются двумя видами спорта - баскетболом и хоккеем - четверо, баскетболом и футболом - трое, футболом и хоккеем - пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни футболом. Сколько ребят увлекаются одновременно тремя видами спорта? Сколько ребят увлекается лишь одним из этих видов спорта?

Вариант 2
Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Вариант 3
Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?

Вариант 4
В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры?

Вариант 5
На полке стояло 26 волшебных книг по заклинаниям. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал Рон?

Вариант 6
Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3. Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

Вариант 7
В классе учатся 40 человек. Из них по русскому языку имеют «тройки» 19 человек, по математике – 17 человек и по физике – 22 человека. Только по одному предмету имеют «тройки»: по русскому языку – 4 человека, по математике – 4 человека и по физике – 11 человек. Семь человек имеют «тройки» и по математике и по физике, из них пятеро имеют тройки и по русскому языку. Сколько человек учатся без «троек». Сколько человек имеют «тройки» по двум из трёх предметов.

Вариант 8
В одной семье было много детей. 7 из них любили капусту, 6 – морковь, 5 – горох, 4 – капусту и морковь, 3 – капусту и горох, 2 – морковь и горох, 1 – и капусту, и морковь, и горох. Сколько детей было в семье?

Вариант 9
В группе 29 студентов. Среди них 14 любителей классической музыки, 15-джаза, 14 – народной музыки. Классическую музыку и джаз слушают 6 студентов, народную музыку и джаз – 7, классику и народную – 9. Пятеро студентов слушают всякую музыку, а остальные не любят никакой музыки. Сколько их?

Вариант 10
Учащиеся 5 и 6 классов отправились на экскурсию. Мальчиков было 16, учащихся 6 класса – 24, пятиклассниц столько, сколько мальчиков из 6 класса. Сколько всего детей побывали на экскурсии?

Вариант 11
Из 100 приехавших туристов 75 знали немецкий язык и 83 знали французский. 10 человек не знали ни немецкого, ни французского. Скольк

КРУГИ ЭЙЛЕРА | Matemat.me

Этот урок посвящен одному очень необычному и красивому способу решения задач.
В 18 веке один из величайших математиков — Леонард Эйлер использовал идею изображения множеств с помощью кругов, которые и получили название: «круги Эйлера». Подробнее кто такой Эйлер, и чем он знаменит вы можете узнать из видеоролика который размещен ниже.

 В конце урока вам нужно будет ответить на вопросы по биографии Эйлера: Кто такой Эйлер и что он сделал для России?

Вы узнали кто такой Леонард Эйлер, чем он знаменит и сколько он сделал для науки.
 Леонард Эйлер «Письма к немецкой принцессе» — скачайте  книгу. Посмотрите  содержание писем. Обратите внимание на стиль изложения.Есть ли среди писем такие,  темы, которых вам показались интересными, и вы бы захотели расширить свои знания о устройстве нашего мира? 

Задачи на круги Эйлера это тип задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи.
Круги Эйлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.
Метод Эйлера является незаменимым при решении некоторых задач, а также упрощает рассуждения. Однако, прежде чем приступить к решению задачи, нужно проанализировать условие.

Ниже представлен видеоролик с разбором нескольких задач, посвященных кругам Эйлера.

Посмотрев видео, пройдите тестирование по подобным задачам.

для прохождения тестирования введите свое имя. Тест будет открыт. Возможно, чтобы увидеть вопросы теста, вам придется немного прокрутить информацию вниз.

БОНУС: Я хочу показать вам прекрасное датское видео, которое является хорошей иллюстрацией к теме «Круги Эйлера».
В нем показывается, как у людей из разных слоев общества, с разными интересами, из разных социальных и политических кругов, вдруг находится много общего друг с другом. И, казалось бы, совсем разные группы людей, могут удивительным образом объединяться и пересекаться.
 

Приведите один-два примера объединения совершенно разных, казалось бы, групп людей.

Перейдем к задачам посложнее. Ниже представлены  задачи, в которых речь идет уже о пересечениях и объединениях трех множеств.

три круга нов


Пройдите тестирование по подобным задачам.
для прохождения тестирования введите свое имя. Тест будет открыт. Возможно, чтобы увидеть вопросы теста, вам придется  прокрутить информацию вниз.

Сегодня мы познакомились с новым для вас способом решения задач с помощью кругов Эйлера. Узнали некоторые факты его биографии. И увидели, где в жизни встречаются ситуации, связанные с кругами Эйлера.

Домашнее задание:

I) Дайте ответы на вопросы либо с помощью Googl формы, либо просто вышлите ответы по почте [email protected]

1.Посмотрите видеоролик «Биография Эйлера» и дайте ответ на вопрос :» Кто такой Леонард Эйлер». 

2. Что он сделал для России?

3. Скачайте, или пролистайте книгу Эйлера  «Письма к немецкой принцессе»  Посмотрите  содержание писем. Есть ли среди писем такие,  темы, которых вам показались интересными? И вы бы захотели расширить свои знания о устройстве нашего мира. Напишите название одной-двух тем.

4. Посмотрите видеоролик датского телевидения. Приведите один-два примера объединения совершенно разных, казалось бы, групп людей.

Критерии оценивания домашнего задания.

Домашняя работа состоит из двух уровней. Свой уровень выбирайте сами. При желании, можете выполнить задания из обоих уровней.

1 уровень —  Ответить на вопросы и пройти тест по теме «Круги Эйлера. 2 множества.»
2 уровень —  Самому составить и решить задачу на пересечение трех кругов. Выслать электронный вариант оформленной и решенной задачи (в форме презентации, в формате word или каком то другом — выбирайте сами ) мне на почту: [email protected]

Урок закончен! 🙂 

Здесь представлена коллекция задач, составленная учащимися Гуманитарного Лицея г Ижевска в 2016-2017 году как итог нашего занятия по кругам Эйлера. Нажмите на выделенный текст для того, чтобы посмотреть коллекцию.

исследовательская работа "Решение задач с помощью кругов Эйлера"

ГУ «Челгашинская средняя школа»

отдела образования акимата Карасуского района Костанайской области

Научно - исследовательская работа

«Решение задач с помощью кругов Эйлера»

Выполнила: Лукс Анастасия

ученица 9 класса

Руководитель: Гладких Оксана Александровна

учитель математики

Челгаши, 2016 г

Содержание:

2.1

Теоретические основы о кругах Эйлера..............................................

2.2

Решение задач с помощью кругов Эйлера..........................................

2.3

Зачем нужны круги Эйлера?.................................................................

2.4

Задачи для самостоятельного решения................................................

Заключение...........................................................................................................

Список использованной литературы..................................................................

Приложение...........................................................................................................

Аннотация

В данной работе подобраны задачи, решаемые с помощью кругов Эйлера, здесь так же содержится исторический материал, теоретические справки. Тематика подобранных задач разнообразна, и включает в себя как задачи, разбираемые в школьной программе, так и нестандартные, олимпиадные. Актуальность этой работы определяется успешным применением комбинаторики и ее приложений в различных областях науки и сферы. Усиление интереса к комбинаторике в последнее время обуславливается бурным развитием кибернетики и вычислительной техники.

Введение

Во все времена представителям самых различных специальностей приходится решать задачи, в которых рассматриваются те или иные комбинации, составленные из букв, цифр и иных объектов.

Комбинаторика – раздел математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из данных объектов.

Выбор объектов и расположением их в том или ином порядке приходится заниматься чуть ли не во всех областях человеческой деятельности, например конструктору, разрабатывающему новую модель механизма, учёному-агроному, планирующему распределение сельскохозяйственных культур на нескольких полях, химику, изучающему строение органических молекул, имеющих данный атомный состав.

Гипотеза работы: Показать, что решение комбинаторных задач с помощью кругов Эйлера имеет практическое применение.

Основополагающий вопрос: А все ли мы знаем о комбинаторике?

Проблемно-тематический вопрос: Как решение комбинаторных задач с помощью кругов Эйлера помогают нам в изучении математики, так и в жизни в дальнейшем?

Цель работы: показать широту применения решений комбинаторных задач с помощью кругов Эйлера для привития интереса учащихся к данной науке.

Задачи:

  • Познакомиться с историей возникновения науки комбинаторики;

  • Уметь составлять и решать задачи с помощью кругов Эйлера;

  • Применять полученные знания в дальнейшем обучении;

  • Расширить и углубить представление о практическом значении математики в жизни;

  • Уметь работать с научно-познавательной литературой, анализировать, делать выводы;

  • Работать над созданием собственного банка задач

Актуальность выбранной темы заключается в необходимости решения комбинаторных задач на уроках математики, применении их в жизни, т.к. они имеют социальную значимость, помогают разобраться в новых веяниях жизни. Основа хорошего понимания комбинаторики – умение считать, думать, рассуждать, находить удачные решения задач.

1. Историческая справка

Леонард Эйлер ( 1707 - 1783 ), его называли идеальным математиком 18 века. (Приложение 1)

Эйлеру повезло: он родился в маленькой тихой Швейцарии, куда изо всей Европы приезжали мастера и ученые, не желавшие тратить дорогое рабочее время на гражданские смуты или религиозные распри. Так переселилась в Базель из Голландии семья Бернулли: уникальное созвездие научных талантов во главе с братьями Якобом и Иоганном. По воле случая юный Эйлер попал в эту компанию и вскоре сделался достойным членом базельского питомника гениев.

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику под руководством, первыми образцами которых явились классические монографии Эйлера. Он был прежде всего математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Трудно даже перечислить все отрасли, в которых трудился великий учёный.

Леонард Эйлер написал более 850 научных работ. В одной из них и появились круги. А впервые он их использовал в письмах к немецкой принцессе. Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления». Позднее аналогичный прием использовал ученый Джон Венн (Приложение 2)— британский логик и философ; основные труды в области логики классов; и этот приём назвали «диаграммы Венна», который используется во многих областях: теория множеств, теория вероятностей, логика, статистика, компьютерные науки. При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов и они получили название «круги Эйлера-Венна». Этот метод даёт более наглядное представление о возможном способе изображения условий, зависимости, отношений в логических задачах.

Во многих учебниках математики множество всех действительных чисел изображено с помощью кругов Эйлера. (Приложение 3)

2. Круги Эйлера: почему один раз увидеть лучше, чем сто раз услышать?

2.1.Теоретические основы о кругах Эйлера.

Эйлеровы круги (круги Эйлера) — это принятый в логике способ моделирования, наглядного изображения отношений между объемами понятий с помощью кругов, предложенный знаменитым математиком Л. Эйлером .

Кругами Эйлера называют фигуры, условно изображающие множества и наглядно иллюстрирующие некоторые свойства операций над множествами. В литературе круги Эйлера иногда называют диаграммами Венна (или диаграммами Эйлера - Венна). Круги Эйлера иллюстрируют основные операции над множествами.

Множество представляет собой объединение некоторых объектов или предметов в единую совокупность по каким - либо общим свойствам или законам. Например, множество звезд на небе, множество букв на странице книги, множество правильных дробей со знаменателем 6.

Множества состоят из элементов. Множество задается или перечислением его элементов, или указанием общего свойства элементов множества.

A

b

Например: элемент b принадлежит множеству А (). Множество, которое не содержит ни одного элемента, называется пустым множеством.

Если каждый элемент множества В является и элементом множества А, то множество В называется подмножеством множества А ().

А

В

Рассмотрим два множества, которые имеют общие элементы - множество точек закрашенной части круга.

1. Закрашенная часть круга содержит те и только те элементы, которые входят одновременно и в множество А, и в множество В. Значит, множество точек закрашенной части круга является пересечением множеств А и В ()

hello_html_m5278ec4c.jpg

2. Закрашенная часть круга состоит из тех элементов, которые входят хотя бы в одно из множеств А или В. Значит, множество точек закрашенной части круга является объединением множеств А и В ()

hello_html_m6c27fd79.jpg

Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна, подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.

Наиболее трудной темой для учащихся является «Логика». Решать логические задачи можно, в том числе, и с помощью кругов Эйлера.

2.2. Решение задач с помощью кругов Эйлера

Рассмотрим несколько задач, которые могут быть решены с применением кругов Эйлера на уроках математики.

Задача 1

Из 52 школьников 23 собирают значки, 35 собирают марки, а 16 и значки, и марки. Остальные не увлекаются коллекционированием. Сколько школьников не увлекаются коллекционированием.

Решение

В условии этой задачи не так легко разобраться. Если сложить 23 и 35, то получится больше 52. Это объясняется тем, что некоторых школьников мы здесь учли дважды, а именно тех, которые собирают и значки, и марки.

чтобы легче решать задачу, представим ее данные на следующей схеме

На этой схеме большой круг означает всех школьников, о которых идёт речь. Круг З изображает школьников, собирающих значки (всего их 23), а круг М - школьников, собирающих марки (всего их 35). В пересечении кругов З и М стоит число 16 - это те, кто собирает и значки, и марки. Значит, только значки собирает 23 - 16 = 7 человек, только марки собирает 35 - 16 = 19 человек. Всего марки и значкисобирает19 + 7 + 16 = 42 человека. Остаётся 52 - 42 = 10 человек, не увлечённых коллекционированием. Это число можно вписать в свободное поле круга.

23-16 16 35-16

=7 =19

значки марки

52-(7+16+19)

=10

Ответ: 10 школьников не увлекаются коллекционированием.

Задача 2

В классе 15 мальчиков. Из них 10 человек занимается волейболом и 9 баскетболом. Сколько мальчиков занимается и тем, и другим?

Решение

Изобразим условие с помощью кругов Эйлера. Этот рисунок подсказывает нам рассуждения. Разберём это рассуждение и впишем нужное число в каждую из образовавшихся на диаграмме частей. Только баскетболом занимается 15 - 10 = 5 мальчиков; только волейболом занимается 15 - 9 = 6 мальчиков; в двух секциях занимается 15 - (5+6) = 4 человека.

15-10=5 4 9-5=4

волейб. футб.

15

Ответ: 4 мальчика занимаются двумя видами спорта.

Задача 3

В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С изображает жильцов с собаками, круг К - жильцов с кошками. Сколько жильцов имеют собак? Сколько жильцов имеют кошек? Сколько жильцов не имеют ни кошек, ни собак?

Решение

Изобразим условие с помощью кругов Эйлера. Этот рисунок подсказывает нам рассуждения. Так как только собак имеют 15 жильцов, а собак и кошек 8, то в общем собак имеют 15+8=23 человека; кошек 23 + 8 = 31 человек. Для того чтобы узнать количество жильцов, которые не имеют ни кошек, ни собак надо от 120 - (15 + 8 +23) = 94 человека.

15+8=23 8 23+8=31

собаки кошки

120-(15+8+23)=94

Ответ: 94 жильца не имеют ни кошек, ни собак.

Задача 4

В группе из 80 туристов, приехавших на экскурсию а Москву, 52 хотят посетить Большой театр, 30 - Художественный театр, 12 хотят посетить оба театра, остальные в театры ходить не хотят. Сколько человек не собирается идти а театр?

Решение

Только большой театр посетят: 52-12=40 туристов;

только художественный театр посетят 30-12=18 туристов;

80-(40+18+12)=10 туристов не собираются идти в театр.

52-12=40 12 30-12=18

б.театр х.театр

80-(40+18+12)=10

Ответ: 10 человек не собираются идти в театр.

Задача 5

На пикник поехали 92 человека. Бутерброды с колбасой взяли 50 человек, с сыром - 60 человек, с ветчиной - 40 человек, с сыром и колбасой - 30 человек, с колбасой и ветчиной = 15 человек, с сыром и ветчиной - 25 человек, 5 человек взяли с собой все три вида бутербродов, а несколько человек вместо бутербродов взяли пирожки. Сколько человек взяли с собой пирожки?

Решение

Сначала отметим 5 человек, которые взяли с собой все три вида бутербродов;

затем вычислим:

15 - 5 = 10 человек взяли 2 вида бутербродов с колбасой и ветчиной;

25 - 5 = 20 человек взяли два вида бутербродов с сыром и ветчиной;

30 - 5 = 25 человек взяли два вида бутербродов с сыром и колбасой;

50 - (10 + 5 + 25) = 10 человек взяли бутерброды только с колбасой;

60 - (25 + 5 + 20) = 10 человек взяли бутерброды только с сыром;

40 - (10 + 5 + 20) = 5 человек взяли бутерброды только с ветчиной.

Пирожки взяли 92 - (10 + 25 + 10 + 10 + 5 + 20 + 5) = 7 человек.

к 50

30-5 15-5

5

с 60 25-5 в 40

92

Ответ: 7 человек взяли с собой пирожки.

Задача 6

В классе 30 человек. 20 из них каждый день пользуются метро, 15 – автобусом, 23 – троллейбусом, 10 – и метро, и троллейбусом, 12 – и метро, и автобусом, 9 – и троллейбусом, и автобусом. Сколько человек ежедневно пользуется всеми тремя видами транспорта?

Решение

1 способ. Для решения опять воспользуемся кругами Эйлера. Пусть х человек пользуется всеми тремя видами транспорта. Тогда пользуются только:

метро и троллейбусом – (10 – х) человек,
автобусом и троллейбусом–(9 – х) человек,
метро и автобусом – (12 – х) человек.

Найдем, сколько человек пользуется одним только

метро: 20 – (12 – х) – (10 – х) – х = х – 2.

автобусом: 15 - (12 - х) - (9 - х) - х = х – 6

троллейбусом: 23 - (10 - х) - (9 - х) - х = х + 4, так как всего 30 человек, составляем уравнение: х+(12 – х)+(9 – х)+(10 – х)+(х + 4)+(х – 2)+ х – 6) =30, отсюда х = 3.

м 20

12-х 10-х

а х т

15 9-х 23

30

2 способ. А можно эту задачу решить задачу другим способом: 20 + 15 + 23 – 10 – 12 – 9 + х = 30, 27 + х = 30, х = 3. Здесь сложили количество учеников, которые пользуются хотя бы одним видом транспорта и из полученной суммы вычли количество тех, кто пользуется двумя или тремя видами и, потому что, вошли в сумму 2-3 раза. Таким образом, получили количество всех учеников в классе.

Ответ: 3 человека ежедневно пользуются всеми тремя видами транспорта.

Задача 7

Школа представила отчёт: "Всего в школе 60 шестиклассников, из них 37 отличников по математике, 33 - по русскому языку и 42 - по физкультуре. При этом у 21 человека "пятёрки" и по математике и по русскому, у 23 - по математике и по физкультуре, у 22 - по русскому и по физкультуре. При этом 20 человек учатся на "отлично" по всем трём предметам. Верен ли отчёт школы?

Решение

Изобразим условие с помощью кругов Эйлера.

Сначала отметим 20 человек, которые учатся на "отлично" по всем трём предметам.

Затем выясним, сколько человек имеет отличные оценки по двум предметам.

21 - 20 = 1 ученик имеет "пятёрки" по русскому и по математике;

22 - 20 = 2 ученика имеют " пятёрки" по русскому языку и физкультуре;

23 - 20 = 3 ученика имеют пятёрки по математике и физкультуре.

Далее выясним, сколько учеников имеют "пятёрки" только по одному из трёх предметов.

37 - (3 +20 +1) = 13 учеников имеют отличные оценки только по математике;

33 - (1 + 20 + 2) = 10 учеников учатся на "отлично" по русскому языку;

42 - (3 + 20 +2) = 17 учеников имеют "пятёрки" по физкультуре.

Выясним, совпадает ли количество учеников - отличников с количеством шестиклассников в школе.

13 + 1 + 10 +2 + 20 + 3 +17 = 66 учеников учатся на отлично.

66>60

М 37

21-20 23-20

Р 33 20 42 Ф

22-20

60

Ответ: отчёт школы неверен.

Задача 8

В классе учатся 40 человек. Из них по русскому имеют «тройки» 19 человек, по математике – 17 человек и по физике – 22 человека. Только по одному предмету имеют «тройки»: по русскому языку – 4 человека, по математике – 4 человека и по физике – 11 человек. Семь человек имеют «тройки» и по математике, и по физике, из них пятеро имеют «тройки и по русскому языку. Сколько людей учатся без «троек»? Сколько людей имеют «тройки» по двум из трёх предметов?

Решение

Изобразим условие с помощью кругов Эйлера. Сначала отметим тех 5 человек, кто имеет тройки по всем трём предметам. Затем тех, кто имеет тройки по двум предметам. Дальнейшие расчёты не составляют труда.

40-(4+4+11+4+6+2+5)=4 человека учатся без «троек»

6+4+2=12 человек имеют «тройки» по двум предметам

Р 4

19-(5+4+4) 22-(7+11)

=6 =4

М 5 Ф

4 7-5=2 11

40

Ответ: 4 человека учатся без «троек», 12 человек имеют «тройки» по двум предметам.

Задача 9

100 шестиклассников участвовали в опросе, в ходе которого выяснялось, какие пирожки нравятся им больше: с мясом, с капустой и картошкой. В результате 20 опрошенных выбрали только с мясом, 28- только с капустой, 12 только с картошкой. Выяснилось, что 13 школьников отдают одинаковое предпочтение пирожкам с мясом и капустой, 6-учеников-с мясом и картошкой, 4 ученика с капустой и картошкой, а 9 ребят совершенно равнодушны к пирожкам. Некоторые из школьников ответили, что одинаково любят и с мясом, и картошкой, и капустой. Сколько таких ребят?

Решение

Пусть X – искомое число учеников, любящие все виды пирожков. Тогда: 20+28+12+13+6+4+9+Х=100 Х=6

мясо

20

6 13

х

12 4 28

картошка капуста

100

Ответ: 6 ребят любят одинаково и с мясом, и картошкой, и капустой.

Задача 10

Ребята заполняли анкету с вопросами об их любимых мультфильмах, созданных киностудией "Мельница". В частности, вопросы были о мультфильмах, повествующих о приключениях трёх самых известных богатырей - Алёши Поповича, Добрыни Никитича и Ильи Муромца.

Оказалось, что большинству из них нравятся "Три богатыря и Шамаханская царица", "Три богатыря на дальних берегах" и "Три богатыря. Ход конём". В анкетировании принимали участие 38 учеников. Мультфильм "ДБ", нравится 21 ученику. Причем трем среди них нравятся еще и "ХК", шестерым - "ШЦ. ", а один ребенок одинаково любит все три мультфильма. У мультфильма "ХК" -13 фанатов, 5 из которых назвали в анкете два мультфильма. Надо определить, скольким ребятам нравится мультфильм "ШЦ".

Решение

Так как по условиям задачи у нас даны три множества, чертим три круга.

Мы помним, что по условиям задачи среди фанатов мультфильма "ХК" пятеро ребят выбрали два мультфильма сразу:

21 – 3 – 6 – 1 = 11 – ребят выбрали только "ДБ "

13 – 3 – 1 – 2 = 7 – ребят в последнее время смотрят только "ХК"

Осталось только разобраться, сколько ребят двум другим вариантам предпочитает мультфильм "ШЦ". От всего количества учеников отнимаем всех тех, кто любит два других мультфильма или выбрал несколько вариантов:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только "ШЦ". Теперь смело можем сложить все полученные цифры и выяснить, что: мультфильм "ШЦ" выбрали 8 + 2 + 1 + 6 = 17 человек. Это и есть ответ на поставленный в задаче вопрос.

Ш.Ц.

38-(6+2+1+11+3+7)=8

6 2

1

21-(3+6+1)=11 13-(5+1)=7

3

Д.Б. Х.К.

38

Ответ: 17 ребятам.

2.3 Зачем нужны круги Эйлера?

Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только.

Если говорить о видах кругов Эйлера, то можно разделить их на те, что описывают объединение каких-то понятий (например, соотношение рода и вида) – мы их рассмотрели на примере в начале работы.

А также на те, что описывают пересечение множеств по какому-то признаку. Таким принципом руководствовался Джон Венн в своих схемах. И именно он лежит в основе многих популярных в интернете мемов. (Приложение 4)

Забавно, правда? И главное, все сразу становится понятно. Можно потратить много слов, объясняя свою точку зрения, а можно просто нарисовать простую схему, которая сразу расставит все по местам.

Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором. Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться. (Приложение 5)

2.4 Задачи для самостоятельного решения.

Задача 1.

В школьных кружках занимаются 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок и хор. Сколько ребят не поют, не увлекаются спортом, не занимаются в драмкружке? Сколько ребят заняты только спортом?

Ответ: 10 ребят не поют, не увлекаются спортом, не занимаются в драмкружке. 11 человек заняты только спортом.

Задача 2.

Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3 . Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

Ответ: 20 человек не умеют кататься ни на одном спортивном снаряде.

Задача 3.

В классе 30 учеников. Все они являются читателями школьной и районной библиотек. Из них 20 ребят берут книги в школьной библиотеке, 15 — в районной. Сколько учеников не являются читателями школьной библиотеки?

Ответ: 10 учеников не являются читателями школьной библиотеки.

Задача 4.

В классе 35 учеников. 24 из них играют в футбол, 18 — в волейбол, 12 — в баскетбол. 10 учеников одновременно играют в футбол и волейбол, 8 — в футбол и баскетбол, а 5 — в волейбол и баскетбол. Сколько учеников играют и в футбол, и в волейбол, и в баскетбол одновременно?

Ответ: 4 ученика играют и в футбол, и в волейбол, и в баскетбол одновременно.

Задача 5.

При опросе 100 учеников 6-х классов выяснилось, что у 78 человек есть планшет, у 85 - смартфон, а у 8 учеников нет ни планшета, ни смартфона. У скольких учеников есть и планшет, и смартфон?

Ответ: 71 ученик имеет и планшет и смартфон

Задача 6.

В детском саду 52 ребенка. Каждый из них любит пирожное или мороженое. Половина детей любят только пирожное, а 20 человек – пирожное и мороженое. Сколько детей любят только мороженое?

Ответ: 6 детей любят только мороженное.

Задача 7.

На стройке работают 30 рабочих. 17 рабочих строят обувной магазин, 20 рабочих строят парикмахерскую. Сколько рабочих работают на обоих объектах?

Ответ: 7 человек работают на обоих объектах.

Задача 8.

Часть туристов разговаривает на английском, а часть на немецком. На английском – 90% , на немецком - 60%.Сколько туристов разговаривают сразу на двух языках.

Ответ: 50% туристов разговаривают сразу на двух языках.

Задача 9.

В классе 30 человек.19-ходят на кружок по математике, 10-на кружок по русскому языку, 1-человек ходит на русский и на математику. Сколько человек не посещают кружки?

Ответ: 2 ученика не посещают кружки.

Задача 10.

Из 90 детей на футбол ходят 35 детей, на волейбол 28 и на баскетбол 27 детей. На футбол и волейбол ходят одновременно 10 детей, на футбол и баскетбол – 8 детей, на волейбол и баскетбол - 5, на все три – 4. Сколько детей никуда не ходят?

Ответ: 19 детей никуда не ходят

Задача 11.

Множество М состоит из m лиц, владеющих хотя бы одним иностранным языком – английским, французским и немецким. Известно, что английским языком владеют 70 лиц, французским 65, немецким.50, английским и французским-40, английским и немецким-20, немецким и французским – 15, а всеми тремя языками-5. Найти m.

Ответ: 115 лиц владеющих хотя бы одним иностранным языком

Задача 12

При обследовании 85 студентов были получены следующие данные о числе студентов, изучающих различные языки: немецкий – 53 человек, французский – 48, немецкий и французский – 28 человек, французский и испанский – 8, немецкий и испанский – 24 человека, все три языка – 7 человек. Сколько студентов изучают испанский язык?

Ответ: 37 студентов изучают только испанский язык.

Задача 13

В группе 25 студентов. Сдали коллоквиум по алгебре: на «5» - 8 человек, на «4» и «5» - 4 человека, на «4» - 10 человек, на «3» - 6 человек, на «3» и «5» - 5 студентов, на «3» и «4» - 4 человека, на «3» и «4» и «5» - 3 студента. Сколько студентов не сдали коллоквиум?

Ответ: 11 студентов не сдали коллоквиум.

Задача 14

Каждый из 50 парней силён, умён, красив. Сильных и умных – 17 человек, умных и красивых – 25 человек, сильных и красивых – 16, сильных – 30, умных – 35, красивых – 28. Сколько парней обладают всеми тремя качествами

Ответ: 15 парней обладают всеми тремя качествами

Задача 15

Каждый из 40 студентов занимаются спортом, из них баскетболом - 21,волейболом - 26, лёгкой атлетикой - 18, баскетболистов и атлетов - 10, волейболистов и баскетболистов - 12, атлетов и волейболистов - 8. Сколько студентов занимаются всеми тремя видами спорта?

Ответ: 5 студентов занимаются всеми тремя видами спорта

Задача 16

Множество М состоит из m студентов, которые занимаются хотя бы в одном кружке математики, физики, астрономии. В математическом - 60, физическом - 50, в астрономическом – 45, в математическом и астрономическом - 26, в физическом и астрономическом - 20, в математическом и физическом -15, во всех трёх кружках 6. Найти m.

Ответ: 100 студентов которые занимаются хотя бы в одном кружке

Задача 17

В группе 35 студентов. Из них отличников 20, спортсменов 15, активистов 16, отличников и спортсменов 7, активистов и отличников 3, активистов и спортсменов 8. Сколько студентов являются отличниками, спортсменами и активистами

Ответ: 2 студента являются отличниками, спортсменами и активистами

Задача 18

Каждая из 45 девушек умна, воспитана или красива. Воспитана и умна -20, красива и умна –10, воспитана и красива –8, воспитанных –30, умных – 25, красивых – 20. Сколько девушек обладает всеми тремя указанными качествами?

Ответ: 8 девушек обладает всеми тремя указанными качествами

Задача 19

Из 220 школьников 163 играют в баскетбол, 175 в футбол, 24 не играют в эти игры. Сколько человек одновременно играют в баскетбол и футбол?

Ответ: 142 одновременно играют в баскетбол и футбол

Задача 20

Среди 35 туристов одним английским владеют 11 человек, английским и французским 5 человек. 9 человек не владеют ни английским, ни французским. Сколько человек владеют только французским языком?

Ответ: 10 человек владеют только французским языком

Задача 21

В течении 30 дней сентября было 12 дождливых дней, 8 ветреных, 4 холодных, 5 дождливых и ветреных, 3 дождливых и холодных и 2 ветреных и холодных, а один день был и дождливым, и ветреным, и холодным. В течении скольких дней в сентябре стояла хорошая погода?

Ответ: В течении 15 дней в сентябре стояла хорошая погода

Заключение

В результате работы над данной темой я изучила теоретический материал по теме "Круги Эйлера" и пришла к следующим выводам:

1. Круги Эйлера – не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Причем не только абстрактных задач на школьных уроках, но и вполне себе житейских проблем. Выбора будущей профессии, например.

2. Применение кругов Эйлера (диаграмм Эйлера-Венна) позволяет легко решить задачи, которые обычным путем разрешимы лишь при составлении системы трех уравнений с тремя неизвестными. Таким образом, моя гипотеза подтвердилась. Автор метода - ученый Леонард Эйлер, говорил о названных его именем схемах: «круги подходят для того, чтобы облегчить наши размышления». Я согласна с его словами. Круги Эйлера помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи.

Список используемой литературы

  1. Дихтярь М. Б., Эргле Е. В. Элементы комбинаторики в школьном курсе математики – Саратов: ГОУ ДПО «СарИПКиПРО», 2007.- 48 с.

  2. Савин А. П. Энциклопедический словарь юного математика – М.: Педагогика, 1989. – 352с.

  3. Коннова Е. Г. Математика. Поступаем в вуз по результатам олимпиад. 6-9 класс. Часть 2. ООО «Легион», 2010. – 112 с.

  4. Коннова Е. Г. Математика. Поступаем в вуз по результатам олимпиад. 6-9 класс. Часть 1. ООО «Легион», 2010. – 112 с.

  5. Глейзер Г. И. история математики в школе: IV – VI кл. Пособие для учителей. М.: Просвещение, 1981. – 239 с.

  6. Гусев В. А., Орлов А. И., Розенталь А. Л. Внеклассная работа по математике в 6-8 классах: книга для учителя. М.: Просвещение, 1984.- 286с

  7. http://ru.wikipedia.org

  8. http://combinatoric.ru.gg

  9. http://dic.academic.ru

  10. http://gultyaeva.blogspot.ru/2010/08/blog-post_21.html

  11. http://fipi.ru/view

Приложение 1

hello_html_m2ec0e4c4.jpg

Леонард Эйлер

Приложение 2

hello_html_m3c92a71c.jpg

Джон Венн

Приложение 3

Множество всех действительных чисел, изображенное с помощью кругов Эйлера

Приложение 4

Популярный в интернете мем (информация в той или иной форме (медиаобъект, фраза, концепция или занятие), как правило остроумная и ироническая, спонтанно приобретшая популярность в интернет-среде посредством распространения в Интернете разнообразными способами)

hello_html_m4c8c3547.jpg

Приложение 5

Как определиться, какую профессию выбрать?

hello_html_4a4ac97d.jpghello_html_m4bc223e.png

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *