Квадратные уравнения с дробями – Решение уравнений с дробями онлайн · Как пользоваться Контрольная Работа РУ

Как решать квадратные уравнения? | Александр Будников

 

Что такое квадратное уравнение? Виды квадратных уравнений. Примеры.

        Обычно квадратные уравнения – одна из самых любимых учениками тем школьной математики. Почему? Потому, что алгоритм решения любого квадратного уравнения достаточно прост и универсален. Работает безотказно. Однако простора для дурацких ошибок при решении квадратных уравнений тоже хватает, да… Так что будем разбираться, что к чему.)

        Начнём с названия.

        Ключевым словом в понятии квадратное уравнение является слово «квадратное». Что оно означает? Оно означает то, что в уравнении обязательно должен присутствовать икс в квадрате. В любом случае. Также в уравнении могут быть (или не быть – как уж повезёт) просто икс (в первой степени) и просто число (свободный член). Но это ещё не всё. При этом в уравнении не должно быть иксов в кубе, в четвёртой и любых других степенях, больших двойки.

        В самом общем виде квадратное уравнение выглядит так:

        

        Здесь a, b, c – какие-то числа. Любые.) Числа b и c могут быть совсем-совсем любыми, а вот а – любым числом, кроме нуля. Почему – объясню чуть ниже.

        Например:

        

        Здесь a=1; b=4; c=-5

        Или такое:

        

        Здесь a=-2; b=-5; c=3

        Или:

        

        Здесь a=0,5; b=-2; c=2

        И так далее…

        В этих уравнениях слева присутствует полный набор слагаемых: есть икс в квадрате (с коэффициентом a), есть просто икс (с коэффициентом b), а также есть свободный член c. Такие квадратные уравнения в математике так и называются —

полными.

        А ещё бывают и такие квадратные уравнения, где чего-то не хватает. Что у нас произойдёт, если, например, обнулить коэффициент b (b=0)? У нас исчезнет икс в первой степени.

        Получится, к примеру, что-то типа:

        x2–9 = 0

        x2+25 = 0

        И так далее…

        А если c=0? Тогда у нас пропадёт свободный член:

        x2-4x = 0

        —x2+10x = 0

        И т.д. и т.п.

        А если уж оба коэффициента a и b станут равны нулю, то тогда совсем всё просто получится:

        0,1x2 = 0

        -3

x2 = 0

        Такие квадратные уравнения, где какого-то из членов не хватает, называются (вы не поверите) неполными.)

        Таким образом, квадратные уравнения бывают двух основных видов – полные и неполные.

        А теперь ответ на вопрос, почему коэффициент a не может быть равен нулю. А давайте подумаем, что у нас произойдёт, если мы обнулим коэффициент а? Да! У нас пропадёт икс в квадрате! Наше уравнение превратится в линейное. И решаться будет уже совсем по-другому…

 

Общая формула корней квадратного уравнения.

       Квадратные уравнения решаются достаточно просто. По одной единственной универсальной формуле. Всего одной!

        И теперь у меня для вас есть две новости – хорошая и плохая. С какой начнём? Принято с плохой начинать? Что ж, ладно…

        Новость плохая. Строгий аналитический вывод общей формулы корней квадратного уравнения достаточно громоздок и основан на процедуре выделения полного квадрата. В большинстве школьных учебников вывод общей формулы корней всё-таки приводят, но я считаю что эта процедура – очередной вынос мозга простому среднестатистическому школьнику. Поэтому в данном уроке я его (вывод) всё-таки опущу.)

        Новость хорошая. Запоминать аналитический вывод формулы корней квадратного уравнения в общем виде и не требуется. Вообще! Гораздо важнее запомнить саму формулу и научиться её применять на практике. Вот мы и попрактикуемся. И уравнения порешаем.)

        «Формула! Где формула?! Ты достал формулу?» — слышу громкие возгласы, как в старом добром рекламном ролике начала 2000-х…

        Достаю, достаю! Из широких штанин… О-па! Вот она, формула!)

        Вот такая формула. Да, я не спорю, довольно громоздкая. Но и уравнение мы решаем всё-таки квадратное, а не более простое линейное…

        Как вы видите, для поиска корней квадратного уравнения нам необходимы только коэффициенты a, b, c. И всё. Больше ничего. Аккуратно подставляем все коэффициенты в формулу и считаем наши корни.

 

Что такое дискриминант? Формула и смысл дискриминанта.

        Выражение b2-4ac, стоящее в формуле под знаком квадратного корня, называется дискриминант. До боли знакомое и родное слово для большинства старшеклассников. Слова «решаем через дискриминант» звучат обнадёживающе и вселяют оптимизм!)

        Обычно дискриминант обозначается буковкой D:

        

        Тогда, с учётом данного обозначения, общая формула корней станет выглядеть вот так:

        

        Сам по себе дискриминант, как правило, прост и безотказен в обращении. Но… В чём его смысл? Почему для, скажем, b или 2a не вводятся какие-то специальные термины и обозначения? Буквы – они и в Африке буквы… А тут – такое красивое слово! Дискриминант…

        А дело вот в чём. При решении любого квадратного уравнения по общей формуле возможны всего три ситуации.

        1. Дискриминант положительный (D>0).

        Это означает, что из него можно извлечь корень. Красиво корень извлекается или некрасиво – вопрос другой. Главное, что извлекается в принципе.

        Тогда наше квадратное уравнение всегда имеет

два различных корня.

Вот они:

        Два – потому, что общая формула в этой ситуации разбивается на два отдельных случая. А именно – какой знак, плюс или минус, берётся перед радикалом. Каждый случай даёт свой корень.

 

        2. Дискриминант равен нулю (D=0)

        Как вы думаете, чему в этом случае будет равен корень из дискриминанта? Нулю, конечно же! А поскольку от прибавления/вычитания нуля в числителе ничего не меняется, то наше уравнение имеет один корень:

        

        Вообще, строго говоря, это не один корень, а два одинаковых. Но в упрощённом виде, когда нам надо просто решить уравнение и получить ответ, принято говорить об одном решении. Поэтому в ответе не заморачиваются и пишут просто одинокий икс, безо всякой индексации

х1,2 .

        Однако в более солидных темах (например, в решении неравенств методом интервалов) этот пунктик, с двумя одинаковыми (или, по-научному, кратными) корнями, настолько важен, что я буду про него напоминать снова и снова.

 

        3. Дискриминант отрицательный (D<0)

        Из отрицательных чисел извлекать квадратный корень в средней школе не учат. Это означает, что уравнение не имеет корней. Ну и ладно. На нет, как говорится, и суда нет.

 

Как решать квадратные уравнения?

        Начнём с полных квадратных уравнений.

 

        Полные квадратные уравнения

        Полное квадратное уравнение (любое!) решается всегда в четыре основных этапа.

        1. Приводим уравнение к стандартному виду:

        

        Всё просто: выстраиваем левую часть уравнения по убыванию степеней икса. На первом месте пишем слагаемое с иксом в квадрате, на втором месте – с иксом в первой степени и, наконец, свободный член. Справа – обязательно должен быть ноль! Если справа тусуются ещё какие-то члены, то переносим их в левую часть и приводим подобные.

        Конечно, если уравнение уже дано в стандартном виде, то первый этап делать не нужно.)

        Как только уравнение представлено в стандартном виде, приступаем ко второму этапу.

 

        2. Внимательно осматриваем уравнение и определяем (правильно!) коэффициенты a, b

и c.

        Если опыта пока что мало, во избежание досадных ошибок бывает очень полезным выписать их отдельно.

 

        3. Считаем дискриминант по формуле D = b2-4ac.

        Внимание! На данном этапе сразу же извлекаем корень из дискриминанта! Если красиво извлекается, конечно.)

 

        4. Подставляем все значения в общую формулу, считаем корни уравнения и записываем ответ.

 

        Вот и весь алгоритм. Простой и безотказный. Ну что, тренируемся на кошках?

        Например, надо решить вот такое уравнение:

        7x2 x – 8 = 0

        Работаем прямо по пунктам.

        1. Приводим уравнение к стандартному виду.

        Уравнение уже дано нам в стандартном виде. Стало быть, уже готово к решению. Слева – полный набор членов, выстроенных по убыванию степеней, а справа – ноль. Посему переходим сразу ко второму этапу.

        2. Внимательно осматриваем уравнение и определяем (правильно!) коэффициенты a, b и c.

        Вот и пишем:

        a = 7; b = -1; c = -8

        3. Считаем дискриминант по формуле D =

b2-4ac.

        Аккуратно подставляем наши коэффициенты a, b и с в формулу дискриминанта. Подставляем со своими знаками! Частенько именно в знаках коэффициентов народ и путается. Точнее, не столько в самих знаках, сколько в подстановке отрицательных значений в формулу дискриминанта. Вот и не ленимся, аккуратно пишем все знаки и скобочки. Трудов много не отнимет, зато гарантированно убережёт от досадных промахов:

        D = b2-4ac = (-1)2 – 4·7·(-8) = 1+224 = 225

        Извлекаем корень из дискриминанта:

        

       Отлично, корень извлекается чисто. Теперь переходим к последнему, самому главному этапу – считаем наши корни.

        4. Подставляем все значения в общую формулу, аккуратно считаем корни уравнения и записываем ответ.

        Опять же, аккуратно подставляем все числа в формулу, со всеми знаками и скобочками:

        

        И считаем:

        

        Вот и всё. Это ответ.)

        Кстати сказать, если вы просто решаете квадратное уравнение, то нет особой нужды отдельно считать дискриминант. Можно работать напрямую с общей формулой, просто аккуратно подставляя в неё коэффициенты a, b и с.

        В нашем случае можно было бы сразу записать:

        

        Но такое оформление чревато тем, что, впопыхах, можно где-нибудь потерять минус. Оно вам надо? Посему лучше считайте дискриминант отдельно – ошибок меньше будет. Естественно, посчитав дискриминант, не забывайте про корень.) Специально акцентирую внимание на этом моменте, потому что сам дискриминант народ обычно считает правильно, а вот корень извлечь частенько забывает… К тому же, привыкнув к отдельному поиску дискриминанта, вы быстрее запомните его общую формулу – в более серьёзных заданиях пригодится. Например, в задачах с параметрами. Такие задачи – высший пилотаж на ЕГЭ!

        Естественно, бывают и сюрпризы. Не без этого… И к ним (к сюрпризам) тоже надо быть готовым, да. Чтобы не растеряться, в случае чего…) Рассмотрим первый сюрприз. Самый безобидный.

        Например, дано нам такое уравнение:

        x2 + 1 = 4x

        Как обычно, работаем прямо по алгоритму.

1. Приводим уравнение к стандартному виду.

        Уравнение пока не готово к решению. Справа нужен ноль, а у нас справа тусуется 4х. Не беда: переносим 4х влево и выстраиваем члены по убыванию степеней:

        x2 – 4х + 1 = 0

2. Внимательно осматриваем уравнение и определяем (правильно!) коэффициенты a, b и c.

В нашем случае:

a = 1; b = -4; c = 1

3. Считаем дискриминант по формуле D = b2-4ac.

        D = b2-4ac = (-4)2 – 4·1·1 = 12

        А вот и первый сюрприз.) Дискриминант не является точным квадратом целого числа! И корень из дискриминанта извлекается плохо:

        

        Что делать? Не решается уравнение? Ну да, как же!

        Ничего страшного.) Работаем прямо с корнем. Естественно, если есть возможность, то выносим всё, что извлекается, за знак корня:

        

4. Подставляем все значения в общую формулу, аккуратно считаем корни уравнения и записываем ответ.

        Поехали:

        

        Корни нашего уравнения получились иррациональными. Ну и ничего страшного. Бывает.) Такой уж пример.

        Открою небольшой секрет. Обычно задания на квадратные уравнения составляются так, чтобы корень из дискриминанта извлекался ровно и, тем самым, корни в ответе получались красивыми – либо целыми, либо рациональными. И народ постепенно привыкает к таким простым примерам наивно полагая, что дискриминант всегда обязан получаться точным квадратом. Не обязан! Более того, суровая реальность такова, что некрасивый дискриминант (а вместе с ним и лохматые иррациональные корни) – скорее правило, чем исключение! И если вы захотите задать какое-нибудь квадратное уравнение, выбрав в нём коэффициенты a, b и с случайным образом, то с вероятностью 99% корни вашего квадратного уравнения будут числами иррациональными.

        Но иррациональных корней вовсе не надо бояться.) Ибо они – точно такие же числа, как и все остальные. Кстати говоря, в более серьёзных заданиях (неравенствах, задачах с параметрами) иррациональные корни встречаются сплошь и рядом. И с ними надо обязательно уметь работать – сравнивать, изображать на числовой оси и т.д. И мы тоже поработаем! В соответствующих уроках.)

        Как видите, процедура решения полных квадратных уравнений проблем не вызывает. Всё просто, быстро, не больно.) Главное – аккуратно подставляйте коэффициенты в формулу дискриминанта и общую формулу корней. И считайте себе.) И что, думаете, ошибиться нельзя? Ну да, как же…

        Вот краткий перечень глупых ошибок при решении квадратных уравнений:

        1. Путаница в знаках. Ошибки в подстановке отрицательных коэффициентов в формулу дискриминанта и в общую формулу корней.

 

        2. Забывают извлечь корень из дискриминанта.

 

        3. При работе с общей формулой корней в знаменатель дроби частенько подставляется не , как положено, а просто двойка. Привыкает, видите ли, народ к простым уравнениям, с первым коэффициентом единичкой (а=1). Внимательнее надо быть, да.)

        Ну и, разумеется, базовые тождественные преобразования уравнений никто не отменял, да.)      

        Например, дано такое уравнение:

        

        Уравнение, в принципе, уже дано нам в стандартном виде. Слева – квадратный трёхчлен, построенный по убыванию степеней, справа – ноль.

        Наши коэффициенты будут:

        a = -1/3; b = 3/2; c = -5

        Можно приступать к решению. Только это… коэффициенты – дробные. Неудобно как-то…

        Согласен, неудобно! Всё-таки лучше, когда уравнение безо всяких дробей, в линеечку.) Вот и избавимся сначала от дробей. На что надо домножить обе части уравнения, чтобы и двойка сократилась и тройка? На 6! Вот и домножаем. Слева получим:

        

        А что будет справа? Справа будет ноль. Ноль на что ни умножай – всё равно ноль будет. Хорошее число.)

        Итого получим:

        -2х2 + 9х – 30 = 0

        И опять не бросаемся решать, считать дискриминант и прочее. Минус перед иксом в квадрате – нехорош. Забыть его очень легко. Посему избавимся от этого минуса умножением обеих частей на (-1). Проще говоря, поменяем слева все знаки:

        2 — 9х + 30 = 0

        Ну вот. А теперь – по накатанной колее. Выписываем коэффициенты:

        a = 2; b = -9; c = 30

        Считаем дискриминант:

        D = b2-4ac = (-9)2 – 4·2·30 = 81-240 = -159

        Вот так штука! А дискриминант-то отрицательный! Не можем мы корень из отрицательного числа извлечь. И сами корни посчитать, стало быть, тоже не можем, да. Стало быть, ответ – решений нет.

        Это был второй сюрприз. Надеюсь, теперь отрицательный дискриминант в каком-нибудь примере вас нисколько не смутит.)

        Это всё что касается полных квадратных уравнений. Теперь переходим к неполным.)

 

        Неполные квадратные уравнения

        Неполными, напоминаю, называются квадратные уравнения, где чего-то не хватает – или bx или с. Или обоих членов сразу.

        Например:

        х2 – 3х = 0

        х2 – 16 = 0

        И так далее.)

        Неполные квадратные уравнение также можно решать через дискриминант, по общей формуле. Надо только правильно догадаться, чему равняются коэффициенты a, b и с.

        Догадались? В первом случае a = 1, b = -3, а свободный член с вообще отсутствует! Что это означает? В математике это означает, что с=0! Вот и всё.)

        Во втором уравнении всё аналогично, только нулю будет равно не с, а b!

        И все дела.)

        Но неполные уравнения можно решать гораздо проще. Безо всяких дискриминантов и безо всяких формул! Зачем же из пушки по воробьям…

        Например, такое уравнение:

        х2 – 3х = 0

        Что здесь можно сделать в левой части? Сильнее всего напрашивается вынести икс за скобки и разложить левую часть на множители. Давайте вынесем:

        х(х-3) = 0

        И что дальше? А то, что произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю! Вот и приравниваем (в уме!) каждый из множителей к нулю и получаем:

        х1 = 0

        х2 = 3

        И все дела! Это и будут корни нашего уравнения. Оба годятся.) При подстановке каждого из них в исходное уравнение мы получим железное равенство 0=0. Как видите, решение куда проще, чем через дискриминант!

        Теперь рассмотрим другое уравнение:

        х2 – 16 = 0

        А здесь что можно сделать? Можно -16 перенести вправо:

        х2 = 16

        Остаётся корень извлечь из 16 и – ответ готов:

        

        Тоже два корня: х1 = -4;  х2 = 4.

        И так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки и разложения на множители, либо же переносом свободного члена вправо с последующим извлечением корня. Спутать эти два способа – надо очень хорошо постараться.) Ибо в первом случае вам пришлось бы корень из икса извлекать, что как-то не очень, а во втором случае выносить за скобки нечего…

        Подытожим тему практическими советами.

        1. Перед решением любого квадратного уравнения приводим его к стандартному виду, выстраиваем левую часть по убыванию степеней.

 

        2. Если в уравнении имеются дробные коэффициенты, избавляемся от дробей умножением всего уравнения на нужный множитель.

 

        3. Если коэффициент перед иксом в квадрате отрицательный, избавляемся от минуса умножением всего уравнения на (-1).

        Ну что, наш урок окончен. Теперь можно и порешать.)

       

        Решить уравнения:

        2x2 – 7x + 3 = 0

        х2x – 30 = 0

        х2 + 6х + 9 = 0

        х2 – 7x = 0

        х2 + 4x + 5 = 0

​        -2x2 + 98 = 0

        x2 + 0,05x – 0,05 = 0

        

       

        Ответы (в беспорядке):

        х1 = -5; x2 = 6

        x1 =-0,2; x2 = 0,5

        x1 = 0; x2 = 7

        x1 = -0,25; x2 = 0,2

        корней нет

        x1 = 0,5; x2 = 3

        x = -3

        x1 = -7; x2 = 7

        Всё сошлось? Великолепно! Значит, квадратные уравнения – не ваша беда.) Все получились, а последние два – нет? Значит, проблема – в тождественных преобразованиях. Кликните по ссылке, почитайте – и будет вам счастье!)

abudnikov.ru

Дробно-рациональные уравнения | Алгебра

Дробн0-рациональные уравнения (дробные рациональные уравнения или просто дробные уравнения) — это уравнения c одной переменной вида

   

где f(x) и g(x) — рациональные выражения, хотя бы одно из которых содержит алгебраическую дробь (то есть в таких уравнениях в знаменателе есть переменная).

В общем виде дробно-рациональные уравнения решают  по следующей схеме:

1) Все слагаемые переносим в одну сторону.

2) Дроби приводим к НОЗ (наименьшему общему знаменателю).

3) После упрощения решаем уравнение типа «дробь равна нулю«.

В частных случаях дробно-рациональные уравнения могут быть решены с помощью замены переменной либо разложением на множители.

Начнем с рассмотрения примеров общего случая.

Решить дробно-рациональные уравнения:

   

Переносим все слагаемые в левую часть уравнения и приводим дроби к наименьшему общему знаменателю:

   

   

   

   

Пришли к уравнению типа «дробь равна нулю» Дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля, поэтому это уравнение равносильно системе:

   

Находим значения переменной, при которых знаменатель обращается в нуль, и исключаем их из области допустимых значений:

   

   

   

Теперь находим значения переменных, при которых числитель обращается в нуль:

   

   

Это — квадратное уравнение. Его корни

   

Оба корня удовлетворяют условиям x≠2, x≠ -4.Ответ: 5; -6.

   

Переносим все слагаемые в одну сторону и приводим дроби к наименьшему общему знаменателю:

   

   

   

   

   

   

— при этих значениях переменной знаменатель обращается в нуль, поэтому их исключаем из ОДЗ.

   

Из двух корней квадратного уравнения

   

   

— второй не входит в ОДЗ. Поэтому в ответ включаем лишь первый корень.

Ответ: -4.

   

Переносим все слагаемые в одну сторону и приводим дроби к НОЗ:

   

   

   

   

Значение переменной, при котором знаменатель обращается в нуль, исключаем из ОДЗ:

   

Уравнение

   

— частный случай линейного уравнения. Оно имеет бесконечное множество решений: какое бы число мы не подставили вместо x, получим верное числовое равенство. Единственное значение x, который не входит в множество решений данного уравнения — 3.

Ответ: x — любое число, кроме 3.

   

Переносим все слагаемые в левую часть и приводим дроби к наименьшему общему знаменателю:

   

   

   

   

   

   

— при этих значениях переменной дробь не имеет смысла, поскольку знаменатель обращается в нуль.

   

   

Так как 2 не входит в ОДЗ, данное уравнение не имеет корней.

Ответ: корней нет.

www.algebraclass.ru

Решение (корни) квадратного уравнения

Квадратным уравнением называется уравнение вида ax² + bx + c = 0, где x — переменная, которая в уравнении присутствует в квадрате, a, b, c — некоторые числа, причём a ≠ 0.

Например, квадратным является уравнение

2x² — 3x + 1 = 0,

в котором a = 2, b = — 3, c = 1.

В квадратном уравнении ax² + bx + c = 0 коэффициент a называют первым коэффициентом, b — вторым коэффициентом, c — свободным членом.

Уравнения вида ax² + bx = 0,

где c =0,

ax² + c = 0,

где b =0, и

ax² = 0,

где a =0 и b =0,

называются неполными квадратными уравнениями.

Найти корни квадратного уравнения значит решить квадратное уравнение.

Для вычисления корней квадратного уравния служит выражение b² — 4ac, которое называется дискриминантом квадратного уравнения и обозначается буквой D.

Корни квадратного уравнения имеют следующие сферы применения:

— для разложении квадратного трёхлена на множители, что, в свою очередь, является приёмом упрощения выражений (например, сокращения дробей, вынесение за скобки общего знаменателя и т.д.) в частности, при нахождении пределов, производных и интегралов;

— для решения задач на соотношения параметров меняющегося объекта (корни квадратного уравнения, чаще всего один, являются обычно конечным решением).

График квадратичного трёхлена ax² + bx + c — левой части квадратного уравнения — представляет собой параболу, ось симметрии которой параллельна оси 0y. Число точек пересечения параболы с осью 0x определяет число корней квадратного уравнения. Если точек пересечения две, то квадратное уравнение имеет два действительных корня, если точка пересечения одна, то квадратное уравнение имеет один действительный корень, если парабола не пересекает ось 0x, то квадратное уравнение не имеет действительных корней. На рисунке ниже изображены три упомянутых случая.

Как видно на рисунке, красная парабола пересекает ось 0x в двух точках, зелёная — в одной точке, а жёлтая парабола не имеет точек пересечения с осью 0x.

1. Если дискриминант больше нуля (), то квадратное уравнение имеет два различных действительных корня.

Они вычисляются по формулам:

и

.

Часто пишется так: .

2. Если дискриминант равен нулю (), то квадратное уравнение имеет только один действительный корень, или, что то же самое — два равных действительных корня, которые равны .

3. Если дискриминант меньше нуля (), то квадратное уравнение не имеет действительных корней, а имеет комплексные корни, но нахождение комплексных корней в этой статье рассматривать не будем. В общем случае правильным решением является констатация того, что квадратное уравнение не имеет действительных корней.

Пример 1. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант больше нуля, следовательно, квадратное уравнение имеет два действительных корня.

Путём преобразования в квадратное уравнение следует решать и дробные уравнения, в которых хотя бы одно из слагаемых — дробь, в знаменателе которой присутствует неизвестное, например, . О том, как это делается — в материале Решение дробных уравнений с преобразованием в квадратное уравнение.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 2. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант равен нулю, следовательно, квадратное уравнение имеет один действительный корень.

Пример 3. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант меньше нуля, следовательно, квадратное уравнение не имеет действительных корней.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Находить корни квадратного уравнения требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

Пример 4. Найти корни квадратного уравнения:

.

В примере 1 нашли дискриминант этого уравнения:

,

Решение квадратного уравнения найдём по формуле для корней:

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Корни приведённого квадратного уравнения

Формула корней приведённого уравнения имеет вид:

.

Существуют формулы, связывающие корни квадратного уравнения с его коэффициентами. Они впервые были получены французским математиком Ф.Виетом.

Теорема Виета. Если квадратное уравнение ax² + bx + c = 0 имеет действительные корни, то их сумма равна — b/a, а произведение равно с/a:

Следствие. Если приведённое квадратное уравнение x² + px + q = 0 имеет действительные корни и , то

Пояснение формул: сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Следовательно, теорему Виета можно применять и для поиска корней приведённого квадратного уравнения.


Если известны корни квадратного уравнения, то трёхчлен, представляющий собой левую часть уравнения, можно разложить на множители по следующей формуле:

.

Этот приём часто используется для упрощения выражений, особенно сокращения дробей.

Пример 9. Упростить выражение:

.

Решение. Числитель данной дроби можем рассматривать как квадратный трёхчлен в отношении x и разложить его на множители, предварительно найдя его корни. Найдём дискриминант квадратного уравнения:

.

Корни квадратного уравнения будут следующими:

.

Разложим квадратный многочлен на множители:

.

Упростили выражение, проще не бывает:

.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 10. Упростить выражение:

.

Решение. И числитель, и знаменатель — квадратные трёхчлены. Значит, их можно разложить на множители, предварительно найдя корни соответствующих квадратных уравнений. Находим дискриминант первого квадратного уравнения:

.

Корни первого квадратного уравнения будут следующими:

.

Находим дискриминант второго квадратного уравнения:

.

Так как дискриминант равен нулю, второе квадратное уравнение имеет два совпадающих корня:

.

Подставим корни квадратных уравнений, разложим числитель и знаменатель на множители и получим:

.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Упрощать выражения путём решения квадратных уравнений требуется при решении многих задач высшей математики, например, при нахождении пределов, интегралов, исследовании функций на возрастание и убывание и других.

Разумеется, квадратного трёхчлена может может и не быть в выражении в первоначальном виде, он может быть получен в процессе предварительных преобразований выражения.

Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших дней выводов этой формулы принажлежит индийскому математику Брахмагупте (около 598 г.). Среднеазиатский учёный аль-Хорезми (IX в.) получил эту формулу методом выделения полного квадрата с помощью геометрической иллюстрации. Суть его рассуждений видна из рисунка ниже (он рассматривает уравнение x² + 10x = 39).

Площадь большого квадрата равна (x + 5)². Она складывается из площади x² + 10x заштрихованной фигуры, равной левой части рассматриваемого уравнения, и площади четырёх квадратов со стороной 5/2, равной 25. Получается следующее уравнение и его решение:

Пример 11. Отрезок ткани стоит 180 у.ед. Если бы ткани в отрезке было на 2,5 м больше и цена отрезка оставалась бы прежней, то цена 1 м ткани была бы на 1 у.ед. меньше. Сколько ткани в отрезке?

Решение. Примем количество ткани в отрезке за x и получим уравнение:

Приведём обе части уравнения к общему знаменателю:

Произведём дальнейшие преобразования:

Получили квадратное уравнение, которое и решим:

Ясно, что количество ткани не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь один корень — положительный.

Ответ: в отрезке 20 м ткани.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 12. Товар, количество которого 187,5 кг, взвешивают в одинаковых ящиках. Если в каждом ящике количество товара уменьшить на 2 кг, то следовало бы использовать на 2 ящика больше и при этом 2 кг товара остались бы невзвешенными. Сколько кг товара взвешивают в каждом ящике?

Решение. Примем за x количество товара, взвешиваемого в одном ящике. Тогда получим уравнение:

Приведём обе части уравнения к общему знаменателю, произведём дальнейшие преобразования и получим квадратное уравнение. Процесс записывается так:

Найдём дискриминант:

Найдём корни квадратного уравнения:

Количество товара не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь положительный корень.

Ответ: в одном ящике взвешивают 12,5 кг ткани.

Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Другие темы в блоке «Школьная математика»

function-x.ru

Внеклассный урок — Целые и дробные рациональные уравнения

Целые и дробные рациональные уравнения

Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления — например: 6x;  (m – n)2; x/3y и т.п.)

 

Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

Примеры целого рационального уравнения:

5x – 10 = 3(10 – x)

3x
— = 2x – 10
4

Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

Пример дробного рационального уравнения:

      15
x + — = 5x – 17
       x


Дробные рациональные уравнения обычно решаются следующим образом:

1) находят общий знаменатель дробей и умножают на него обе части уравнения;

2) решают получившееся целое уравнение;

3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

 

 

Примеры решения целых и дробных рациональных уравнений.

Пример 1. Решим целое уравнение

x – 1      2x        5x
—— + —— = ——.
   2         3           6

Решение:

Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

3(x – 1) + 4x          5х
—————— = ——
            6                 6

Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

3(x – 1) + 4x = 5х.

Решаем его, раскрыв скобки и сведя подобные члены:

3х – 3 + 4х = 5х

3х + 4х – 5х = 3

2х = 3

х = 3:2

x = 1,5.

Пример решен.

 

Пример 2. Решим дробное рациональное уравнение

x – 3     1        x + 5
—— + — = ———.
x – 5     x       x(x – 5)

Решение:

Находим общий знаменатель. Это x(x – 5). Итак:

 x2 – 3х         x – 5            x + 5
———   +  ———    =  ———
 x(x – 5)      x(x – 5)         x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

x2 – 3x + x – 5 = x + 5

x2 – 3x + x – 5 – x – 5 = 0

x2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5.

Проверим, являются ли эти числа корнями исходного уравнения.

При  x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

 

raal100.narod.ru

Как решать квадратные уравнения онлайн с решением

Применение квадратных уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Квадратные уравнения человек использовал еще в древности и с тех пор их применение только возрастает.

квадратное уравнение - примеры и решения

Квадратное уравнение имеет следующий вид: \[aq^2+bx+c=0\]. Все уравнения данного типа имеют разные способы решения, однако какой бы вы не выбрали способ, квадратные уравнения делятся на 3 группы:

— без корней:

— с 1 корнем;

— с 2 корнями.

Это самое главное отличие квадратных уравнений от линейных. Для определения корней используют дискриминант: \[D=b^2-4ac\]. По знаку дискриминанта определяется количество корней:

— \[D

— \[D = 0\] — 1 корень;

— \[D > 0\] — 2 корня.

Все это позволит быстро найти правильный путь в решении квадратного уравнения, онлайн можно найти огромное количество решенных разными способами примеров.

Так же читайте нашу статью «Решить систему рациональных уравнений онлайн «

Допустим, нам даны следующие квадратные уравнения:

\[1 — x^2-7x = 0;\]

\[2 — 5x^2+ 30 = 0;\]

\[3 — 4x^2- 9 = 0\]

Решение:

\[1: x^2 — 7x = 0\]

\[x · (x — 7) = 0\]

\[x_1 = 0; x_2= -(-7)/1 = 7\]

\[2: 5 x^2 + 30 = 0\]

\[5 x^2 = -30\]

\[x^2 = -6\] — здесь нет корней, поскольку отрицательное число, а квадрат отрицательным быть не может.

\[3: 4 x^2 — 9 = 0 \]

\[4 x^2 = 9 \]

\[x^2 = 9/4 \]

\[x_1 = 3/2 = 1,5; x_2 = -1,5\] — нет корней.

Где можно решить квадратное уравнение онлайн решателем?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто вdести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Решение дробных рациональных уравнений

Для начала давайте вспомним определения целых, дробных и рациональных выражений.

Итак, целые выражения – это выражения, составленные из чисел и переменных, содержащие действия сложения, вычитания и умножения, а также деления на число, отличное от нуля.

Например:

В отличие от целых выражений, дробные выражения помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными.

Например:

Целые и дробные выражения называют рациональными. Вообще, рациональными выражениями называют выражения, составленные из чисел, переменных, их степеней и знаков арифметических действий.

До этого мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований сводилось к линейному уравнению. Теперь же наши возможности стали гораздо шире: мы можем решить рациональное уравнение, которое сводится и к квадратному уравнению.

Давайте рассмотрим уравнения:

Заметим, что во всех этих уравнениях левая и правая части являются рациональными выражениями. Такие уравнения называют рациональными уравнениями.

Рациональное уравнение, в котором и левая и правая части являются целыми выражениями, называют целым.

Рациональное уравнение, в котором левая или правая часть является дробным выражением, называют дробным.

Возвращаясь к нашим уравнениям, видим, что первое уравнение является целым, а второе и третье – дробными рациональными.

Пример 1. Решить уравнение.

Пример 2. Решить уравнение.

Если среди найденных корней окажется такое число, при котором знаменатель дроби обращается в нуль, то такое число корнем уравнения быть не может, его называют посторонним корнем и в ответ не включают.

Пример 3. Решить уравнение.

Запишем алгоритм решения дробно рациональных уравнений. Чтобы решить дробно рациональное уравнение, надо:

1)    Разложить все знаменатели дробей, входящих в уравнение, на множители.

2)    Найти общий знаменатель этих дробей.

3)    Умножить все слагаемые данного уравнения на общий знаменатель.

4)    Решить получившееся целое уравнение.

5)    Из найденных корней исключить те, которые обращают в нуль общий знаменатель данного уравнения.

Задание 1: при каких значениях х равны значения выражений?

Задание 2: найти значение переменной х, при котором сумма дробей равна их произведению.

Итоги:

Уравнения, в которых в левой и правой частях записаны рациональные выражения, называют рациональными уравнениями.

Рациональное уравнение, в котором и левая и правая части являются целыми выражениями, называют целым.

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называют дробным.

Чтобы решить дробно рациональное уравнение, надо:

1.     Разложить все знаменатели дробей, входящих в уравнение, на множители.

2.     Найти общий знаменатель этих дробей.

3.     Умножить все слагаемые данного уравнения на общий знаменатель.

4.     Решить получившееся целое уравнение.

Из найденных корней исключить те, которые обращают в нуль общий знаменатель данного уравнения.

videouroki.net

Отправить ответ

avatar
  Подписаться  
Уведомление о