Молекулярные решетки: Типы кристаллических решёток — урок. Химия, 8 класс.

Содержание

Типы кристаллических решёток — урок. Химия, 8 класс.

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц.

 

Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой.

 

Точки, в которых размещены частицы кристалла, называют узлами решётки. В узлах воображаемой решётки могут находиться атомы, ионы или молекулы.

 

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную, металлическую, атомную и молекулярную.

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

 

Ионные кристаллические решётки имеют соли, щёлочи, оксиды активных металлов.

 

Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na+ и хлора Cl−, а в узлах решётки сульфата калия чередуются простые ионы калия  K+ и сложные сульфат-ионы SO42−.

 

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые, тугоплавкие, нелетучие. Такие вещества хорошо растворяются в воде.

  

 

Рис. \(1\). Кристаллическая решётка хлорида натрия

  

Рис. \(2\). Кристаллы хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

 

Такие кристаллические решётки характерны для простых веществ металлов и сплавов.

 

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск, ковкость, пластичность, хорошо проводят электрический ток и тепло.

 

Рис. \(3\). Металлическая кристаллическая решётка

  

Рис. \(4\). Изделие из металла

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз — одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит, кремний, бор и германий, а также сложные вещества, например, карборунд SiC и кремнезём, кварц, горный хрусталь, песок, в состав которых входит оксид кремния(\(IV\)) SiO2.

  

Таким веществам характерны высокая прочность и твёрдость. Так, алмаз является самым твёрдым природным веществом.

  

У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения. Например, температура плавления кремнезёма — \(1728\) °С, а у графита она выше — \(4000\) °С. 

 

Атомные кристаллы практически нерастворимы.

 

Рис. \(5\). Кристаллическая решётка алмаза

  

Рис. \(6\). Алмаз

Молекулярными  называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость, низкие температуры плавления и кипения.

 

Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы.

 

Такие вещества летучи. Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние.

 

Некоторые молекулярные вещества имеют запах.

 

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами  (He,Ne,Ar,Kr,Xe,Rn), а также неметаллы с двух- и многоатомными молекулами (h3,O2,N2,Cl2,I2,O3,P4,S8).

  

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода — лёд, иод, твёрдые аммиак, кислоты, оксиды большинства неметаллов. Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин, сахар, глюкоза).

 

Рис. \(7\). Кристаллическая решётка иода

 

Рис. \(8\). Иод

 

Если известно строение вещества, то можно предсказать его свойства.

Попробуем определить, каковы примерно температуры плавления у фторида натрия, фтороводорода и фтора.

  

У фторида натрия — ионная кристаллическая решётка. Значит, его температура плавления будет высокой. Фтороводород и фтор имеют молекулярные кристаллические решётки. Поэтому их температуры плавления будут невысокими. Молекулы фтороводорода полярные, а фтора — неполярные. Значит, межмолекулярное взаимодействие у фтороводорода будет сильнее, и его температура плавления будет выше по сравнению со фтором.

 

Экспериментальные данные подтверждают эти предположения: температуры плавления NaF, HF и F2 составляют соответственно \(995\) °С, \(–83\) °С,  \(–220\) °С.

Источники:

Рис. 1.Кристаллическая решётка хлорида натрия https://upload.wikimedia.org/wikipedia/commons/e/e9/Sodium-chloride-3D-ionic.png

Рис. 2. Кристаллы хлорида натрия https://cdn.pixabay.com/photo/2015/09/24/17/08/crystal-955935_960_720.jpg

Рис. 3. Металлическая кристаллическая решётка © ЯКласс

Рис. 4. Изделие из металла https://cdn.pixabay.com/photo/2013/07/12/17/22/database-152091_960_720.png

Рис. 5. Кристаллическая решётка алмаза https://image.shutterstock.com/image-vector/illustration-chemical-carbon-has-several-600w-1717122967. jpg

Рис. 6. Алмаз https://cdn.pixabay.com/photo/2014/10/24/08/09/diamond-500872_960_720.jpg

Рис. 7. Кристаллическая решётка иода © ЯКласс

Рис. 8. Иод https://upload.wikimedia.org/wikipedia/commons/7/7c/Iod_kristall.jpg

Кристаллические решетки — презентация онлайн

1. Кристаллические решетки

Кристаллы – твердые вещества, частицы
которых образуют периодически повторяющуюся
в пространстве структуру – кристаллическую
решетку.
Кристаллические решётки веществ — это
упорядоченное расположение частиц(атомов,
молекул, ионов) в строго определённых точках
пространства.
Точки размещения частиц называют узлами
кристаллической решётки.
В узлах кристаллической решетки могут быть
молекулы, атомы или ионы.

3. Типы кристаллических решеток

Атомные кристаллические
решетки
Молекулярные
кристаллические решетки
Металлические
кристаллические решетки
Ионные кристаллические
решетки

4.

АТОМНЫЕ КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ Кристаллическая решетка
алмаза
• В узлах атомных кристаллических решеток находятся
отдельные атомы, которые соединены ковалентными
связями.
• Связи между атомами веществ, находящихся в узлах
кристаллической решетки прочные, с трудом разрушаются.
• Вещества с атомной кристаллической решеткой имеют
высокие температуры плавления, обладают повышенной
твердостью.
• Алмаз – самый твердый природный материал

5. Разновидности атомных кристаллических решеток

Каркасные (алмаз, кремний)
Слоистые (графит)
Цепочные (карбин)

6. МОЛЕКУЛЯРНЫЕ КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ

Кристаллическая решетка
йода
• В узлах располагаются молекулы веществ.
• Химические связи в них ковалентные, как полярные, так и
неполярные.
• Связи между молекулами веществ слабые, легко разрушаются
• Вещества с молекулярной кристаллической решеткой имеют
малую твёрдость, плавятся при низкой температуре, летучие,
при обычных условиях находятся в газообразном или жидком
состоянии. (О2, N2, СО2, Н2О)

7. МЕТАЛЛИЧЕСКИЕ КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ

Кристаллическая решетка
металла
• В узлах металлических кристаллических решёток
находятся атомы и ионы металла.
• Для металлов характерны физические свойства:
пластичность, ковкость, металлический блеск, высокая
электро- и теплопроводность

8. ИОННЫЕ КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ

Кристаллическая решетка
хлорида натрия
• В узлах ионных кристаллических решеток находятся ионы.
• Связи между ионами в кристалле очень прочные и
устойчивые.
• Вещества с ионной решеткой обладают высокой
твердостью и прочностью, тугоплавки и нелетучи.
Ионные кристаллические решетки имеют соли,
некоторые оксиды и гидроксиды металлов.

Решетка молекулярная — Справочник химика 21

    Чем отличаются вещества с кристаллической решеткой ионного типа от веществ с кристаллической решеткой молекулярного типа (примеры)  [c.50]

    Из числа промышленных адсорбентов для осушки газов применяются силикагель, алюмогель (активированная окись алюминия), активированный боксит и молекулярные сита 4А и 5А. В последнее время молекулярные сита получили широкое распространение пе только для осушки, но и во многих других процессах нефтепереработки и нефтехимии. Молекулярные сита представляют собой кристаллические цеолиты (водные алюмосиликаты кальция, натрия и других металлов), обладающие высокой избирательностью адсорбции по размерам молекул, в результате чего молекулы малых размеров адсорбируются предпочтительно по сравнению с крупными молекулами. В противоположность обычным адсорбентам типа алюмогелей или силикагелей поры в кристаллической решетке молекулярных сит отличаются идеальной однородностью размеров, и поэтому можно количественно отделять мелкие молекулы, проникающие внутрь этих пор, от более крупных. Вследствие того что адсорбция на них представляет собой своеобразное просеивание смесей молекул с их сортировкой по размерам, они получили название молекулярные сита . Характеристика адсорбентов, применяемых для осушки газа, приведена в табл. 31. 

[c.159]


    Свойства органических соединений.
Особенностью органических соединений являются их физические и химические свойства, определяемые характером связи в их молекулах. Вследствие промежуточного характера углерода ковалентные связи в молекулах органических соединений преимущественно мало полярны. Это в большинстве случаев обусловливает и малую полярность самих молекул органических соединений. Большинство органических соединений характеризуется кристаллическими решетками молекулярного типа, непрочность которых обусловливает значительную летучесть и легкоплавкость веществ, и отсутствием электропроводности как в индивидуальном, так и в растворенном состояниях. Таким образом, органические соединения являются преимущественно неэлектролитами и химически сравнительно мало активны. [c.75]

    Диоксид, обычно называемый двуокисью угле рода, СО2 образуется при полном сгорании свободного углерода в атмосфере кислорода. Он представляет собой бесцветный газ, в связи с чем и носит тривиальное название углекислый газ . Теплота образования двуокиси углерода из графита составляет 393,7 кдж г-моль.

Плотность двуокиси углерода при н.у. 1,977 г/л (по воздуху 1,53). Двуокись углерода легко сжижается ее критическая температура 31,3° С, критическое давление 72,9 атм.. При сильном охлаждении она превращается в белую снегообразную массу (сухой лед), которая при нормальном давлении возгоняется (не плавясь) при —78,5 С. При давлении 5 атм твердая двуокись углерода плавится при —56,7 С. Теплота плавления двуокиси углерода 51 дж г, теплота испарения (при —56 С) 569 5ж/г. Жидкая двуокись углерода не проводит электрического тока. Кристаллическая решетка — молекулярного типа. [c.196]

    Для разрушения решетки молекулярного кристалла требуется энергия [c.622]

    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    Наряду с образованием гидратов для обезвоживания используют также явления адсорбции, например, в так называемых молекулярных ситах. В кристаллической решетке молекулярных сит алюмосиликат-ионы расположены в виде сшитых колец, в результате чего образуются многочисленные трубчатые поры. Воду, находящуюся в этих 

[c.499]


    Молекулярная решетка. Молекулярные кристаллы имеют в углах пространственной решетки полярные или неполярные молекулы, связанные между собой силами Ван-дер-Ваальса. В качестве примера можно указать на твердую двуокись углерода (сухой лед), нафталин, лед. На рис. 10 показано строение элементарной [c.31]

    Элементарный водород по некоторым свойствам (двухатомная молекула, летучесть, отсутствие электропроводности в конденсированном состоянии, непрочность кристаллической решетки молекулярного типа) сходен с элементарными окислителями, по другим свойствам (значение электродного потенциала в водных растворах) — с металлами, хотя и мало типичными. [c.37]

    Между различными классами элементарных веществ нет резких границ, и многие элементарные вещества обладают промежуточными свойствами. Так, например, узлы кристаллической решетки металла галлия образованы не положительно заряженными ионами, а двухатомными молекулами низкотемпературное видоизменение олова характеризуется кристаллической решеткой атомного типа и наличием полупроводниковых свойств эти свойства обнаруживаются в твердом состоянии у таких элементарных окислителей, как селен и астат белое видоизменение металлоида фосфора характеризуется летучестью, и непрочностью кристаллической решетки молекулярного типа элементарные металлоиды висмут и полоний обладают металлической электропроводностью. Таким образом, границы между элементарными металлами и металлоидами и между элементарными металлоидами и окислителями до известной степени условны. [c.37]

    Как видно из табл. 1.9, наиболее тугоплавкими и наименее летучими являются оксиды элементов второй группы периодической системы — бериллия и магния. При дальнейшем увеличении порядкового номера элементов в периодах температуры плавления и кипения их оксидов снижаются. В жидком состоянии электропроводны только оксиды металлических элементов они кристаллизуются в решетках ионного типа. Легкоплавкие оксиды неметаллических элементов не проводят электричества в жидком состоянии и кристаллизуются в решетках молекулярного типа. 

[c.57]

    Сульфиды металлов, как правило, тугоплавки и мало летучи. Расплавленные сульфиды активных металлов (например, щелочных) электропроводны. Немногочисленные сульфиды неметаллических элементов более легкоплавки, а некоторые из них (например, сульфид углерода S. j) сильно летучи, в жидком состоянии электричества не проводят и кристаллизуются в решетках молекулярного типа. 

[c.57]

    Кристаллическая решетка — Молекулярная ромбическая Цепная молекулярная гексагональная Цепная молекулярная гексагональная Атомная кубическая [c.348]

    Диэлектрическая проницаемость жидкого аммиака велика ( 23), а электропроводность ничтожно мала. Аммиак кристаллизуется в решетке молекулярного типа. [c.57]

    Таким образом, поверхность чистой графитированной термической сажи в основном плоская и химически инертная. Наличие подвижных электронов, способных перемещаться вдоль графитовых слоев, не делает эту поверхность специфичной в отношении межмолекулярных взаимодействий при адсорбции. Вместе с тем изучение адсорбции на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов адсорбата, в частности атомов углерода в углеводородах разных классов. Этого пока не удается сделать при изучении объемных свойств углеводородов (например, сжимаемости газов или энергии решетки молекулярных кристаллов), так как здесь большой вклад в межмолекулярное взаимодействие вносят атомы водорода соседних молекул углеводородов.

В случае же адсорбции при малых заполнениях чистой поверхности ГТС таких взаимодействий нет, поэтому оказывается возможным выявить влияние на адсорбцию электронной конфигурации атомов углерода в углеводородах. [c.17]

    Соединения мало типичных металлических элементов даже с активными окислительными элементами уже не обладают характерными признаками типичных солей, а напоминают кислотообразующие соединения с ковалентным характером связи и кристаллической решеткой молекулярного типа. Эти соединения не способны к электролитической диссоциации, что объясняется сравнительно малой полярностью связей атомов в их молекулах. [c.8]

    В узлах пространственной решетки молекулярных кристаллов находятся молекулы. Химическая связь между атомами этих молекул осуществляется валентными электронами и является насыщенной. Поэтому между отдельными молекулами кристалла не могут возникать валентные химические связи. Таким образом, [c.85]

    Примером атомной решетки является кристалл алмаза в узлах его решетки помещаются атомы углерода кристаллы многих солей (например, галогенидов натрия, калия, рубидия, цезия) представляют собой ионные решетки молекулярные решетки образуют неметаллы, например сера, селен, иод, фосфор, а также многочисленные органические соединения.[c.273]

    IV. 4.4. Энергия решетки молекулярных и ионных кристаллов [c.180]

    Металлические свойства элементарных веществ усиливаются от As к В i. Азот и фосфор — типичные неметаллы. Их кристаллические решетки молекулярные. [c.299]

    Необычные адсорбционные свойства молекулярных сит обусловлены в основном их кристаллической структурой. В противоположность обычным адсорбентам типа алюмо- или силикагелей поры в кристаллической решетке молекулярных сит отличаются идеальной однородностью размеров, причем эти размеры соответствуют часто встречающимся молекулам. В молекулярных ситах определенного сорта размеры пор не изменяются даже в узких пределах. Так как все поры имеют одинаковые размеры, то можно количественно отделять мелкие молекулы, проникающие внутрь этих пор, от более крупных. Именно поэтому синтетические цеолиты и получили название молекулярные сита , так как адсорбция на них представляет собой своеобразное просеивание смесей молекул с их сортировкой по размерам.[c.66]


    У большинства тригалидов элементов подгруппы мяшьяка кристаллические решетки молекулярны. Температура плавления трифто рида висмута, имеющего координационную решетку, наиболее высокая (730°С). [c.386]

    Вещества, построенные из атомов инертных элементов, — благородные газы (гелий, неои, аргон, криптон, ксенон, радон). Характеризуются одноатомным состоянием, летучестью и электрической проводимостью особого рода, которая существенно отличается от металлической и может быть названа скользящей». В твердом состоянии образуют кристаллические решетки молекулярного типа (хотя в узлах их находятся атомы), отличающиеся крайней непрочностью. [c.111]

    Элементарный водород занимает особое место среди других элементарных веществ по некоторым свойствам (существование в виде газа, состоящего из двухатомных молекул в конденсиро-вапном состоянни летучесть, отсутствие электрической ироводи-мости, непрочность кристаллической решетки молекулярного типа) водород сходен с элементарными окислителями, по другим свойствам (значение электродного потенциала в водных растворах)— с металлами, хотя и мало типичными.[c.111]

    Простые кислоты — соединения водорода с окислительными элементами. Связь между атомами в молекулах этих соединений полярная ковалентная, причем атом водорода поляризован положительно. Простые кислоты характеризуются кристал.чн-ческими решетками молекулярного тина и отсутствием электрической проводимости в жидком состоянии. В определенных условиях молекулы простых кислот могут быть донорами протонов, и эта (]JylIкцпя, собственпо, и является характерной для кислот. [c.121]

    Электропроводность воды чрезвычайно мала. Кристаллы воды образуют решетку молекулярного типа. Давление пара при различных температурах см. табл. IV.2 Приложения. Сравнительно высокая температура кипения воды объясняется особенностями ее структуры в жидком состоянии, сильным межмолекуляриым взаимодействием, вызванным преимущественно водородными связями. Плотность большинстна растворителей с повышением температуры уменьшается, тогда как плотность воды при повышении темпера-ож0 дд увеличивается, достигает максимальной величины при 4°С (1,000 г/см ) и уменьшается прн дальпеп-и повышении температуры. Значения [c.170]

    Потенциальные электролиты, т. е. вещества ковалентного характера, к которым относятся, прежде всего, кислоты, прн рас-плавленин не дкссоцпируют, так как в нх кристаллической решетке (молекулярного типа) ионов ие содержится. Образование ионов кислотами происходит лишь при растворении в воде или в других полярных растворителях. Так, например, в сухом жидком хлороводороде ионов nei и он электрического тока не проводит. При раетворении же его в воде происходит реакция, приводящая к образованию ионов  [c.172]

    Нвкладываясь на вандерваальсовы силы, водородная связь значительно увеличивает энергию связи в решетке молекулярного типа — вплоть до 40 кДж/моль. Водородная связь характерна для таких веществ, как вода, аммиак, спирты, амины, гало-генводороды и т. п. [c.38]

    Как известно (1.4 и 1.9), справедливость закона постоянства состава подтверждается тем, что в состав молекулы каждого химического соединения входит вполне определенное и притом целое число атомов того или иного элемента. Однако далеко не все вещества можно рассматривать как вид определенных молекул. Реальные молекулы составляют вещества в газовом состоянии, в виде неассоциированных жидкостей и кристаллов с решетками молекулярного типа. В иных же состояниях веществ, а особенно в кристаллах с решетками ионного, атомного и металлического типов, молекулы теряют свою реальность, а потому и не могут характеризовать данные вещества. В связи с этим и возникло убеждение в неправомерности закона постоянства состава химических соединений. Это как будто бы под 1 верждается существованием соединений, получивших название нестехиометрических, бер-толлидов или фаз переменного состава. [c.20]

    Простые кислоты, или ацидогены, — соединения водорода с окислительными элементами. Связь между атомами в молекулах этих соединений полярная, ковалентная, причем водород поляризован положительно. Простые кислоты характеризуются кристаллическими решетками молекулярного типа и отсутствием электропроводности в жидком состоянии. В определенных условиях молекулы простых [c.49]

    Диэлектрическая проницаемость воды 78,3. Электропроводность Еолы чрезвычайно мала. Вода кристаллизуется в решетке молекулярного типа. [c.57]

    Заметное отклонение структуры молекулярного кристалла от плотнейшей упаковки происходит при наличии между молекулами водородной связи, например у льда. Искажение валентных углов здесь требует значительных затрат энергии. Этим объясняется рыхлая структура льда. Энергия кристаллической решетки молекулярного кристалла выражается тепловым эффектом его сублимации. Эта величина для разных веществ колеблется от долей единицы до нескольких десятков кДж/моль и более, что значителы о ниже, чем энергии решетки других типов кристаллов. [c.137]

    Кристаллическая решетка (молекулярная) тетрагональная ромбиче- ская ромбиче- ская сложная  [c.592]

    А. И. Китайгородский предложил метод расчета энергии решетки молекулярных кристаллов с помощью атом — атом потенциалов . Каждый атом, входящий в молекулу, рассматривается как некоторый силовой центр. Энергия взаимодействия молекул равна сумме энергий парных взаимодействий атомов i и /, принадлежащих разным молекулам. Энергии взаимодействия атомов Езависят лишь от сорта атомов. Они не зависят от того, в какую молекулу и в каком валентном состоянии атомы входят. Для Емогут быть приняты различные аналитические выражения, например потенциал Леннарда—Джонса и др. Параметры эмпирических соотношений подбираются так, чтобы, зная все межъядерные расстояния в кристалле, можно было получить правильное значение энергии решетки кристалла. Подробное описание этого метода и примеры его применения приведены в монографии А. И. Китайгородского Молекулярные кристаллы [59] и обзоре П. М. Зоркого и М. А. Порай-Кошица [60]. Метод атом—атом потенциалов дает возможность подобрать межатомные потенциалы на основе экспериментальных данных для нескольких представителей какого-либо класса органических веществ, а затем применять полученные кривые для вычисления свойств всех остальных веществ этого класса. Так, например, зная потенциалы взаимодействия атомов С и С, С и Н, Н и Н, можно рассчитывать энергию и ряд других свойств множества кристаллов углеводородов. [c.98]

    В узлах (рис. 19) решетки молекулярного кристалла находятся устойчивые молекулы (атомы в случае замороженных инертных газов), которые сохраняют свою индивидуальность в силу того, что расстояние между молекулами (г) значительно превосходит их размеры (1). Это и обусловливает чрезвычайную слабость ван-дер-ваальсовых сил по сравнению с силами других, выше перечисленных видов связи. Энергия связи практически не превышает 10 ккал/моль. Так, у молекулярного водорода, хлора и брома в твердой фазе энергия связи равна 0,24 6,4 и 7 ккал/моль соответственно. [c.49]

    Металлические свойства простых веществ усиливаются от Аз к Bi. Азот и фосфор — типичные неметаллы. Их кристаллические решетки молекулярные. Все эти элементы образуют газообразные водородные соединения тииа ЭНз, в которых степень окисления их равна —3. М.олекулы гидридов имеют форму трехгранной пирамиды по числу трех связей, образуемых р-облака.ми валентных электронов атомов этих элементов. Дипольные моменты гидридов уменьшаются от Nh4 к BIh4. В том же направлении гидриды делаются менее устойчивыми и становятся более сильными восстановителями. [c.373]

    Остановимся на описании размещенных на решетке молекулярных графов, которые в этом случае носят название решеточных животных ( latti e animals ) [89, 90]. Их число есть число способов таких размещений, отнесенное к одному узлу решетки. Про- [c.180]

    Напишите под с.хематическими рисунками (рисунки приводятся) название типа кристаллической решетки (молекулярная, ионная или атомная). [c.50]


Физическая и коллоидная химия (1988) — [ c.30 , c.32 ]

Общая химия в формулах, определениях, схемах (1996) — [ c. 79 ]

Общая химия в формулах, определениях, схемах (0) — [ c.79 ]

Общая химия в формулах, определениях, схемах (1985) — [ c.79 ]

Общая химия в формулах, определениях, схемах (0) — [ c.79 ]

Общий практикум по органической химии (1965) — [ c.118 ]

Общая химия ( издание 3 ) (1979) — [ c.140 ]

Общая и неорганическая химия (1959) — [ c.111 ]

Физическая и коллоидная химия Издание 3 1963 (1963) — [ c.99 ]

Введение в физическую химию и кристаллохимию полупроводников (1968) — [ c.85 , c.88 , c. 184 , c.255 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) — [ c.237 , c.306 , c.307 , c.313 ]

Общая химия (1968) — [ c.119 ]


Молекулярная кристаллическая решетка примеры веществ. Кристаллические решетки

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная свойственна и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому , металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе — ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз — на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело — алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки — величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c — длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения — десятой доли нанометра или ангстремах .

2. К — координационное число . Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки . Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.

Молекулярное строение имеет

1) оксид кремния(IV)

2) нитрат бария

3) хлорид натрия

4) оксид углерода(II)

Пояснение.

Под строением вещества понимают, из каких частиц молекул, ионов, атомов построена его кристаллическая решетка. Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO 2 , SiC (карборунд), BN, Fe 3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Оксид кремния (IV) — связи ковалентные, вещество твердое, тугоплавкое, кристаллическая решетка атомная. Нитрат бария и хлорид натрия вещества с ионными связями — кристаллическая решетка ионная. Оксид углерода (II) это газ в молекуле ковалентные связи, значит, это правильный ответ, кристаллическая решетка молекулярная.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2012 по химии.

В твер­дом виде мо­ле­ку­ляр­ное стро­е­ние имеет

1) оксид кремния(IV)

2) хло­рид кальция

3) суль­фат меди (II)

Пояснение.

Под стро­е­ни­ем ве­ще­ства понимают, из каких ча­стиц молекул, ионов, ато­мов по­стро­е­на его кри­стал­ли­че­ская решетка. Не­мо­ле­ку­ляр­ное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми связями, могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские решетки. Атом­ные кри­стал­ли­че­ские решетки: С (алмаз, графит), Si, Ge, B, SiO 2 , SiC (карборунд), BN, Fe 3 C, TaC, крас­ный и чёрный фосфор. В эту груп­пу вхо­дят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Вещества с мо­ле­ку­ляр­ной кри­стал­ли­че­ской ре­шет­кой имеет более низ­кие тем­пе­ра­ту­ры кипения, чем все осталь­ные вещества. По фор­му­ле не­об­хо­ди­мо опре­де­лить тип связи в веществе, а затем опре­де­лить тип кри­стал­ли­че­ской решетки. Оксид крем­ния (IV) — связи ковалентные, ве­ще­ство твердое, тугоплавкое, кри­стал­ли­че­ская ре­шет­ка атомная. Хло­рид каль­ция и суль­фат меди — ве­ще­ства с ион­ны­ми свя­зя­ми — кри­стал­ли­че­ская ре­шет­ка ионная. В мо­ле­ку­ле йода ко­ва­лент­ные связи, и он легко возгоняется, зна­чит это пра­виль­ный ответ, кри­стал­ли­че­ская ре­шет­ка молекулярная.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2013 по химии.

1) оксид углерода(II)

3) бро­мид магния

Пояснение.

Немолекулярное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах которых атомы со­еди­не­ны ковалентными свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кристаллические решетки. Атом­ные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2, SiC (карборунд), BN, Fe3 C, TaC, крас­ный и чёрный фосфор. В эту груп­пу входят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Ответ: 3

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 1.

Ионную кри­стал­ли­че­скую решётку имеет

2) оксид углерода(II)

4) бромид магния

Пояснение.

Немолекулярное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах которых атомы со­еди­не­ны ковалентными свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кристаллические решетки. Атом­ные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, крас­ный и чёрный фосфор. В эту груп­пу входят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Вещества с мо­ле­ку­ляр­ной кристаллической ре­шет­кой имеет более низ­кие температуры кипения, чем все осталь­ные вещества. По фор­му­ле необходимо опре­де­лить тип связи в веществе, а затем опре­де­лить тип кри­стал­ли­че­ской решетки.

Ионную кри­стал­ли­че­скую решетку имеет бро­мид магния.

Ответ: 4

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 2.

Сульфат натрия имеет кристаллическую решётку

1) металлическую

3) молекулярную

4) атомную

Пояснение.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Сульфат натрия — это соль, имеющая ионную кристаллическую решетку.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 3.

Немолекулярное стро­е­ние имеет каж­дое из двух веществ:

1) азот и алмаз

2) калий и медь

3) вода и гид­рок­сид натрия

4) хлор и бром

Пояснение.

Немолекулярное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах которых атомы со­еди­не­ны ковалентными свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кристаллические решетки. Атом­ные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2, SiC (карборунд), BN, крас­ный и чёрный фосфор. В эту груп­пу входят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Вещества с мо­ле­ку­ляр­ной кристаллической ре­шет­кой имеет более низ­кие температуры кипения, чем все осталь­ные вещества. По фор­му­ле необходимо опре­де­лить тип связи в веществе, а затем опре­де­лить тип кри­стал­ли­че­ской решетки.

Из при­ве­ден­ных веществ толь­ко алмаз, калий, медь и гидроксид натрия имеют не­мо­ле­ку­ляр­ное строение.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 4.

Веществом с ионным типом кристаллической решётки является

3) уксусная кислота

4) сульфат натрия

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Ионную кристаллическую решетку имеет сульфат натрия.

Ответ: 4

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Сибирь. Вариант 1.

Металлическая кристаллическая решётка характерна для

2) белого фосфора

3) оксида алюминия

4) кальция

Пояснение.

Металлическая кристаллическая решетка характерна для металлов, например, кальция.

Ответ: 4

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Урал. Вариант 1.

Максим Аврамчук 22.04.2015 16:53

Все металлы кроме ртути имеют металлическую кристаллическую решетку. Не подскажите какая кристаллическая решетка у ртути и амальгамы?

Александр Иванов

Ртуть в твердом состоянии тоже имеет металлическую кристаллическую решетку

·

2) оксид кальция

4) алюминий

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Ионную кристаллическую решетку имеет оксид кальция.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Сибирь. Вариант 2.

Молекулярную кристаллическую решётку в твёрдом состоянии имеет

1) иодид натрия

2) оксид серы(IV)

3) оксид натрия

4) хлорид железа(III)

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Среди приведенных веществ все кроме оксида серы(IV) имеют ионную кристаллическую решетку, а он — молекулярную.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Сибирь. Вариант 4.

Ионную кристаллическую решётку имеет

3) гидрид натрия

4) оксид азота(II)

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Гидрид натрия имеет ионную кристаллическую решетку.

Ответ: 3

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Урал. Вариант 5.

Для ве­ществ с мо­ле­ку­ляр­ной кри­стал­ли­че­ской решёткой ха­рак­тер­ным свой­ством является

1) тугоплавкость

2) низкая тем­пе­ра­ту­ра кипения

3) высокая тем­пе­ра­ту­ра плавления

4) электропроводность

Пояснение.

Вещества с мо­ле­ку­ляр­ной кри­стал­ли­че­ской ре­шет­кой имеет более низ­кие тем­пе­ра­ту­ры кипения, чем все осталь­ные вещества. Ответ: 2

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Центр. Вариант 1.

Для веществ с молекулярной кристаллической решёткой характерным свойством является

1) тугоплавкость

2) высокая температура кипения

3) низкая температура плавления

4) электропроводность

Пояснение.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры плавления и кипения, чем все остальные вещества.

Ответ: 3

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Центр. Вариант 2.

Молекулярное строение имеет

1) хлороводород

2) сульфид калия

3) оксид бария

4) оксид кальция

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Из приведенных веществ все имеют ионную кристаллическую решетку кроме хлороводорода.

Ответ: 1

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Центр. Вариант 5.

Mолекулярное строение имеет

1) оксид кремния(IV)

2) нитрат бария

3) хлорид натрия

4) оксид углерода(II)

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Среди приведенных веществ молекулярное строение имеет угарный газ.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2014 по химии.

Веществом мо­ле­ку­ляр­но­го стро­е­ния является

1) хло­рид аммония

2) хло­рид цезия

3) хло­рид железа(III)

4) хлороводород

Пояснение.

Под стро­е­ни­ем ве­ще­ства по­ни­ма­ют, из каких ча­стиц мо­ле­кул, ионов, ато­мов по­стро­е­на его кри­стал­ли­че­ская ре­шет­ка. Не­мо­ле­ку­ляр­ное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми свя­зя­ми. Ве­ще­ства, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки. Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO2, SiC (кар­бо­рунд), BN, Fe3C, TaC, крас­ный и чёрный фос­фор. В эту груп­пу вхо­дят ве­ще­ства, как пра­ви­ло, твер­дые и ту­го­плав­кие ве­ще­ства.

Ве­ще­ства с мо­ле­ку­ляр­ной кри­стал­ли­че­ской ре­шет­кой имеет более низ­кие тем­пе­ра­ту­ры ки­пе­ния, чем все осталь­ные ве­ще­ства. По фор­му­ле не­об­хо­ди­мо опре­де­лить тип связи в ве­ще­стве, а затем опре­де­лить тип кри­стал­ли­че­ской ре­шет­ки.

1) хло­рид аммония — ионное строение

2) хло­рид цезия — ионное строение

3) хло­рид железа(III) — ионное строение

4) хлороводород — молекулярное строение

Ответ: 4

Какое из со­еди­не­ний хлора имеет наи­боль­шую тем­пе­ра­ту­ру плавления?

Ответ: 3

Какое из со­еди­не­ний кис­ло­ро­да имеет наи­боль­шую тем­пе­ра­ту­ру плавления?

Ответ: 3

Александр Иванов

Нет. Это атомная кристаллическая решётка

Игорь Сраго 22.05.2016 14:37

Поскольку в рамках ЕГЭ учат, что связь между атомами металлов и неметаллов является ионной, постольку оксид алюминия должен образовывать ионный кристалл. А ве­ще­ства ионного стро­е­ния тоже (как и атомного) имеют тем­пе­ра­ту­ру плав­ле­ния выше, чем ве­ще­ства мо­ле­ку­ляр­но­го.

Антон Голышев

Вещества с атомной кристаллической решеткой лучше просто выучить.

·

Для ве­ществ с ме­тал­ли­че­ской кристаллической решёткой нехарактерна

1) хрупкость

2) пластичность

3) вы­со­кая электропроводность

4) вы­со­кая теплопроводность

Пояснение.

Для металлов характерна пластичность, вы­со­кая электро- и теплопроводность, а вот хрупкость для них нехарактерна.

Ответ: 1

Источник: ЕГЭ 05.05.2015. До­сроч­ная волна.

Пояснение.

Ве­ще­ства, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки. Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO2, SiC (кар­бо­рунд), BN, Fe3C, TaC, крас­ный и чёрный фос­фор. В эту груп­пу вхо­дят ве­ще­ства, как пра­ви­ло, твер­дые и ту­го­плав­кие ве­ще­ства.

Ответ: 1

Молекулярную кри­стал­ли­че­скую решётку имеет

Пояснение.

Ве­ще­ства с ион­ны­ми (BaSO 4) и ме­тал­ли­че­ски­ми свя­зя­ми имеют не­мо­ле­ку­ляр­ное стро­е­ние.

Ве­ще­ства, атомы которых со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки.

Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO 2 , SiC (кар­бо­рунд), B 2 O 3 , Al 2 O 3 .

Вещества, газообразные при обычных условиях (O 2 , H 2 , NH 3 , H 2 S, CO 2), а также жидкие (H 2 O, H 2 SO 4) и твердые, но легкоплавкие (S, глюкоза), имеют молекулярное строение

Поэтому мо­ле­ку­ляр­ную кри­стал­ли­че­скую решётку имеет — углекислый газ.

Ответ: 2

Атомную кри­стал­ли­че­скую решётку имеет

1) хло­рид аммония

2) оксид цезия

3) оксид кремния(IV)

4) сера кристаллическая

Пояснение.

Ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми свя­зя­ми имеют не­мо­ле­ку­ляр­ное стро­е­ние.

Ве­ще­ства, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки. Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO2, SiC (кар­бо­рунд), BN, Fe3C, TaC, крас­ный и чёрный фос­фор. Остальные относятся к веществам с молекулярной кри­стал­ли­че­ской ре­шет­кой.

Поэтому атомную кри­стал­ли­че­скую решётку имеет оксид кремния(IV).

Ответ: 3

Твёрдое хруп­кое ве­ще­ство с вы­со­кой тем­пе­ра­ту­рой плавления, рас­твор ко­то­ро­го про­во­дит элек­три­че­ский ток, имеет кри­стал­ли­че­скую решётку

2) металлическую

3) атомную

4) молекулярную

Пояснение.

Такие свойства характерны для веществ с ионной кристаллической решеткой.

Ответ: 1

Какое со­еди­не­ние крем­ния имеет в твёрдом со­сто­я­нии мо­ле­ку­ляр­ную кри­стал­ли­че­скую решётку?

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным — железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

«Химия. 9 класс» — это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность — способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность — одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в и образует кристаллические решетки. Химия, физика и металловедение — это науки, которые занимаются изучением особенностей строения таких структур.

Сама — это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей Объединяет их все одна особенность — в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название «объемно-центрированная».

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей — высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства — блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства — высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия. 9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав — строение — свойства — применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Твердые кристаллы можно представить как трехмерные конструкции, в которых четко повторяется один и тот же структуры во всех направлениях. Геометрически правильная форма кристаллов обусловлена ​​их строго закономерным внутренним строением. Если центры притяжения , ионов или молекул в кристалле изобразить в виде точек, то получим трехмерное регулярное распределение таких точек, которое называется кристаллической решеткой, а сами точки — узлы кристаллической решетки. Определенная внешняя форма кристаллов является следствием их внутренней структуры, которая связана именно с кристаллической решеткой.

Кристаллическая решетка — это воображаемый геометрический образ для анализа строения кристаллов, который представляет собой объемно-пространственную сетчатую структуру, в узлах которой располагаются атомы, ионы или молекулы вещества.

Для характеристики кристаллической решетки используют следующие параметры:

  1. кристаллической решетки Е кр [КДж / моль] — это энергия, выделяющаяся при образовании 1 моля кристалла из микрочастиц (атомов, молекул, ионов), которые находятся в газообразном состоянии и удалены друг от друга на такое расстояние, что исключается возможность их взаимодействия.
  2. Константа кристаллической решетки d — наименьшее расстояние между центрами двух частиц в соседних узлах кристаллической решетки, соединенных .
  3. Координационное число — количество ближайших частиц, окружающих в пространстве центральную частицу и сочетаются с ней химической связью.

Основой кристаллической решетки является элементарная ячейка, которая повторяется в кристалле бесконечное количество раз.

Элементарная ячейка — это наименьшая структурная единица кристаллической решетки, которая обнаруживает все свойства ее симметрии.

Упрощенно элементарную ячейку можно определить как малую часть кристаллической решетки, которая еще выявляет характерные особенности ее кристаллов. Признаки элементарной ячейки описываются с помощью трех правил Бреве:

  • симметрия элементарной ячейки должна соответствовать симметрии кристаллической решетки;
  • элементарная ячейка должна иметь максимальное количество одинаковых ребер а, b , с и одинаковых углов между ними a , b , g . ;
  • при условии соблюдения первых двух правил элементарная ячейка должна занимать минимальный объем.

Для описания формы кристаллов используют систему трех кристаллографических осей а, b, с, которые отличаются от обычных координатных осей тем, что они являются отрезками определенной длины, углы между которыми a, b, g могут быть как прямыми, так и непрямыми.

Модель кристаллической структуры: а) кристаллическая решетка с выделенной элементарной ячейкой; б) элементарная ячейка с обозначениями гранных углов

Форму кристалла изучает наука геометрическая кристаллография, одним из основных положений которой является закон постоянства гранных углов: для всех кристаллов данного вещества углы между соответствующими гранями всегда остаются одинаковыми.

Если взять большое количество элементарных ячеек и заполнить ими плотно друг к другу определенный объем, сохраняя параллельность граней и ребер, то образуется монокристалл идеальной строения. Но на практике чаще всего встречаются поликристаллов, в которых регулярные структуры существуют в определенных пределах, по которым ориентация регулярности резко меняется.

В зависимости от соотношения длин ребер а, b, с и углов a, b, g между гранями элементарной ячейки различают семь систем — так называемых сингоний кристаллов. Однако элементарная ячейка может быть построенной и таким образом, что она имеет дополнительные узлы, которые размещаются внутри ее объема или на всех ее гранях — такие решетки называются соответственно объемноцентрированными и гранецентрированными. Если дополнительные узлы находятся только на двух противоположных гранях (верхний и нижний), то это базоцентрированная решетка. С учетом возможности дополнительных узлов существует всего 14 типов кристаллических решеток.

Внешняя форма и особенности внутреннего строения кристаллов определяются принципом плотной «упаковки»: наиболее устойчивой, а потому и наиболее вероятной структурой будет такая, которая соответствует наиболее плотному расположению частиц в кристалле и в которой остается наименьшее по объему свободное пространство.

Типы кристаллических решеток

В зависимости от природы частиц, содержащихся в узлах кристаллической решетки, а также от природы химических связей между ними, различаются четыре основных типа кристаллических решеток.

Ионные решетки

Ионные решетки построены из разноименных ионов, расположенных в узлах решетки и связанные силами электростатического притяжения. Поэтому структура ионной кристаллической решетки должна обеспечить ее электронейтральность. Ионы могут быть простыми (Na + , Cl —) или сложными (NH 4 + , NO 3 —). Вследствие ненасыщенности и ненаправленности ионной связи ионные кристаллы характеризуются большими координационными числами. Так, в кристаллах NaCl координационные числа ионов Na + и Cl — равна 6, а ионов Cs + и Cl — в кристалле CsCl — 8, поскольку один ион Cs + окружен восемью ионами Cl — , а каждый ион — Cl — соответственно восемью ионами Cs + . Ионные кристаллические решетки образуются большим количеством солей, оксидов и оснований.


Примеры ионных кристаллических решеток: а) NaCl; б) CsCl

Вещества с ионными кристаллическими решетками имеют сравнительно высокую твердость, они достаточно тугоплавкие, нелетучие. В отличие от ионные соединения очень хрупкие, поэтому даже небольшой сдвиг в кристаллической решетке приближает друг к другу одноименно заряженные ионы, отталкивания между которыми приводит к разрыву ионных связей и как следствие — к появлению в кристалле трещин или к его разрушению. В твердом состоянии вещества с ионной кристаллической решеткой относятся к диэлектрикам и не проводят электрический ток. Однако при расплавлении или растворении в полярных растворителях нарушается геометрически правильная ориентировка ионов относительно друг друга, сначала ослабляются, а затем разрушаются химические связи, поэтому меняются и свойства. Как следствие, электрический ток начинают проводить как расплавы ионных кристаллов, так и их растворы.

Атомные решетки

Эти решетки построены из атомов, соединенных между собой . Они, в свою очередь, делятся на три типа: каркасные, слоистые и цепочечные структуры.

Каркасную структуру имеет, например, алмаз — одно из самых твердых веществ. Благодаря sp 3 -гибридизации атома углерода строится трехмерная решетка, которая состоит исключительно из атомов углерода, соединенных ковалентными неполярными связями, оси которых размещаются под одинаковыми валентными углами (109,5 o).


Каркасная структура атомной кристаллической решетки алмаза

Слоистые структуры можно рассматривать как огромные двумерные молекулы. Для слоистых структур присущи ковалентные связи внутри каждого слоя и слабое вандерваальсовское взаимодействие между соседними слоями.


Слоистые структуры атомных кристаллических решеток: а) CuCl 2 ; б) PbO. На моделях с помощью очертаний параллелепипедов выделены элементарные ячейки

Классическим примером вещества со слоистой структурой является графит, в котором каждый атом углерода находится в состоянии sp 2 -гибридизации и образует в одной плоскости три ковалентные s-связи с тремя другими атомами С. Четвертые валентные электроны каждого атома углерода являются негибридизированными, за их счет образуются очень слабые вандерваальсовские связи между слоями. Поэтому при приложении даже небольшого усилия, отдельные слои легко начинают скользить друг вдоль друга. Этим объясняется, например, свойство графита писать. В отличие от алмаза графит хорошо проводит электричество: под воздействием электрического поля нелокализованные электроны могут перемещаться вдоль плоскости слоев, и, наоборот, в перпендикулярном направлении графит почти не проводит электрического тока.


Слоистая структура атомной кристаллической решетки графита

Цепочечные структуры характерны, например, для оксида серы (SO 3) n , киновари HgS, хлорида бериллия BeCl 2 , а также для многих аморфных полимеров и для некоторых силикатных материалов, таких, как асбест.


Цепная структура атомной кристаллической решетки HgS: а) проекция сбоку б) фронтальная проекция

Веществ с атомной строением кристаллических решеток сравнительно немного. Это, как правило, простые вещества, образованные элементами IIIА- и IVA-подгрупп (Si, Ge, B, C). Нередко соединения двух разных неметаллов имеют атомные решетки, например, некоторые полиморфные модификации кварца (оксид кремния SiO 2) и карборунда (карбид кремния SiC).

Все атомные кристаллы отличаются высокой прочностью, твердостью, тугоплавкостью и нерастворимостью практически ни в одном растворителе. Такие свойства обусловлены прочностью ковалентной связи. Вещества с атомной кристаллической решеткой имеют широкий диапазон электрической проводимости от изоляторов и полупроводников до электронных проводников.


Атомные кристаллические решетки некоторых полиморфных модификации карборунда — карбида кремния SiC

Металлические решетки

Эти кристаллические решетки содержат в узлах атомы и ионы металлов, между которыми свободно движутся общие для них всех электроны (электронный газ), которые образуют металлическую связь. Особенность кристаллических решеток металлов заключается в больших координационных числах (8-12), которые свидетельствуют о значительной плотность упаковки атомов металлов. Это объясняется тем, что «остовы» атомов, лишены внешних электронов, размещаются в пространстве как шарики одинакового радиуса. Для металлов чаще всего встречаются три типа кристаллических решеток: кубическая гранецентрированная с координационным числом 12 кубическая объемноцентрированная с координационным числом 8 и гексагональная, плотной упаковки с координационным числом 12.

Особые характеристики металлического связи и металлических решеток обусловливают такие важнейшие свойства металлов, как высокие температуры плавления, электро- и теплопроводность, ковкость, пластичность, твердость.


Металлические кристаллические решетки: а) кубическая объемноцентрированная (Fe, V, Nb, Cr) б) кубическая гранецентрированная (Al, Ni, Ag, Cu, Au) в) гексагональная (Ti, Zn, Mg, Cd)

Молекулярные решетки

Молекулярные кристаллические решетки содержат в узлах молекулы, соединенные между собой слабыми межмолекулярными силами — вандерваальсовскими или водородными связями. Например, лед состоит из молекул воды, удерживающихся в кристаллической решетке водородными связями. К тому же типу относятся кристаллические решетки многих веществ, переведенных в твердое состояние, например: простые вещества Н 2 , О 2 , N 2 , O 3 , P 4 , S 8 , галогены (F 2 , Cl 2 , Br 2 , I 2), «сухой лед» СО 2 , все благородные газы и большинство органических соединений.


Молекулярные кристаллические решетки: а) йод I2 ; б) лед Н2О

Поскольку силы межмолекулярного взаимодействия слабее, чем силы ковалентной или металлической связи, молекулярные кристаллы имеют небольшую твердость; они легкоплавкие и летучие, нерастворимые в и не проявляют электропроводности.

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • кристаллическая решетка.

Ионная кристаллическая решетка

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные . Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Молекулярная кристаллическая решетка

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Кристаллические решетки, видео

И в завершение подробное видео пояснения о свойствах кристаллических решеток.

Химия — 8

расположены в узлах кристаллической решетки, различают 4 типа кристаллической решетки — ионная, атомная, молекулярная и металлическая.

В отличие от кристаллических веществ, в аморфных веществах частицы расположены неупорядоченно.

Ионные кристаллические решетки. Кристаллические решетки, в узлах которых содержатся соединенные ионными связями положительно и отрицательно заряженные ионы, называются кристаллическими решетками. Типичными представителями соединений в виде ионных кристаллических решеток являются главным образом соли. Например, NaCl, KCl, NaBr, KBr, Na2CO3, Na2SO4 и др.

Соли состоят не из молекул, а из отдельных ионов. Химическая формула солей выражает их условную молекулярную формулу.

Из-за сильного притяжения между ионами в ионных соединениях эти вещества отличаются относительной тугоплавкостью, малой летучестью и определенной твердостью.

Атомные кристаллические решетки. Кристаллические решетки, в узлах которых содержатся отдельные атомы, связанные друг с другом ковалентной связью, называются атомными кристаллическими решетками.

В атомных кристаллических решетках атомы, как и ионы, располагаются в пространстве в различных положениях, образуя в результате различной формы кристаллы. Например, в узлах кристаллической решетки как алмаза, так и графита содержатся атомы углерода. Однако вследствие их различного расположения кристаллы алмаза обладают формой октаэдра, а кристаллы графита-призмы (таблица 14).

Таблица 14

Аллотропические
видоизменения
углерода
Состояния
гибридизации
углерода
Химический состав Тип кристаллической решетки Строение
кристаллической
решетки
Алмаз sp3 Одинаковый
(C)
Атомарный тетраэдрическое
Графит sp2 слоистое
Фюллерен sp2 сетчатое
Карбин sp линейное

Примерами веществ, образующих кристаллические решетки атомного типа, являются B, C, Si, SiC, SiO2 , красный и черный фосфор. Хотя SiC и SiO2 обладают атомной кристаллической решеткой, связь между их атомами образована посредством полярной ковалентной связи.

Так как в атомных кристаллических решетках этих веществ ковалентные связи между атомами обладают прочностью, для них характерны большая твердость и высокая температура плавления.

Молекулярные кристаллические решетки. Кристаллические решетки, в узлах которых находятся отдельные молекулы, называют молекулярными кристаллическими решетками. Кристаллические решетки молекулярного типа образуются молекулярными веществами.

Частицы в узлах молекулярной кристаллической решетки. Макромолекулярная связь кристаллических решеток

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения.

Это вещества, состоящие из молекул. Связи между молекулами в таких веществах очень слабые, намного слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются — вещество превращается в жидкость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из молекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся вещества с атомной структурой (С, Si, Li, Na, К, Си, Fe, W), среди них есть металлы и неметаллы.

Немолекулярное строение веществ

К веществам немолекулярного строения относятся ионные соединения. Таким строением обладает большинство соединений металлов с неметаллами: все соли (NaCl, K 2 S0 4), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, КОН). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.

Твердые вещества: кристаллические и аморфные

Аморфные вещества не имеют четкой температуры плавления — при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов — в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой . Точки, в которых размещены частицы кристалла, называют узлами решетки .

В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические .

Ионные кристаллические решетки

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na + , Сl — , так и сложные S0 4 2- , ОН — . Следовательно, ионными кристаллическими решетками обладают соли, некоторые оксиды и гидроксиды металлов. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Сl — , образующих решетку в форме куба.

Ионная кристаллическая решетка поваренной соли

Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями. Примером веществ с таким типом кристаллических решеток может служить алмаз — одно из аллотропных видоизменений углерода.

Атомная кристаллическая решетка алмаза

Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.

Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы.

Молекулярная кристаллическая решетка йода

Химические связи в этих молекулах могут быть и полярными (НСl, Н 2 O), и неполярными (N 2 , О 2). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решетками имеют малую твердость, низкие температуры плавления, летучи. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки.

В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. При мысленном соединении этих точек пересекающимися прямыми линиями образуется пространственный каркас, который называют кристаллической решеткой .

Точки, в которых размещены частицы, называются узлами кристаллической решетки . В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. Они совершают колебательные движения. С повышением температуры амплитуда колебаний возрастает, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные , атомные , молекулярные и металлические .

Кристаллические решетки, состоящие из ионов, называются ионными . Их образуют вещества с ионной связью. Примером может служит кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион — шестью ионами натрия. Такому расположению соответствует наиболее плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле. Очень часто кристаллические решетки изображают, как показано на рис , где указывается только взаимное расположение частиц, но не их размеры.

Число ближайших соседних частиц, вплотную примыкающих к данной частице в кристалле или в отдельной молекуле, называется координационным числом .

В решетке хлорида натрия координационные числа обоих ионов равны 6. Итак, в кристалле хлорида натрия нельзя выделить отдельные молекулы соли. Их нет. Весь кристалл следует рассматривать как гигантскую макромолекулу, состоящую из равного числа ионов Na + и Cl — , Na n Cl n , где n — большое число. Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи.

Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и уменьшению прочности связи между ними. Поэтому расплавы их проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.

Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными . Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4 . В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.

Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными .

Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной решеткой невелико.

Примерами их являются лед, твердый оксид углерода (IV) («сухой лед»), твердые галогеноводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F 2 , Сl 2 , Br 2 , I 2 , Н 2 , О 2 , N 2), трех- (О 3), четырех- (Р 4), восьми- (S 8) атомными молекулами. Молекулярная кристаллическая решетка йода показана на рис . Большинство кристаллических органических соединений имеют молекулярную решетку.

Согласно атомно-молекулярной теории Бойля, все вещества состоят из молекул, которые находятся в постоянном движении. Но существует ли какая-то определённая структура в веществах? Или они просто состоят из хаотично движущихся молекул?

В действительности чёткую структуру имеют все вещества, пребывающие в твёрдом состоянии. Атомы и молекулы движутся, но силы притяжения и отталкивания между частицами сбалансированы, поэтому атомы и молекулы располагаются в определённой точке пространства (но продолжают совершать небольшие колебания, зависящие от температуры). Такие структуры называются кристаллическими решётками . Места, в которых находятся сами молекулы, ионы или атомы, называют узлами . А расстояния между узлами получили название – периоды идентичности . В зависимости от положения частиц в пространстве, различают несколько типов:

  1. атомная;
  2. ионная;
  3. молекулярная;
  4. металлическая.

В жидком и газообразном состоянии вещества не имеют чёткой решётки, их молекулы движутся хаотично, именно поэтому они не имеют формы. Например, кислород, находясь в газообразном состоянии, представляет собой бесцветный газ без запаха, в жидком (при -194 градусов) – раствор голубоватого цвета. Когда температура опускается до -219 градусов, кислород переходит в твёрдое состояние и приобретает кр. решётку, при этом он превращается в снегообразную массу синего цвета.

Интересно, что у аморфных веществ нет чёткой структуры, поэтому у них и нет строгой температуры плавления и кипения. Смола и пластилин при нагревании постепенно размягчаются и становятся жидкими, у них нет чёткой фазы перехода.

Атомная кристаллическая решётка

В узлах находятся атомы, о чём и говорит название. Эти вещества очень крепкие и прочные , так как между частицами образуется ковалентная связь. Соседние атомы образуют между собой общую пару электронов (а, точнее, их электронные облака наслаиваются друг на друга), и поэтому они очень хорошо связаны друг с другом. Самый наглядные пример – алмаз, который по шкале Мооса обладит наибольшей твёрдостью. Интересно, что алмаз, как и графит, состоит из углевода. Графит является очень хрупким веществом (твёрдость по шкале Мооса – 1), что является наглядным примером того, как много зависит от вида.

Атомная кр. решётка плохо распространена в природе, к ней относятся: кварц, бор, песок, кремний, оксид кремния (IV), германий, горный хрусталь. Для этих веществ характерна высокая температура плавления, прочность, а также эти соединения очень твёрдые и нерастворимые в воде. Из-за очень сильной связи между атомами, эти химические соединения почти не взаимодействуют с другими и очень плохо проводят ток.

Ионная кристаллическая решётка

В этом типе ионы располагаются в каждом узле. Соответственно, этот вид характерен для веществ с ионной связью, например: хлорид калия, сульфат кальция, хлорид меди, фосфат серебра, гидроксид меди и так далее. К веществам с такой схемой соединения частиц относятся ;

  • соли;
  • гидроксиды металлов;
  • оксиды металлов.

Хлорид натрия имеет чередование положительных (Na +) и отрицательных (Cl —) ионов. Один ион хлора, находящийся в узле, притягивает к себе два иона натрия (благодаря электромагнитному полю), которые находятся в соседних узлах. Таким образом, образуется куб, в котором частицы связаны между собой.

Для ионной решётки характерна прочность, тугоплавкость, устойчивость, твёрдость и нелетучесть. Некоторые вещества могут проводить электрический ток.

Молекулярная кристаллическая решётка

В узлах этой структуры находятся молекулы, которые плотно упакованы между собой. Для таких веществ характерна ковалентная полярная и неполярная связь. Интересно, что независимо от ковалентной связи, между частицами образуете очень слабое притяжение (из-за слабых ван-дер-вальсовых сил). Именно поэтому такие вещества очень хрупкие, обладают низкой температурой кипения и плавления, а также они летучие. К таким веществам относятся: вода, органические вещества (сахар, нафталин), оксид углерода (IV), сероводород, благородные газы, двух– (водород, кислород, хлор, азот, йод), трёх- (озон), четырёх- (фосфор), восьмиатомные (сера) вещества и так далее.

Одна из отличительных черт — это то, что структурная и пространственная модель сохраняется во всех фазах (как в твёрдых, так в жидких и газообразных).

Металлическая кристаллическая решётка

Из-за наличия в узлах ионов, может показаться, что металлическая решетка похожа на ионную. На самом деле, это две совершенно разные модели, с разными свойствами.

Металлическая гораздо гибче и пластичнее ионной, для неё характерна прочность, высокая электро- и теплопроводность, эти вещества хорошо плавятся и отлично проводят электрический ток. Это объясняется тем, что в узлах находятся положительно заряженные ионы металлов (катионы), которые могут перемещаться по всей структуре, тем самым обеспечивают течение электронов. Частицы хаотично движутся около своего узла (они не имеют достаточной энергии, чтобы выйти за пределы), но как только появляется электрическое поле, электроны образуют поток и устремляются из положительной в отрицательную область.

Металлическая кристаллическая решётка характерна для металлов, например: свинец, натрий, калий, кальций, серебро, железо, цинк, платина и так далее. Помимо прочего, она подразделяется ещё на несколько типов упаковок: гексагональная, объёмно центрированная (наименее плотная) и гранецентрированная. Первая упаковка характерна для цинка, кобальта, магния, вторая для бария, железа, натрия, третья для меди, алюминия и кальция.

Таким образом, от типа решётки зависят многие свойства, а также строение вещества. Зная тип, можно предсказать, к примеру, какой будет тугоплавкость или прочность объекта.

Строение вещества.

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.
Наша задача познакомиться со строением вещества.

При низких температурах для веществ устойчиво твёрдое состояние.

☼ Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

☼ Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.
У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы.

Жидкие кристаллы открыты в конце XIX века, но изучены в последние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водяной лёд плавится при температуре выше 2000 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т. е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток.

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.
При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку.

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.
Одно и то же вещество в зависимости от условий (p, t,…) существует в различных кристаллических формах (т. е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.
Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

☼ Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

☼ Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

☼ Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

☼ Название графита происходит от итальянского «граффитто» — пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК







Свойства веществ с различной кристаллической решёткой (таблица)

Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

Взаимосвязь между положением элемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.



Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:
— Что такое кристаллическая решётка?
— Какие виды кристаллических решёток существуют?
— Охарактеризуйте каждый вид кристаллической решётки по плану:

Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:


— Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (Ch4 COOH), сахар (C12 h32 O11 ), калийное удобрение (KCl), речной песок (SiO2 ) – температура плавления 1710 0C, аммиак (Nh4 ), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
По формулам приведённых веществ: SiC, CS2 , NaBr, C2 h3 — определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
Тренажёр №1. «Кристаллические решётки»
Тренажёр №2. «Тестовые задания»
Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:
a). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула» не применимо по отношению к структурной единице вещества:

б). кислород

в). алмаз

3) Атомная кристаллическая решётка характерна для:

a). алюминия и графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:

А). молекулярная

б). атомная

в). ионная

г). металлическая

Молекулярное строение имеет

1) оксид кремния(IV)

2) нитрат бария

3) хлорид натрия

4) оксид углерода(II)

Пояснение.

Под строением вещества понимают, из каких частиц молекул, ионов, атомов построена его кристаллическая решетка. Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO 2 , SiC (карборунд), BN, Fe 3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Оксид кремния (IV) — связи ковалентные, вещество твердое, тугоплавкое, кристаллическая решетка атомная. Нитрат бария и хлорид натрия вещества с ионными связями — кристаллическая решетка ионная. Оксид углерода (II) это газ в молекуле ковалентные связи, значит, это правильный ответ, кристаллическая решетка молекулярная.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2012 по химии.

В твер­дом виде мо­ле­ку­ляр­ное стро­е­ние имеет

1) оксид кремния(IV)

2) хло­рид кальция

3) суль­фат меди (II)

Пояснение.

Под стро­е­ни­ем ве­ще­ства понимают, из каких ча­стиц молекул, ионов, ато­мов по­стро­е­на его кри­стал­ли­че­ская решетка. Не­мо­ле­ку­ляр­ное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми связями, могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские решетки. Атом­ные кри­стал­ли­че­ские решетки: С (алмаз, графит), Si, Ge, B, SiO 2 , SiC (карборунд), BN, Fe 3 C, TaC, крас­ный и чёрный фосфор. В эту груп­пу вхо­дят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Вещества с мо­ле­ку­ляр­ной кри­стал­ли­че­ской ре­шет­кой имеет более низ­кие тем­пе­ра­ту­ры кипения, чем все осталь­ные вещества. По фор­му­ле не­об­хо­ди­мо опре­де­лить тип связи в веществе, а затем опре­де­лить тип кри­стал­ли­че­ской решетки. Оксид крем­ния (IV) — связи ковалентные, ве­ще­ство твердое, тугоплавкое, кри­стал­ли­че­ская ре­шет­ка атомная. Хло­рид каль­ция и суль­фат меди — ве­ще­ства с ион­ны­ми свя­зя­ми — кри­стал­ли­че­ская ре­шет­ка ионная. В мо­ле­ку­ле йода ко­ва­лент­ные связи, и он легко возгоняется, зна­чит это пра­виль­ный ответ, кри­стал­ли­че­ская ре­шет­ка молекулярная.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2013 по химии.

1) оксид углерода(II)

3) бро­мид магния

Пояснение.

Немолекулярное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах которых атомы со­еди­не­ны ковалентными свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кристаллические решетки. Атом­ные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2, SiC (карборунд), BN, Fe3 C, TaC, крас­ный и чёрный фосфор. В эту груп­пу входят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Ответ: 3

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 1.

Ионную кри­стал­ли­че­скую решётку имеет

2) оксид углерода(II)

4) бромид магния

Пояснение.

Немолекулярное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах которых атомы со­еди­не­ны ковалентными свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кристаллические решетки. Атом­ные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, крас­ный и чёрный фосфор. В эту груп­пу входят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Вещества с мо­ле­ку­ляр­ной кристаллической ре­шет­кой имеет более низ­кие температуры кипения, чем все осталь­ные вещества. По фор­му­ле необходимо опре­де­лить тип связи в веществе, а затем опре­де­лить тип кри­стал­ли­че­ской решетки.

Ионную кри­стал­ли­че­скую решетку имеет бро­мид магния.

Ответ: 4

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 2.

Сульфат натрия имеет кристаллическую решётку

1) металлическую

3) молекулярную

4) атомную

Пояснение.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Сульфат натрия — это соль, имеющая ионную кристаллическую решетку.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 3.

Немолекулярное стро­е­ние имеет каж­дое из двух веществ:

1) азот и алмаз

2) калий и медь

3) вода и гид­рок­сид натрия

4) хлор и бром

Пояснение.

Немолекулярное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми связями. Вещества, в мо­ле­ку­лах которых атомы со­еди­не­ны ковалентными свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кристаллические решетки. Атом­ные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2, SiC (карборунд), BN, крас­ный и чёрный фосфор. В эту груп­пу входят вещества, как правило, твер­дые и ту­го­плав­кие вещества.

Вещества с мо­ле­ку­ляр­ной кристаллической ре­шет­кой имеет более низ­кие температуры кипения, чем все осталь­ные вещества. По фор­му­ле необходимо опре­де­лить тип связи в веществе, а затем опре­де­лить тип кри­стал­ли­че­ской решетки.

Из при­ве­ден­ных веществ толь­ко алмаз, калий, медь и гидроксид натрия имеют не­мо­ле­ку­ляр­ное строение.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Дальний Восток. Вариант 4.

Веществом с ионным типом кристаллической решётки является

3) уксусная кислота

4) сульфат натрия

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Ионную кристаллическую решетку имеет сульфат натрия.

Ответ: 4

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Сибирь. Вариант 1.

Металлическая кристаллическая решётка характерна для

2) белого фосфора

3) оксида алюминия

4) кальция

Пояснение.

Металлическая кристаллическая решетка характерна для металлов, например, кальция.

Ответ: 4

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Урал. Вариант 1.

Максим Аврамчук 22.04.2015 16:53

Все металлы кроме ртути имеют металлическую кристаллическую решетку. Не подскажите какая кристаллическая решетка у ртути и амальгамы?

Александр Иванов

Ртуть в твердом состоянии тоже имеет металлическую кристаллическую решетку

·

2) оксид кальция

4) алюминий

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Ионную кристаллическую решетку имеет оксид кальция.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Сибирь. Вариант 2.

Молекулярную кристаллическую решётку в твёрдом состоянии имеет

1) иодид натрия

2) оксид серы(IV)

3) оксид натрия

4) хлорид железа(III)

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Среди приведенных веществ все кроме оксида серы(IV) имеют ионную кристаллическую решетку, а он — молекулярную.

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Сибирь. Вариант 4.

Ионную кристаллическую решётку имеет

3) гидрид натрия

4) оксид азота(II)

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Гидрид натрия имеет ионную кристаллическую решетку.

Ответ: 3

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Урал. Вариант 5.

Для ве­ществ с мо­ле­ку­ляр­ной кри­стал­ли­че­ской решёткой ха­рак­тер­ным свой­ством является

1) тугоплавкость

2) низкая тем­пе­ра­ту­ра кипения

3) высокая тем­пе­ра­ту­ра плавления

4) электропроводность

Пояснение.

Вещества с мо­ле­ку­ляр­ной кри­стал­ли­че­ской ре­шет­кой имеет более низ­кие тем­пе­ра­ту­ры кипения, чем все осталь­ные вещества. Ответ: 2

Ответ: 2

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Центр. Вариант 1.

Для веществ с молекулярной кристаллической решёткой характерным свойством является

1) тугоплавкость

2) высокая температура кипения

3) низкая температура плавления

4) электропроводность

Пояснение.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры плавления и кипения, чем все остальные вещества.

Ответ: 3

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Центр. Вариант 2.

Молекулярное строение имеет

1) хлороводород

2) сульфид калия

3) оксид бария

4) оксид кальция

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Из приведенных веществ все имеют ионную кристаллическую решетку кроме хлороводорода.

Ответ: 1

Источник: ЕГЭ по химии 10.06.2013. Основная волна. Центр. Вариант 5.

Mолекулярное строение имеет

1) оксид кремния(IV)

2) нитрат бария

3) хлорид натрия

4) оксид углерода(II)

Пояснение.

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Среди приведенных веществ молекулярное строение имеет угарный газ.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2014 по химии.

Веществом мо­ле­ку­ляр­но­го стро­е­ния является

1) хло­рид аммония

2) хло­рид цезия

3) хло­рид железа(III)

4) хлороводород

Пояснение.

Под стро­е­ни­ем ве­ще­ства по­ни­ма­ют, из каких ча­стиц мо­ле­кул, ионов, ато­мов по­стро­е­на его кри­стал­ли­че­ская ре­шет­ка. Не­мо­ле­ку­ляр­ное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми свя­зя­ми. Ве­ще­ства, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки. Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO2, SiC (кар­бо­рунд), BN, Fe3C, TaC, крас­ный и чёрный фос­фор. В эту груп­пу вхо­дят ве­ще­ства, как пра­ви­ло, твер­дые и ту­го­плав­кие ве­ще­ства.

Ве­ще­ства с мо­ле­ку­ляр­ной кри­стал­ли­че­ской ре­шет­кой имеет более низ­кие тем­пе­ра­ту­ры ки­пе­ния, чем все осталь­ные ве­ще­ства. По фор­му­ле не­об­хо­ди­мо опре­де­лить тип связи в ве­ще­стве, а затем опре­де­лить тип кри­стал­ли­че­ской ре­шет­ки.

1) хло­рид аммония — ионное строение

2) хло­рид цезия — ионное строение

3) хло­рид железа(III) — ионное строение

4) хлороводород — молекулярное строение

Ответ: 4

Какое из со­еди­не­ний хлора имеет наи­боль­шую тем­пе­ра­ту­ру плавления?

Ответ: 3

Какое из со­еди­не­ний кис­ло­ро­да имеет наи­боль­шую тем­пе­ра­ту­ру плавления?

Ответ: 3

Александр Иванов

Нет. Это атомная кристаллическая решётка

Игорь Сраго 22.05.2016 14:37

Поскольку в рамках ЕГЭ учат, что связь между атомами металлов и неметаллов является ионной, постольку оксид алюминия должен образовывать ионный кристалл. А ве­ще­ства ионного стро­е­ния тоже (как и атомного) имеют тем­пе­ра­ту­ру плав­ле­ния выше, чем ве­ще­ства мо­ле­ку­ляр­но­го.

Антон Голышев

Вещества с атомной кристаллической решеткой лучше просто выучить.

·

Для ве­ществ с ме­тал­ли­че­ской кристаллической решёткой нехарактерна

1) хрупкость

2) пластичность

3) вы­со­кая электропроводность

4) вы­со­кая теплопроводность

Пояснение.

Для металлов характерна пластичность, вы­со­кая электро- и теплопроводность, а вот хрупкость для них нехарактерна.

Ответ: 1

Источник: ЕГЭ 05.05.2015. До­сроч­ная волна.

Пояснение.

Ве­ще­ства, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки. Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO2, SiC (кар­бо­рунд), BN, Fe3C, TaC, крас­ный и чёрный фос­фор. В эту груп­пу вхо­дят ве­ще­ства, как пра­ви­ло, твер­дые и ту­го­плав­кие ве­ще­ства.

Ответ: 1

Молекулярную кри­стал­ли­че­скую решётку имеет

Пояснение.

Ве­ще­ства с ион­ны­ми (BaSO 4) и ме­тал­ли­че­ски­ми свя­зя­ми имеют не­мо­ле­ку­ляр­ное стро­е­ние.

Ве­ще­ства, атомы которых со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки.

Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO 2 , SiC (кар­бо­рунд), B 2 O 3 , Al 2 O 3 .

Вещества, газообразные при обычных условиях (O 2 , H 2 , NH 3 , H 2 S, CO 2), а также жидкие (H 2 O, H 2 SO 4) и твердые, но легкоплавкие (S, глюкоза), имеют молекулярное строение

Поэтому мо­ле­ку­ляр­ную кри­стал­ли­че­скую решётку имеет — углекислый газ.

Ответ: 2

Атомную кри­стал­ли­че­скую решётку имеет

1) хло­рид аммония

2) оксид цезия

3) оксид кремния(IV)

4) сера кристаллическая

Пояснение.

Ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми свя­зя­ми имеют не­мо­ле­ку­ляр­ное стро­е­ние.

Ве­ще­ства, в мо­ле­ку­лах ко­то­рых атомы со­еди­не­ны ко­ва­лент­ны­ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри­стал­ли­че­ские ре­шет­ки. Атом­ные кри­стал­ли­че­ские ре­шет­ки: С (алмаз, гра­фит), Si, Ge, B, SiO2, SiC (кар­бо­рунд), BN, Fe3C, TaC, крас­ный и чёрный фос­фор. Остальные относятся к веществам с молекулярной кри­стал­ли­че­ской ре­шет­кой.

Поэтому атомную кри­стал­ли­че­скую решётку имеет оксид кремния(IV).

Ответ: 3

Твёрдое хруп­кое ве­ще­ство с вы­со­кой тем­пе­ра­ту­рой плавления, рас­твор ко­то­ро­го про­во­дит элек­три­че­ский ток, имеет кри­стал­ли­че­скую решётку

2) металлическую

3) атомную

4) молекулярную

Пояснение.

Такие свойства характерны для веществ с ионной кристаллической решеткой.

Ответ: 1

Какое со­еди­не­ние крем­ния имеет в твёрдом со­сто­я­нии мо­ле­ку­ляр­ную кри­стал­ли­че­скую решётку?

Кристаллические решетки

Осознание содержания этого пункта позволяет:

характеризовать внутреннее строение твердого вещества; различать типы кристаллических решеток;

объяснять аморфное состояние, строение кристаллической решетки различных типов, зависимость физических свойств веществ от кристаллического строения и обосновывать ее.

Вы уже знаете, что относительно простые формы организации вещества — атомы, ионы, молекулы — в стандартных условиях индивидуально не существуют. Они взаимодействуют друг с другом и образуют совокупность частиц — различные вещества.

— Вспомните из курса физики, в любом агрегатном состоянии могут существовать вещества и чем эти состояния различаются.

В зависимости от природы частиц и характера взаимодействия между ними различают определенные агрегатные состояния.

Твердые вещества могут находиться в аморфном и кристаллическом состояниях. Вещества в аморфном состоянии не имеют упорядоченной структуры. К ним относится много полимеров, смолы, янтарь (янтарь), кремний, селен и др.. Среди аморфных материалов известным является стекло, поэтому аморфное состояние еще называют волны.

У веществ в кристаллическом состоянии составляющие частицы имеют упорядоченное пространственное расположение. Регулярное размещения частиц в твердом теле изображается в виде решеток, в узлах которых находятся те или иные частицы, соединенные воображаемыми линиями, образующих так называемые кристаллические решетки.

Кристаллические решетки — это расположение в пространстве атомов, молекул, ионов в определенном порядке.

На основе различной природы частиц, содержащихся в узлах кристаллической решетки, и различных химических связей между ними все кристаллы делятся на молекулярные, атомные, ионные и металлические. В зависимости от этого и кристаллические решетки делятся на соответствующие типы (рис. 14).

Молекулярные кристаллы. В узлах молекулярных кристаллических решеток (рис. 14, а) содержатся молекулы (полярные и неполярные), связаны между собой слабыми межмолекулярными силами, в частности водородными связями. Например, кристаллы льда состоят из молекул воды, содержащихся в решетке водородными связями, значительно слабее силы ковалентной связи. Поэтому вещества с молекулярными решетками имеют небольшую твердость, они легкоплавкие и летучие. К таким веществам относятся кристаллы йода, хлора, брома, водорода, кислорода, азота, инертных газов, «сухого льда» СО2, аммиака Nh4, метана СН4 и многих органических соединений.

Атомные кристаллы. В узлах атомных кристаллических решеток содержатся атомы, соединенные между собой прочными ковалентными связями (рис. 14, б).

Поэтому вещества с таким типом кристаллической решетки характеризуются большой твердостью, очень высокими температурами плавления и кипения; они нелетучие, практически не растворяются в каких растворителях, электрический ток не проводят. Атомные решетки имеют лишь некоторые вещества в твердом состоянии — алмаз C, кремний Si, бор В, кремний (IV) оксид SiO2, кремний (IV) карбид SiC и др..

Ионные кристаллы. В узлах ионных кристаллических решеток содержатся положительно и отрицательно заряженные ионы — как простые (Na +, К +, Cl -, S2-),

так и сложные (рис. 14, в). Они соединены друг с другом

силами электростатического притяжения. К ним относятся соли, основные оксиды, гидроксиды. Вещества с ионными решетками имеют сравнительно высокую жесткость; они довольно тугоплавкие, почти нелетучие и хрупкие.

Металлические кристаллы. В узлах металлических кристаллических решеток содержатся атомы и положительно заряженные ионы. Между ними — «электронный газ», распределенный по всему металла (рис. 14, г). Итак, валентные электроны атомов не локализован. Между положительно заряженными ионами металлических элементов и нелокализованными электронами существует электростатическое взаимодействие. Вещества с металлическими решетками — металлы — имеют разные температуры плавления, в основном высокие. Они нелетучие (кроме ртути), твердые, пластичные, ковки. Обладают высокой электро — и теплопроводностью.

Коротко о главном

Твердые вещества кристаллическом состоянии состоят из атомов, молекул, ионов, расположенных не хаотично, а в определенном порядке, образуя кристаллические решетки.

В зависимости от характера частиц, образующих кристалл, и типа химической связи между ними кристаллические решетки делятся на молекулярные, атомные, ионные, металлические.

Тип кристаллической решетки четко определяет физические свойства вещества. Чем выше связь между структурными частицами кристаллической решетки, тем преимущественно выше твердость вещества и температура плавления. Прочными являются атомные и металлические решетки, а молекулярные имеют незначительную прочность и невысокие температуры плавления, особенно если в узлах решетки находятся неполярные молекулы.

категория: Химия

Часы на молекулярной решетке с длинной колебательной когерентностью

  • Мозес С.А., Кови Дж.П., Мечниковский М.Т., Джин Д.С. и Йе Дж. Новые границы для квантовых газов полярных молекул. Нац. физ. 13 , 13–20 (2017).

    Артикул Google ученый

  • Барри, Дж. Ф., Маккаррон, Д. Дж., Норгард, Э. Б., Штайнекер, М. Х. и Демилль, Д. Магнитооптический захват двухатомной молекулы. Природа 512 , 286–289 (2014).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Оспелкаус, С. и др. Квантово-управляемые химические реакции ультрахолодных молекул калия-рубидия. Наука 327 , 853–857 (2010).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • McDonald, M. et al. Фотодиссоциация ультрахолодных двухатомных молекул стронция с квантовым контролем состояния. Природа 534 , 122–126 (2016).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Ян Б. и др. Наблюдение диполярных взаимодействий спинового обмена с полярными молекулами, ограниченными решеткой. Природа 501 , 521–525 (2013).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Парк, Дж. В., Ян, З. З., Лох, Х., Уилл, С. А. и Цвирляйн, М. В. Время когерентности ядерного спина во второй шкале ультрахолодных 23 Na 40 K молекул. Наука 357 , 372–375 (2017).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Чжоу, К.и другие. Подготовка и когерентная обработка чистых квантовых состояний одиночного молекулярного иона. Природа 545 , 203–207 (2017).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Campbell, S.L. et al. Ферми-вырожденные трехмерные часы на оптической решетке. Наука 358 , 90–94 (2017).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Nemitz, N. et al. Отношение частот часов Yb и Sr с погрешностью 5 × 10 −17 при времени усреднения 150 секунд. Нац. Фотон. 10 , 258–261 (2016).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Годун Р.М. и др. Соотношение частот двух переходов оптических часов в 171 Yb + и ограничения на изменение во времени фундаментальных констант. Физ. Преподобный Летт. 113 , 210801 (2014).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Huntemann, N. et al. Улучшен предел временного отклонения м р / м e из сравнений атомных часов Yb + и Cs. Физ. Преподобный Летт. 113 , 210802 (2014).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Чоу, К.В., Хьюм, Д.Б., Розенбанд, Т. и Вайнленд, Д.Дж. Оптические часы и теория относительности. Наука 329 , 1630–1633 (2010).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Колковиц, С. и др. Обнаружение гравитационных волн с помощью атомных часов на оптической решетке. Физ. Ред. D 94 , 124043 (2016).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Колковиц, С. и др. Спин-орбитально-связанные фермионы в часах на оптической решетке. Природа 542 , 66–70 (2017).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Борковски М. Часы на оптической решетке со слабо связанными молекулами. Физ.Преподобный Летт. 120 , 083202 (2018).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Зелевинский, Т., Коточигова, С. и Йе, Дж. Прецизионный тест изменения отношения масс с помощью ультрахолодных молекул, ограниченных решеткой. Физ. Преподобный Летт. 100 , 043201 (2008).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Шиллер С., Бакалов Д.{+}\). Физ. Ред. A 94 , 050101(R) (2016 г.).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Салумбидес, Э. Дж. и др. Границы пятых сил по прецизионным измерениям молекул. Физ. Ред. D 87 , 112008 (2013 г.).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Салумбидес Э.Дж., Дикенсон Г. Д., Иванов Т.И.и Убахс, В. Эффекты КЭД в молекулах: проверка вращательных квантовых состояний H 2 . Физ. Преподобный Летт. 107 , 043005 (2011).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Йе, Дж., Кимбл, Х.Дж. и Катори, Х. Квантовая инженерия состояний и прецизионная метрология с использованием нечувствительных к состоянию световых ловушек. Наука 320 , 1734–1738 (2008).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • МакГайер, Б.Х. и др. Точное изучение асимптотической физики с субизлучающими ультрахолодными молекулами. Нац. физ. 11 , 32–36 (2015).

    Артикул Google ученый

  • Коточигова С. и ДеМилль Д. Зависящая от электрического поля динамическая поляризуемость и нечувствительные к состоянию условия для оптического захвата двухатомных полярных молекул. Физ. Ред. A 82 , 063421 (2010 г.).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Нейенхейс, Б.и другие. Анизотропная поляризуемость ультрахолодных полярных 40 K 87 молекул Rb. Физ. Преподобный Летт. 109 , 230403 (2012).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Ли М., Петров А., Макридес С., Тисинга Э. и Коточигова С. Условия маятникового захвата ультрахолодных полярных молекул, вызванные внешними электрическими полями. Физ. Ред. A 95 , 063422 (2017 г.).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Розенбанд Т., Граймс Д. Г. и Ни К.-К. Эллиптическая поляризация для компенсации молекулярного штарковского сдвига в глубоких оптических ловушках. Опц. Экспресс 26 , 19821–19825 (2018).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Кадзита, М., Гопакумар, Г., Абэ, М. и Хада, М. Устранение штарковского сдвига из частоты колебательного перехода оптически захваченных молекул 174 Yb 6 Li.{+}\) многообразие из современных вычислений ab initio. J. Chem. физ. 136 , 194306 (2012).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Reinaudi, G., Osborn, C.B., McDonald, M., Kotochigova, S. & Zelevinsky, T. Оптическое производство стабильных ультрахолодных 88 Sr 2 молекул. Физ. Преподобный Летт. 109 , 115303 (2012).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Макдональдс, М., МакГайер, Б.Х., Ивата, Г.З. и Зелевинский, Т. Термометрия с помощью световых сдвигов в оптических решетках. Физ. Преподобный Летт. 114 , 023001 (2015).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • McGuyer, B.H. et al. Высокоточная спектроскопия ультрахолодных молекул в оптической решетке. New J. Phys. 17 , 055004 (2015).

    ОБЪЯВЛЕНИЕ Статья Google ученый

  • Собельман И.I Атомные спектры и радиационные переходы (Springer, 1979).

  • Крейг Д. П. и Тирунамачандран Т. Молекулярная квантовая электродинамика (Academic Press, 1984).

  • Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка браузера для приема файлов cookie

    Существует множество причин, по которым файл cookie не может быть установлен правильно. Ниже приведены наиболее распространенные причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
    • Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступ к остальной части вашего компьютера, и только сайт, создавший файл cookie, может его прочитать.

    Модели молекулярных решеток Ward’s® Chemistry

    Бореальная наука здесь, чтобы помочь вам

    Мы упростили размещение заказа на Boreal Science, предоставив всю необходимую информацию ниже.

    Условия продажи продукта

    Все заказы регулируются Условиями продажи продуктов, доступными здесь. Размещая заказ, вы подтверждаете, что прочитали и согласны с Условиями продажи продукта.

    Условия доставки

    Все заказы будут нести сборы за доставку и обработку, добавленные к общей стоимости заказа. Стоимость доставки может варьироваться в зависимости от характера продукта, общего веса, пункта назначения, даты доставки и способа доставки.Заказы будут отправлены курьерской службой UPS по текущим опубликованным тарифам. Стоимость доставки рассчитывается на момент онлайн-заказа. Заказы, которые необходимо отправить автомобильным транспортом, могут повлечь за собой дополнительную плату за доставку. Все заказы стоимостью 24,99 долларов США или меньше (до вычета налогов) облагаются дополнительным сбором за обработку в размере 7 долларов США. Наши условия доставки указаны на условиях FOB, если не указано иное. Для получения дополнительной информации о конкретных условиях доставки для вашей учетной записи обратитесь к менеджеру по работе с клиентами Boreal Science. Посетите сайт boreal.com/repfinder, чтобы найти представителя в вашем регионе.

    Стоимость перевозки химических и опасных грузов

    Материалы, классифицированные Министерством транспорта Канады как опасные. могут включать, но не ограничиваться этим, химические вещества, микробиологические образцы или наборы для занятий, содержащие эти материалы. Если ваш заказ содержит предмет, классифицированный Transport Canada как опасный, за каждую отправку будет взиматься плата в размере не менее 17,50 долларов США. Заказы на химикаты и опасные материалы будут приниматься только от образовательных и научно-исследовательских учреждений; мы не отправляем химические вещества частным лицам. Опасные грузы необходимо перевозить наземным транспортом. Отдельные химикаты теперь доступны в упаковках Poison Pack, чтобы исключить опасные транспортные расходы и ускорить доставку. Раньше эти химические вещества доставлялись в течение 7-14 дней, и к общей сумме заказа добавлялась плата за опасную доставку. Теперь добавленные Poison Packs устраняют опасные сборы за доставку и позволяют доставлять ваши химикаты через UPS в течение 5-7 рабочих дней. Список химикатов, в состав которых входят ядовитые пакеты, можно найти на сайте boreal.com.ком/химия.

    Доставка живых материалов и гарантия

    Все микрокультуры жизни будут доставлены вам в течение двух рабочих дней, если заказ размещен до 12:00 по восточному стандартному времени. Ваши образцы или культуры будут доставлены в хорошем состоянии, или мы вышлем бесплатную замену. Запрос даты доставки в среду, четверг или пятницу гарантирует здоровую доставку ваших живых образцов. Прямые трансляции не будут доставляться по понедельникам. При доставке во вторник может взиматься дополнительная плата за доставку.Свяжитесь со службой поддержки клиентов Boreal Science (800-387-9393), чтобы договориться о доставке живых материалов во вторник. Чтобы получить купон на живые материалы, посетите сайт boreal.com/livematerials. В случае неблагоприятных погодных условий мы можем задержать или отменить доставку, если она не будет доставлена ​​в целости и сохранности. Посетите нашу домашнюю страницу для получения последних обновлений, если вы подозреваете, что погода может быть проблемой в вашем регионе. Если ваша школа закрыта из-за погодных условий, позвоните в службу поддержки клиентов, чтобы сообщить нам об этом, и мы придержим ваш образец и перенесем его в удобное для вас время.

    Бактерии и патогены

    Отправка патогенов и бактериальных культур в общеобразовательные учреждения и частным лицам запрещена Федеральной службой здравоохранения. Провинциальные или местные власти могут потребовать разрешения, прежде чем мы сможем отправить вам патогены. Колледжам и университетам разрешается заказывать патогены и бактериальные культуры только через институциональный заказ на поставку.

    Представление продукта

    Мы прилагаем все усилия, чтобы обеспечить точность изображений, описаний и цен наших продуктов перед публикацией.Однако из-за случайных изменений, вносимых поставщиками после даты публикации, физический вид предметов может измениться или отличаться по цвету от того, что показано в каталоге. Мы гарантируем, что товары, которые вы получите, будут соответствовать всем спецификациям и требованиям продукта. Цены в каталоге и наличие товара могут быть изменены. В случае типографской ошибки в цене мы не обязаны учитывать опечатку. Пожалуйста, проверьте наш веб-сайт для получения последних обновлений изображений продуктов, описаний, доступности и цен.

    Ваши любимые товары всегда в наличии

    Тысячи наших самых продаваемых продуктов всегда есть на складе и готовы к тому моменту, когда они вам понадобятся, поэтому вам не нужно ждать товары, которые вы используете чаще всего. Товары отправляются в течение 48 часов с момента заказа, если заказ получен в электронном виде или по телефону до 13:00 по восточному поясному времени. Обещание наличия на складе и доставка в течение 48 часов не включают опасные химические вещества и исключительные объемы заказа, которые будут доступны во время выполнения заказа.Доступность может быть изменена в случае стихийного бедствия или сил природы, влияющих на поиск, отгрузку, транспортировку или наличие живых материалов, необходимых для производства товарных товаров. Boreal Science свяжется с клиентом напрямую, чтобы сообщить о возникновении такого события и предоставить альтернативные материалы, когда они будут доступны. Текущие запасы и доступность для всех продуктов доступны онлайн на каждой странице продукта.

    Рекламные исключения

    Если не указано иное, любой товар, цена которого заканчивается на «9» (т.е. 5,09 долл. США, 14,99 долл. США, 100,89 долл. США) исключается из специальных предложений, скидок и рекламных акций. Рекламные скидки не могут сочетаться с какими-либо другими предложениями, скидками или акциями. Предложения о бесплатной доставке включают только стандартную наземную доставку.

    Кредит и выставление счетов

    Кредит распространяется на все учебные заведения. Срок составляет 30 дней с даты выставления счета. Персональные заказы учителей всегда приветствуются. Для получения дополнительной информации напишите [email protected].

    Налог с продаж

    Налог с продаж будет включен в ваш счет. Если вы освобождены от налога с продаж, при размещении заказа предоставьте соответствующие документы.

    100% гарантия возврата

    Мы принимаем возврат товара по любой причине в течение 60 дней с момента покупки. Возвращаемые товары должны быть неиспользованными и в оригинальной упаковке. Чтобы вернуть

    товара для возврата, замены или кредита, отправьте электронное письмо [email protected] или позвоните по телефону 800-387-9393, чтобы получить номер разрешения на возврат и дальнейшие инструкции по возврату. Пожалуйста, подготовьте номер вашего заказа, чтобы мы могли лучше помочь вам. В некоторых случаях может взиматься плата за пополнение запасов. Товары, возвращенные без предварительного разрешения, не могут быть приняты или зачислены. Товары, находящиеся на гарантии, будут отремонтированы или заменены по нашему усмотрению. Чтобы обеспечить максимально быстрый возврат или замену, мы рекомендуем вам проверять все посылки сразу по прибытии, чтобы убедиться, что вы удовлетворены. Может потребоваться проверка перевозчика.

    Факты о Законопроекте 65 штата Калифорния
    Boreal Science стремится к вашей безопасности и соблюдению Калифорнийского закона о безопасности питьевой воды и контроле над токсичными веществами от 1986 года.По состоянию на 30 августа 2018 г. требования к отчетности этого закона, более известного как Предложение 65, изменились. Эти изменения требуют от розничных продавцов, ведущих бизнес в штате Калифорния, предоставлять более надежную и подробную маркировку товаров, содержащих определенные химические вещества, которые в соответствии с
    штата Калифорния являются опасными. В ответ на это мы добавили новые этикетки, подобные показанной ниже, ко многим упаковкам наших продуктов и описаниям каталогов. Теперь вы можете увидеть эти этикетки на некоторых продуктах
    и упаковке, даже если вы не проживаете в штате Калифорния.Безопасность и состав наших продуктов не изменились. Наша продукция по-прежнему соответствует самым высоким стандартам безопасности для вашего класса. Для получения дополнительной информации о Законопроекте 65 штата Калифорния и о том, как он влияет на вас, посетите сайт www.boreal.com/prop65.

    —07cc48ca196c46f58275f5b1f0e8437e Content-Disposition: данные формы; имя=»полный текст.pdf»; имя_файла=»0afdd8ca-2f13-4530-80a5-0f4e4a840f9f.pdf» %PDF-1.5 % 6 0 объект > поток

  • 301079123F4DC92849D0AD7C4DE04DAC
  • 36C84A4B569D904A334D5D380CC3A97B
  • A56979552DF378EE27A0E2388B2489CB
  • 1 xmp.сделал: 3290E09F1893E411B96E944DD3E

  • xmp.did: 743665B51BE0E311B1D58CC6778F3502
  • xmp. did: F387C37C06AFE511B57BA88F04FDA5ED
  • (PDF) Обобщенные топологические молекулярные решетки

    Успехи чистой математики, 2015 г., 5, 552-559

    Опубликовано в Интернете в июле 2015 г. в SciRes.http://www.scirp.org/journal/apm

    http://dx.doi.org/10.4236/apm.2015.59051

    Как цитировать эту статью: Эль-Саади, К. и Аль-Наббат, Ф. (2015) Обобщенные топологические молекулярные решетки. Достижения в Pure

    Математика, 5, 552-559. http://dx.doi.org/10.4236/apm.2015.59051

    Обобщенные топологические молекулярные решетки

    Камаль Эль-Саади1, Фатима Аль-Наббат2

    1Отдел математики, факультет естественных наук в Кене, Университет Южной долины, Кена, Египет

    2Кафедра математики, Научный колледж, Университет короля Фейсала, Аль-Хаса, Саудовская Аравия

    Электронная почта: [email protected] com, [email protected]

    Поступила в редакцию 11 мая 2015 г.; принято 7 июля 2015 г.; опубликовано 10 июля 2015 г.

    Авторские права © 2015 принадлежат авторам и Scientific Research Publishing Inc.

    Эта работа находится под лицензией Creative Commons Attribution International License (CC BY).

    http://creativecommons.org/licenses/by/4.0/

    Abstract

    Целью данной статьи является введение концепции обобщенных топологических молекулярных решеток

    кратко GTMLs как обобщения топологических молекулярных решеток Ванга TMLs, Множество Часара —

    точечных обобщенных топологических пространств и решетчатозначных обобщенных топологических пространств.Вводятся некоторые понятия, такие как непрерывные GOH, теория сходимости и аксиомы разделения. Более-

    более, выясняются отношения между ними.

    Ключевые слова

    Обобщенные топологические молекулярные решетки, обобщенные гомоморфизмы порядка, сходимость

    Молекулярные сети, аксиомы разделения

    как

    обобщение обычных топологических и нечетких топологических пространств в инструментарии молекул, удаленных окрестностей

    и обобщенных гомоморфизмов порядка GOHs. Затем многие авторы охарактеризовали некоторые топологические понятия в

    таких ТМЛ, такие как теории сходимости молекулярных сетей или идеалов [1]-[3], аксиомы разделения [1] [4] и другие

    понятий.

    В этой статье мы стремимся представить обобщение TML под названием обобщенной топологической

    молекулярной решетки (кратко, GTML). Таким же образом мы изучаем несколько понятий в этих GTML, исследуем

    некоторые свойства и устанавливаем отношения между этими понятиями, включая GOH, теории конвергенции и

    аксиомы разделения.

    На протяжении всей этой работы

    является полной решеткой с инволюцией

    , обращающей порядок , а с

    наименьшим элементом

    и наибольшим элементом

    .

    Под L-обобщенной топологией [5] на непустом обычном множестве X понимается подсемейство

    с

    следующими аксиомами:

    Research Bible

  • 3rd International Conference on Education and Integrating Технология (EDTECH)

    Крайний срок : 26. 03.2022 Дата события : 17.09.2022 — 18.09.2022 Место проведения : Копенгаген, Дания

  • 13-я Международная конференция по безопасности связи и обеспечению информации (CSIA 2022)

    Крайний срок : 2022-03-19 Дата мероприятия : 2022-09-26 — 2022-09-27 Место проведения : Лондон, Великобритания Великобритания — Великобритания

  • 3-я Международная конференция по науке о данных и машинному обучению (DSML 2022)

    Крайний срок : 2022-03-26 Дата мероприятия : 2022-09-17 Место проведения : Копенгаген, Дания

  • 11-я Международная конференция по конвергенции информационных технологий и услуг (ITCSE 2022)

    Крайний срок : 2022-03-19 Дата мероприятия : 23-07-2022 — 24-07-2022 Место проведения : Торонто, Канада

  • 11-я Международная конференция по передовым компьютерным наукам и информационным технологиям (ICAIT 2022)

    Крайний срок : 2022-03-19 Дата мероприятия : 23-07-2022 — 24-07-2022 Место проведения : Торонто, Канада Канада

  • 8-я Международная конференция по компьютерным наукам, информационным технологиям и приложениям (CSITA 2022)

    Крайний срок : 2022-03-26 Дата мероприятия : 2022-06-18 — 2022-06-19 Место проведения :, Австралия , Австралия

  • 3-я Международная конференция по машинному обучению и облачным вычислениям (MLCL 2022).

  • 3-я Международная конференция по сетям, блокчейну и Интернету вещей (NBIoT 2022)

    Крайний срок : 2022-03-19 Дата мероприятия : 2022-06-18 — 2022-06-19 Место проведения :, Австралия , Австралия

  • 5-я Международная конференция по обработке естественного языка и тенденциям (NATAP 2022)

    Крайний срок : 2022-03-19 Дата мероприятия : 2022-06-18 — 2022-06-19 Место проведения 9:08, Австралия

  • 8-я Международная конференция по сетям и мобильной связи (NMCO 2022)

    Крайний срок : 2022-03-19 Дата мероприятия : 2022-06-18 — 2022-06-19 Место проведения : 080 Сидней, Австралия : 2022-06-18 — 2022-06-19

  • Модели молекулярных решеток Ward’s® Chemistry

    Положения и условия

    Спасибо, что посетили наш сайт.Настоящие условия использования применимы к веб-сайтам США, Канады и Пуэрто-Рико («Веб-сайт»), которыми управляет VWR («Компания»). Если вы заходите на веб-сайт из-за пределов США, Канады или Пуэрто-Рико, посетите соответствующий международный веб-сайт, доступный по адресу www. vwr.com, для ознакомления с применимыми условиями. На всех пользователей веб-сайта распространяются следующие условия использования веб-сайта (данные «Условия использования»). Пожалуйста, внимательно прочитайте настоящие Условия использования перед доступом к любой части веб-сайта или его использованием. Получая доступ к Веб-сайту или используя его, вы подтверждаете, что прочитали, поняли и согласны соблюдать настоящие Условия использования с периодическими изменениями, а также Политику конфиденциальности Компании, которая настоящим включена в настоящие Условия. использования. Если вы не хотите соглашаться с настоящими Условиями использования, не открывайте и не используйте какую-либо часть веб-сайта.

    Компания может пересматривать и обновлять настоящие Условия использования в любое время без предварительного уведомления, разместив измененные условия на веб-сайте. Ваше дальнейшее использование веб-сайта означает, что вы принимаете и соглашаетесь с пересмотренными Условиями использования. Если вы не согласны с Условиями использования (в которые время от времени вносятся поправки) или недовольны Веб-сайтом, вашим единственным и исключительным средством правовой защиты является прекращение использования Веб-сайта.

    Использование на месте

    Информация, содержащаяся на этом веб-сайте, предоставляется только в информационных целях. Несмотря на то, что на момент публикации информация считается верной, вы должны самостоятельно определить ее пригодность для вашего использования. Не все продукты или услуги, описанные на этом веб-сайте, доступны во всех юрисдикциях или для всех потенциальных клиентов, и ничто в настоящем документе не предназначено в качестве предложения или ходатайства в какой-либо юрисдикции или любому потенциальному клиенту, если такое предложение или продажа не соответствуют требованиям.

    Покупка товаров и услуг

    Настоящие Положения и условия применяются только к использованию Веб-сайта. Обратите внимание, что условия, касающиеся обслуживания, продажи продуктов, рекламных акций и других связанных с этим действий, можно найти по адресу https://us. vwr.com/store/content/externalContentPage.jsp?path=/en_US/about_vwr_terms_and_conditions.jsp. , и эти положения и условия регулируют любые покупки продуктов или услуг у Компании.

    Интерактивные функции

    Веб-сайт может содержать службы доски объявлений, чаты, группы новостей, форумы, сообщества, личные веб-страницы, календари и/или другие средства обмена сообщениями или средствами связи, предназначенные для того, чтобы вы могли общаться с широкой общественностью или с группой ( совместно именуемые «Функция сообщества»).Вы соглашаетесь использовать Функцию сообщества только для публикации, отправки и получения сообщений и материалов, которые являются надлежащими и связаны с конкретной Функцией сообщества. Вы соглашаетесь использовать Веб-сайт только в законных целях.

    A. В частности, вы соглашаетесь не делать ничего из следующего при использовании функции сообщества:

    1. Порочить, оскорблять, беспокоить, преследовать, угрожать или иным образом нарушать законные права (такие как права на неприкосновенность частной жизни и публичность) других лиц.
    2. Публиковать, публиковать, загружать, распространять или распространять любые неуместные, богохульные, клеветнические, нарушающие авторские права, непристойные, непристойные или незаконные темы, имена, материалы или информацию.
    3. Загружать файлы, содержащие программное обеспечение или другие материалы, защищенные законами об интеллектуальной собственности (или правами на неприкосновенность частной жизни или публичное использование), если только вы не владеете правами на них или не контролируете их, или не получили все необходимые согласия.
    4. Загружать файлы, содержащие вирусы, поврежденные файлы или любое другое подобное программное обеспечение или программы, которые могут нарушить работу чужого компьютера.
    5. Перехват или попытка перехвата электронной почты, не предназначенной для вас.
    6. Рекламировать или предлагать продать или купить какие-либо товары или услуги для любых деловых целей, если такая Функция сообщества специально не разрешает такие сообщения.
    7. Проводить или рассылать опросы, конкурсы, финансовые пирамиды или письма счастья.
    8. Загружайте любой файл, опубликованный другим пользователем Элемента сообщества, который, как вы знаете или должны были бы знать, не может быть законно распространен таким образом или что вы несете договорные обязательства по сохранению конфиденциальности (несмотря на его доступность на веб-сайте).
    9. Фальсифицировать или удалять любые указания на авторство, юридические или другие надлежащие уведомления, обозначения прав собственности или ярлыки происхождения или источника программного обеспечения или других материалов, содержащихся в загружаемом файле.
    10. Искажать связь с каким-либо лицом или организацией.
    11. Участвовать в любых других действиях, которые ограничивают или препятствуют использованию кем-либо Веб-сайта или которые, по определению Компании, могут нанести вред Компании или пользователям Веб-сайта или привлечь их к ответственности.
    12. Нарушать любые применимые законы или правила или нарушать любой кодекс поведения или другие правила, которые могут применяться к какой-либо конкретной функции сообщества.
    13. Собирать или иным образом собирать информацию о других, включая адреса электронной почты, без их согласия.

    B. Вы понимаете и признаете, что несете ответственность за любой контент, который вы отправляете, вы, а не Компания, несете полную ответственность за такой контент, включая его законность, надежность и уместность. Если вы публикуете от имени или от имени вашего работодателя или другого лица, вы заявляете и гарантируете, что вы уполномочены делать это. Загружая или иным образом передавая материал в любую область Веб-сайта, вы гарантируете, что этот материал принадлежит вам или находится в общественном достоянии, или иным образом свободен от имущественных или других ограничений, и что вы имеете право размещать его на Веб-сайте.Кроме того, загружая или иным образом передавая материалы в любую область веб-сайта, вы предоставляете Компании безотзывное, безвозмездное право во всем мире публиковать, воспроизводить, использовать, адаптировать, редактировать и/или изменять такие материалы любым способом, в любые средства массовой информации, известные в настоящее время или обнаруженные в будущем, во всем мире, в том числе в Интернете и всемирной паутине, в рекламных, коммерческих, коммерческих и рекламных целях, без дополнительных ограничений или компенсации, если это не запрещено законом, и без уведомления, проверки или одобрения.

    C. Компания оставляет за собой право, но не берет на себя никакой ответственности, (1) удалять любые материалы, размещенные на веб-сайте, которые Компания по своему собственному усмотрению считает несовместимыми с вышеизложенными обязательствами или иным образом неуместными по любой причине. ; и (2) прекратить доступ любого пользователя ко всему Веб-сайту или его части. Тем не менее, Компания не может ни просматривать все материалы до их размещения на Веб-сайте, ни гарантировать незамедлительное удаление нежелательных материалов после их размещения.Соответственно, Компания не несет ответственности за какие-либо действия или бездействие в отношении передач, сообщений или контента, предоставленных третьими лицами. Компания оставляет за собой право предпринимать любые действия, которые она сочтет необходимыми для защиты личной безопасности пользователей данного веб-сайта и общественности; однако Компания не несет ответственности перед кем-либо за выполнение или невыполнение действий, описанных в этом параграфе.

    D. Несоблюдение вами положений (A) или (B) выше может привести к прекращению вашего доступа к Веб-сайту и может подвергнуть вас гражданской и/или уголовной ответственности.

    Специальное примечание о материалах сообщества

    Любой контент и/или мнения, загруженные, выраженные или отправленные через любую функцию сообщества или любой другой общедоступный раздел веб-сайта (включая защищенные паролем области), а также все статьи и ответы на вопросы, кроме контента, явно разрешенного Компании, являются исключительно мнением и ответственностью физического или юридического лица, представляющего их, и не обязательно отражают мнение Компании.Например, любое рекомендуемое или предлагаемое использование продуктов или услуг, доступных от Компании, которое публикуется через Функция сообщества, не является признаком одобрения или рекомендации со стороны Компании. Если вы решите следовать любой такой рекомендации, вы делаете это на свой страх и риск.

    Ссылки на сторонние сайты

    Веб-сайт может содержать ссылки на другие веб-сайты в Интернете. Компания не несет ответственности за содержание, продукты, услуги или практику любых сторонних веб-сайтов, включая, помимо прочего, сайты, связанные с Веб-сайтом или с него, сайты, размещенные на Веб-сайте, или рекламу третьих лиц, и не делает заявлений относительно их качество, содержание или точность.Наличие ссылок с веб-сайта на любой сторонний веб-сайт не означает, что мы одобряем, одобряем или рекомендуем этот веб-сайт. Мы отказываемся от всех гарантий, явных или подразумеваемых, в отношении точности, законности, надежности или достоверности любого контента на любом стороннем веб-сайте. Использование вами сторонних веб-сайтов осуществляется на ваш страх и риск и регулируется условиями использования таких веб-сайтов.

    Права собственности на контент

    Вы признаете и соглашаетесь с тем, что все содержимое Веб-сайта (включая всю информацию, данные, программное обеспечение, графику, текст, изображения, логотипы и/или другие материалы), а также его дизайн, выбор, сбор, размещение и сборка являются являются собственностью Компании и защищены законами США и международными законами об интеллектуальной собственности. Вы имеете право использовать содержимое веб-сайта только в личных целях или в законных деловых целях. Вы не можете копировать, изменять, создавать производные работы, публично демонстрировать или выполнять, переиздавать, хранить, передавать, распространять, удалять, удалять, дополнять, добавлять, участвовать в передаче, лицензировать или продавать любые материалы в Интернете. сайта без предварительного письменного согласия Компании, за исключением: (а) временного хранения копий таких материалов в оперативной памяти, (б) хранения файлов, которые автоматически кэшируются вашим веб-браузером для улучшения отображения, и (в) печати разумного количество страниц веб-сайта; при условии, что в каждом случае вы не изменяете и не удаляете какие-либо уведомления об авторских правах или других правах собственности, включенные в такие материалы.Ни название, ни какие-либо права интеллектуальной собственности на какую-либо информацию или материалы на Веб-сайте не передаются вам, а остаются за Компанией или соответствующим владельцем такого контента.

    Товарные знаки

    Название и логотип Компании, а также все соответствующие названия, логотипы, названия продуктов и услуг, встречающиеся на Веб-сайте, являются товарными знаками Компании и/или соответствующих сторонних поставщиков. Их нельзя использовать или повторно отображать без предварительного письменного согласия Компании.

    Отказ от ответственности

    Компания не несет никакой ответственности за материалы, информацию и мнения, представленные на Веб-сайте или доступные через него («Контент сайта»). Вы полагаетесь на Контент Сайта исключительно на свой страх и риск. Компания отказывается от какой-либо ответственности за травмы или убытки, возникшие в результате использования любого Контента Сайта.
    ВЕБ-САЙТ, СОДЕРЖИМОЕ САЙТА, ​​ПРОДУКТЫ И УСЛУГИ, ПРЕДОСТАВЛЯЕМЫЕ НА ВЕБ-САЙТЕ ИЛИ ДОСТУПНЫЕ ЧЕРЕЗ ЕГО, ПРЕДОСТАВЛЯЮТСЯ НА УСЛОВИЯХ «КАК ЕСТЬ» И «КАК ДОСТУПНО», СО ВСЕМИ ОШИБКАМИ. НИ КОМПАНИЯ, НИ ЛЮБОЕ СВЯЗАННОЕ С КОМПАНИЕЙ ЛИЦО НЕ ДАЕТ НИКАКИХ ГАРАНТИЙ ИЛИ ЗАЯВЛЕНИЙ В ОТНОШЕНИИ КАЧЕСТВА, ТОЧНОСТИ ИЛИ ДОСТУПНОСТИ ВЕБ-САЙТА. В ЧАСТНОСТИ, НО НЕ ОГРАНИЧИВАЯ ВЫШЕИЗЛОЖЕННОЕ, НИ КОМПАНИЯ, НИ ЛЮБОЕ СВЯЗАННОЕ С КОМПАНИЕЙ ЛИЦО НЕ ГАРАНТИРУЕТ И НЕ ЗАЯВЛЯЕТ, ЧТО ВЕБ-САЙТ, СОДЕРЖИМОЕ САЙТА ИЛИ УСЛУГИ, ПРЕДОСТАВЛЯЕМЫЕ НА ВЕБ-САЙТЕ ИЛИ ЧЕРЕЗ ВЕБ-САЙТ, БУДУТ ТОЧНЫМИ, НАДЕЖНЫМИ, БЕЗОШИБОЧНЫМИ ИЛИ БЕСПЕРЕБОЙНЫМИ; ЧТО ДЕФЕКТЫ БУДУТ ИСПРАВЛЕНЫ; ЧТО ВЕБ-САЙТ ИЛИ СЕРВЕР, КОТОРЫЙ ДЕЛАЕТ ЕГО ДОСТУПНЫМ, НЕ СОДЕРЖАТ ВИРУСОВ ИЛИ ДРУГИХ ВРЕДНЫХ КОМПОНЕНТОВ; ИЛИ ЧТО ВЕБ-САЙТ БУДЕТ ОТВЕЧАТЬ ВАШИМ ПОТРЕБНОСТЯМ ИЛИ ОЖИДАНИЯМ.КОМПАНИЯ ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ГАРАНТИЙ ЛЮБОГО РОДА, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ ЛЮБЫЕ ГАРАНТИИ КОММЕРЧЕСКОЙ ПРИГОДНОСТИ, ПРИГОДНОСТИ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ И НЕНАРУШЕНИЯ ПРАВ.
    НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ КОМПАНИЯ, ЕЕ ЛИЦЕНЗИАРЫ ИЛИ ПОДРЯДЧИКИ НЕ НЕСУТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБОЙ УЩЕРБ ЛЮБОГО РОДА, ПО ЛЮБОЙ ПРАВОВОЙ ТЕОРИИ, ВЫТЕКАЮЩИЙ ИЗ ИЛИ В СВЯЗИ С ИСПОЛЬЗОВАНИЕМ ВАМИ ИЛИ НЕВОЗМОЖНОСТЬЮ ИСПОЛЬЗОВАНИЯ ВЕБ-САЙТА, ​​СОДЕРЖИМОГО САЙТА, ЛЮБЫЕ УСЛУГИ, ПРЕДОСТАВЛЯЕМЫЕ НА ИЛИ ЧЕРЕЗ ВЕБ-САЙТ ИЛИ ЛЮБОЙ ССЫЛОЧНЫЙ САЙТ, ВКЛЮЧАЯ ЛЮБЫЕ ПРЯМЫЕ, КОСВЕННЫЕ, СЛУЧАЙНЫЕ, ОСОБЫЕ, КОСВЕННЫЕ ИЛИ ШТРАФНЫЕ УБЫТКИ, ВКЛЮЧАЯ, ПОМИМО ПРОЧЕГО, ТРАВМЫ, УПУЩЕННУЮ ПРИБЫЛЬ ИЛИ УЩЕРБ В РЕЗУЛЬТАТЕ ЗАДЕРЖКИ, ПЕРЕРЫВА В ОБСЛУЖИВАНИИ , ВИРУСЫ, УДАЛЕНИЕ ФАЙЛОВ ИЛИ ЭЛЕКТРОННЫХ СООБЩЕНИЙ, ИЛИ ОШИБКИ, УПУЩЕНИЯ ИЛИ ДРУГИЕ НЕТОЧНОСТИ НА ВЕБ-САЙТЕ ИЛИ СОДЕРЖИМОМ САЙТА ИЛИ УСЛУГАХ, НЕЗАВИСИМО ОТ НЕБРЕЖНОСТИ СО СТОРОНЫ КОМПАНИИ И БЫЛА ИЛИ НЕ УВЕДОМЛЕНА КОМПАНИЯ О ВОЗМОЖНОСТИ ЛЮБОЙ ТАКОЙ УЩЕРБ, ЕСЛИ НЕ ЗАПРЕЩЕНО ПРИМЕНИМЫМ ЗАКОНОДАТЕЛЬСТВОМ.

    Возмещение ущерба

    Вы соглашаетесь ограждать и ограждать Компанию и ее должностных лиц, директоров, агентов, сотрудников и других лиц, связанных с Веб-сайтом, от любых и всех обязательств, расходов, убытков и издержек, включая разумные гонорары адвокатов, вытекающих из любое нарушение вами настоящих Условий использования, использование вами веб-сайта или любых продуктов, услуг или информации, полученных с веб-сайта или через него, ваше подключение к веб-сайту, любой контент, который вы отправляете на веб-сайт через любую Функция сообщества или нарушение вами каких-либо прав другого лица.

    Применимое законодательство; Международное использование

    Настоящие условия регулируются и толкуются в соответствии с законами штата Пенсильвания без учета каких-либо принципов коллизионного права. Вы соглашаетесь с тем, что любой иск по закону или справедливости, который возникает из настоящих Условий использования или относится к ним, будет подан исключительно в суды штата или федеральные суды, расположенные в Пенсильвании, и настоящим вы соглашаетесь и подчиняетесь личной юрисдикции таких судов для целей судебного разбирательства любого такого действия.
    Настоящие Условия использования применимы к пользователям в США, Канаде и Пуэрто-Рико. Если вы заходите на веб-сайт из-за пределов США, Канады или Пуэрто-Рико, посетите соответствующий международный веб-сайт, доступный по адресу www.vwr.com, для ознакомления с применимыми условиями. Если вы решите получить доступ к этому веб-сайту из-за пределов указанной юрисдикции, а не использовать доступные международные сайты, вы соглашаетесь с настоящими Условиями использования и тем, что такие условия будут регулироваться и толковаться в соответствии с законами Соединенных Штатов и штата. Пенсильвании, и что мы не делаем заявлений о том, что материалы или услуги на этом веб-сайте подходят или доступны для использования в этих других юрисдикциях.В любом случае, все пользователи сами несут ответственность за соблюдение местного законодательства.

    Общие условия

    Настоящие Условия использования, в которые время от времени могут вноситься поправки, представляют собой полное соглашение и понимание между вами и нами, регулирующее использование вами Веб-сайта. Наша неспособность осуществить или обеспечить соблюдение какого-либо права или положения Условий использования не означает отказ от такого права или положения. Если какое-либо положение Условий использования будет признано судом компетентной юрисдикции недействительным, вы, тем не менее, соглашаетесь с тем, что суд должен приложить усилия для реализации намерений сторон, отраженных в этом положении, и других положений Условия использования остаются в полной силе.Ни курс дел или поведение между вами и Компанией, ни какие-либо торговые практики не должны рассматриваться как изменяющие настоящие Условия использования. Вы соглашаетесь с тем, что независимо от любого закона или закона об обратном, любой иск или основание для иска, вытекающие из или связанные с использованием Сайта или Условий использования, должны быть поданы в течение одного (1) года после такого требования или основания. действия возникло или будет навсегда запрещено. Любые права, прямо не предоставленные в настоящем документе, сохраняются за Компанией и для нее. Мы можем прекратить ваш доступ или приостановить доступ любого пользователя ко всему Сайту или его части без предварительного уведомления за любое поведение, которое мы, по нашему собственному усмотрению, считаем нарушением любого применимого закона или наносящим ущерб интересам другого пользователя. , стороннего поставщика, поставщика услуг или нас. Любые вопросы, касающиеся настоящих Условий использования, следует направлять на адрес [email protected]

    Жалобы на нарушение авторских прав

    Мы уважаем чужую интеллектуальную собственность и просим наших пользователей делать то же самое.Если вы считаете, что ваша работа была скопирована и доступна на Сайте таким образом, что это представляет собой нарушение авторских прав, вы можете уведомить нас, предоставив нашему агенту по авторским правам следующую информацию:

    • электронная или физическая подпись лица, уполномоченного действовать от имени владельца авторских прав;

    • описание защищенной авторским правом работы, права на которую были нарушены в соответствии с вашим заявлением;

    • указание URL-адреса или другого конкретного места на Сайте, где находится материал, который, по вашему мнению, нарушает авторские права;

    • ваш адрес, номер телефона и адрес электронной почты;

    • ваше заявление о том, что вы добросовестно полагаете, что оспариваемое использование не разрешено владельцем авторских прав, его агентом или законом; а также

    • ваше заявление, сделанное под страхом наказания за лжесвидетельство, о том, что приведенная выше информация в вашем уведомлении является точной и что вы являетесь владельцем авторских прав или уполномочены действовать от имени владельца авторских прав.

    Добавить комментарий

    Ваш адрес email не будет опубликован.