Определение свойства и признаки трапеции: Трапеция. Формулы, признаки и свойства трапеции

Содержание

Солонцовская СОШ

  • 02.октября.2017
  • nov6kv32
  • 0

Тема: Четырехугольники.

п. 42, п.43, п.44, п.45, п.46, п.47.

Знать:

  1. определение параллелограмма, свойства параллелограмма.
  2. признаки параллелограмма.
  3. определение трапеции, свойства и признаки  равнобедренной трапеции.
  4. определение прямоугольника, формулировки его свойств и признаков.
  5. определение ромба и квадрата

Уметь:

  1. доказывать свойства параллелограмма,
  2. решать задачи на  применение свойств и признаков параллелограмма;
  3. применять свойства и признаки  равнобедренной трапеции при решении задач по готовым чертежам;
  4. решать задачи на применение свойств и признаков прямоугольника, ромба и квадрата.

Задания для самоконтроля:

1.            В                                                   С                                      ABCD- параллелограмм;

                                                                                                                        ∟А = 55°

                                                                                                                        Найти: ∟В, ∟С, ∟D

A                                            D

 

 

2. Найдите углы параллелограмма ABCD, если ∟D = 3 ∟A

3. Найдите периметр прямоугольника ABCD, если биссектриса угла А делит сторону

а) ВС на отрезки 4,6 см и 6,7 см;

б) DC на отрезки 3,7 дм и 4,9 см.

Тема: Четырехугольники.

п. 42, п.43, п.44, п.45, п.46, п.47.

Знать:

  1. определение параллелограмма, свойства параллелограмма.
  2. признаки параллелограмма.
  3. определение трапеции, свойства и признаки  равнобедренной трапеции.
  4. определение прямоугольника, формулировки его свойств и признаков.
  5. определение ромба и квадрата

Уметь:

  1. доказывать свойства параллелограмма,
  2. решать задачи на  применение свойств и признаков параллелограмма;
  3. применять свойства и признаки  равнобедренной трапеции при решении задач по готовым чертежам;
  4. решать задачи на применение свойств и признаков прямоугольника, ромба и квадрата.

Задания для самоконтроля:

1.                                                           ABCD- параллелограмм;

                                                                                                                        ∟А = 55°

                                                                                                                        Найти: ∟В, ∟С, ∟D

                                          

 

 

2. Найдите углы параллелограмма ABCD, если ∟D = 3 ∟A

3. Найдите периметр прямоугольника ABCD, если биссектриса угла А делит сторону

а) ВС на отрезки 4,6 см и 6,7 см;

б) DC на отрезки 3,7 дм и 4,9 см.

Тема: Четырехугольники.

п. 42, п.43, п.44, п.45, п.46, п.47.

Знать:

  1. определение параллелограмма, свойства параллелограмма.
  2. признаки параллелограмма.
  3. определение трапеции, свойства и признаки  равнобедренной трапеции.
  4. определение прямоугольника, формулировки его свойств и признаков.
  5. определение ромба и квадрата

Уметь:

  1. доказывать свойства параллелограмма,
  2. решать задачи на  применение свойств и признаков параллелограмма;
  3. применять свойства и признаки  равнобедренной трапеции при решении задач по готовым чертежам;
  4. решать задачи на применение свойств и признаков прямоугольника, ромба и квадрата.

Задания для самоконтроля:

1.            В                                                   С                                      ABCD- параллелограмм;

                                                                                                                        ∟А = 55°

                                                                                                                        Найти: ∟В, ∟С, ∟D

A                                            D

 

 

2. Найдите углы параллелограмма ABCD, если ∟D = 3 ∟A

3. Найдите периметр прямоугольника ABCD, если биссектриса угла А делит сторону

а) ВС на отрезки 4,6 см и 6,7 см;

б) DC на отрезки 3,7 дм и 4,9 см.

 

свойства четырёхугольника, теоремы и формулы

В курсе геометрии за 8-й класс подразумевается изучение свойств и признаков выпуклых четырёхугольников. К ним относятся параллелограммы, частными случаями которых являются квадраты, прямоугольники и ромбы, и трапеции. И если решение задач на различные вариации параллелограмма чаще всего не вызывает сильных затруднений, то разобраться, какой четырёхугольник называется трапецией, несколько сложнее.

Определение и виды

В отличие от других четырёхугольников, изучаемых в школьной программе, трапецией принято называть такую фигуру, две противоположные стороны которой параллельны друг другу, а две другие — нет. Существует и другое определение: это четырёхугольник с парой сторон, которые не равны между собой и параллельны.

Различные виды указаны на рисунке ниже .

На изображении под номером 1 изображена произвольная трапеция. Номером 2 обозначен частный случай — прямоугольная трапеция, одна из сторон которой перпендикулярна её основаниям. Последняя фигура — тоже особый случай: это равнобедренная (равнобокая) трапеция, т. е. четырёхугольник с равными боковыми сторонами.

Важнейшие свойства и формулы

Для описания свойств четырёхугольника принято выделять определённые элементы. В качестве примера можно рассмотреть произвольную трапецию ABCD.

В её состав входят:

  • основания BC и AD — две стороны, параллельные по отношению друг к другу;
  • боковые стороны AB и CD — два непараллельных элемента;
  • диагонали AC и BD — отрезки, соединяющие противоположные вершины фигуры;
  • высота трапеции CH — перпендикулярный основаниям отрезок;
  • средняя линия EF — линия, соединяющая середины боковых сторон.

Основные свойства элементов

Чтобы решить задачи по геометрии или доказать какие-либо утверждения, наиболее часто используют свойства, которые связывают различные элементы четырёхугольника. Они формулируются следующим образом:

Кроме того, часто полезно знать и применять следующие утверждения:

  1. Биссектриса, проведённая из произвольного угла, отделяет на основании отрезок, длина которого равна боковой стороне фигуры.
  2. При проведении диагоналей образуются 4 треугольника; из них 2 треугольника, образованных основаниями и отрезками диагоналей, обладают подобием, а оставшаяся пара имеет одинаковую площадь.
  3. Через точку пересечения диагоналей O, середины оснований, а также точку, в которой пересекаются продолжения боковых сторон, можно провести прямую.

Вычисление периметра и площади

Периметр рассчитывается как сумма длин всех четырёх сторон (аналогично любой другой геометрической фигуре):

P = AD + BC + AB + CD.

Вписанная и описанная окружность

Окружность возможно описать около трапеции только в том случае, когда боковые стороны четырёхугольника равны.

Чтобы вычислить радиус описанной окружности, необходимо знать длины диагонали, боковой стороны и большего основания. Величина p, используемая в формуле, рассчитывается как полусумма всех вышеперечисленных элементов: p = (a + c + d)/2 .

Для вписанной окружности условие будет следующим: сумма оснований должна совпадать с суммой боковых сторон фигуры.

Радиус её можно найти через высоту, и он будет равен r = h/2.

Частные случаи

Рассмотрим часто встречаемый случай — равнобокую (равностороннюю) трапецию. Её признаки — равенство боковых сторон или равенство противолежащих углов. К ней применимы все утверждения , которые характерны для произвольной трапеции. Другие свойства равнобедренной трапеции:

Прямоугольная трапеция встречается в задачах не так часто. Её признаки — наличие двух смежных углов, равных 90 градусов, и наличие боковой стороны, перпендикулярной основаниям. Высота в таком четырёхугольнике одновременно является одной из его сторон.

Все рассмотренные свойства и формулы обычно используются для решения планиметрических задач. Однако также их приходится применять в некоторых задачах из курса стереометрии, например, при определении площади поверхности усечённой пирамиды, внешне напоминающей объёмную трапецию.

Для обозначения элементов трапеции существует своя терминология. Параллельные стороны этой геометрической фигуры называются ее основаниями. Как правило, они не равны между собой. Однако существует , в котором про непараллельные стороны ничего не говорится. Поэтому некоторые математики рассматривают в качестве частного случая трапеции параллелограмм. Однако в подавляющем большинстве учебников все-таки упоминается непараллельность второй пары сторон, которые называются боковыми.

Существует несколько видов трапеций. Если ее боковые стороны между собой равны, то трапеция называется равнобедренной или равнобокой. Одна из боковых сторон может быть перпендикулярна основаниям. Соответственно, в этом случае фигура будет прямоугольной.

Есть еще несколько линий, определяющих трапеции и помогающих вычислениям других параметров. Разделите боковые стороны пополам и проведите через полученные точки прямую. Вы получите среднюю линию трапеции. Она параллельна основаниям и их полусумме. Выразить ее можно формулой n=(a+b)/2, где n – длина , а и b — длины оснований.

Средняя линия — очень важный параметр. Например, через нее можно выразить площадь трапеции, которая равна длине средней линии, умноженной на высоту, то есть S=nh.

Проведите из угла между боковой стороной и более коротким основанием перпендикуляр к длинному основанию. Вы получите высоту трапеции. Как и любой перпендикуляр, высота — кратчайшее расстояние между заданными прямыми.

У есть дополнительные свойства, которые необходимо знать. Углы между боковыми сторонами и основанием у такой между собой. Кроме того, равны ее диагонали, что легко , сравнив образованные ими треугольники.

Разделите основания пополам. Найдите точку пересечения диагоналей. Продолжите боковые стороны до их пересечения. У вас получатся 4 точки, через которые можно провести прямую, притом только одну.

Одним из важных свойств любого четырехугольника является возможность построить вписанную или описанную окружность. С трапецией это получается не всегда. Вписанная окружность получится только в том случае, если сумма оснований равна сумме боковых сторон. \circ\) .

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle BDA\) как накрест лежащие.
Также \(\angle BOC=\angle AOD\) как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\) .

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\) . Пусть \(h\) – высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot AD=S_{\triangle ACD}\) . Тогда: \

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.


Доказательство*

1) Докажем параллельность.


Проведем через точку \(M\) прямую \(MN»\parallel AD\) (\(N»\in CD\) ). Тогда по теореме Фалеса (т.к. \(MN»\parallel AD\parallel BC, AM=MB\) ) точка \(N»\) — середина отрезка \(CD\) . Значит, точки \(N\) и \(N»\) совпадут.

2) Докажем формулу.

Проведем \(BB»\perp AD, CC»\perp AD\) . Пусть \(BB»\cap MN=M», CC»\cap MN=N»\) .


Тогда по теореме Фалеса \(M»\) и \(N»\) — середины отрезков \(BB»\) и \(CC»\) соответственно. Значит, \(MM»\) – средняя линия \(\triangle ABB»\) , \(NN»\) — средняя линия \(\triangle DCC»\) . Поэтому: \

Т.к. \(MN\parallel AD\parallel BC\) и \(BB», CC»\perp AD\) , то \(B»M»N»C»\) и \(BM»N»C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B»M»=M»B\) . Значит, \(B»M»N»C»\) и \(BM»N»C\) – равные прямоугольники, следовательно, \(M»N»=B»C»=BC\) .

Таким образом:

\ \[=\dfrac12 \left(AB»+B»C»+BC+C»D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.


Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем, что точки \(P\) , \(N\) и \(M\) лежат на одной прямой.


Проведем прямую \(PN\) (\(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\) ). Пусть она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

Рассмотрим \(\triangle BPN\) и \(\triangle APM\) . Они подобны по двум углам (\(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\) . Они подобны по двум углам (\(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\) . Но \(BN=NC\) , следовательно, \(AM=DM\) .

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.


Пусть \(N\) – середина \(BC\) , \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\) , она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

\(\triangle BNO\sim \triangle DMO\) по двум углам (\(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\) . Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\) . Но \(BN=CN\) , следовательно, \(AM=MD\) .

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\) .

Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\) , то \(BM\parallel CN\) ; \(AD\parallel BC\) , тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\) .

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\) . Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\) , то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\) .

2)

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку . Следовательно, \(AC=BD\) .

3) Т.к. \(\triangle ABD=\triangle ACD\) , то \(\angle BDA=\angle CAD\) . Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Рассмотрим трапецию \(ABCD\) , такую что \(\angle A = \angle D\) .


Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\) , то треугольник \(AED\) равнобедренный и \(AE = ED\) . Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\) . Аналогично равны углы \(2\) и \(4\) , но \(\angle 1 = \angle 2\) , тогда \(\angle 3 = \angle 1 = \angle 2 = \angle 4\) , следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\) .

В итоге \(AB = AE — BE = DE — CE = CD\) , то есть \(AB = CD\) , что и требовалось доказать.

2) Пусть \(AC=BD\) . Т.к. \(\triangle AOD\sim \triangle BOC\) , то обозначим их коэффициент подобия за \(k\) . Тогда если \(BO=x\) , то \(OD=kx\) . Аналогично \(CO=y \Rightarrow AO=ky\) .


Т.к. \(AC=BD\) , то \(x+kx=y+ky \Rightarrow x=y\) . Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\) .

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) (\(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\) , чтд.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т. д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.

Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.

Трапеция и все-все-все

Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.

Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.

В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.

Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.

Свойства диагоналей трапеции

Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.

  1. Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2 .
  2. Перед нами все та же трапеция АКМЕ. Диагонали пересекаются в точке О. Давайте рассмотрим треугольники АОЕ и МОК, образованные отрезками диагоналей вместе с основаниями трапеции. Эти треугольники – подобные. Коэффициент подобия k треугольников выражается через отношение оснований трапеции: k = АЕ/КМ.
    Отношение площадей треугольников АОЕ и МОК описывается коэффициентом k 2 .
  3. Все та же трапеция, те же диагонали, пересекающиеся в точке О. Только в этот раз мы будем рассматривать треугольники, которые отрезки диагоналей образовали совместно с боковыми сторонами трапеции. Площади треугольников АКО и ЕМО являются равновеликими – их площади одинаковые.
  4. Еще одно свойство трапеции включает в себя построение диагоналей. Так, если продолжить боковые стороны АК и МЕ в направлении меньшего основания, то рано или поздно они пересекутся к некоторой точке. Дальше, через середины оснований трапеции проведем прямую. Она пересекает основания в точках Х и Т.
    Если мы теперь продлим прямую ХТ, то она соединит вместе точку пересечения диагоналей трапеции О, точку, в которой пересекаются продолжения боковых сторон и середины оснований Х и Т.
  5. Через точку пересечения диагоналей проведем отрезок, который соединит основания трапеции (Т лежит на меньшем основании КМ, Х – на большем АЕ). Точка пересечения диагоналей делит этот отрезок в следующем соотношении: ТО/ОХ = КМ/АЕ .
  6. А теперь через точку пересечения диагоналей проведем параллельный основаниям трапеции (a и b) отрезок. Точка пересечения разделит его на две равных части. Найти длину отрезка можно по формуле 2ab/(a + b) .

Свойства средней линии трапеции

Среднюю линию проведите в трапеции параллельно ее основаниям.

  1. Длину средней линии трапеции можно вычислить, если сложить длины оснований и разделить их пополам: m = (a + b)/2 .
  2. Если провести через оба основания трапецию любой отрезок (высоту, к примеру), средняя линия разделит его на две равных части.

Свойство биссектрисы трапеции

Выберите любой угол трапеции и проведите биссектрису. Возьмем, например, угол КАЕ нашей трапеции АКМЕ. Выполнив построение самостоятельно, вы легко убедитесь – биссектрисой отсекается от основания (или его продолжения на прямой за пределами самой фигуры) отрезок такой же длины, что и боковая сторона.

Свойства углов трапеции

  1. Какую бы из двух пар прилежащих к боковой стороне углов вы не выбрали, сумма углов в паре всегда составляет 180 0: α + β = 180 0 и γ + δ = 180 0 .
  2. Соединим середины оснований трапеции отрезком ТХ. Теперь посмотрим на углы при основаниях трапеции. Если сумма углов при любом из них составляет 90 0 , длину отрезка ТХ легко вычислить исходя из разности длин оснований, разделенной пополам: ТХ = (АЕ – КМ)/2 .
  3. Если через стороны угла трапеции провести параллельные прямые, те разделят стороны угла на пропорциональные отрезки.

Свойства равнобедренной (равнобокой) трапеции

  1. В равнобедренной трапеции равны углы при любом из оснований.
  2. Теперь снова постройте трапецию, чтобы проще было представить, о чем речь. Посмотрите внимательно на основание АЕ – вершина противоположного основания М проецируется в некую точку на прямой, которая содержит АЕ. Расстояние от вершины А до точки проекции вершины М и средняя линия равнобедренной трапеции – равны.
  3. Пару слов о свойстве диагоналей равнобедренной трапеции – их длины равны. А также одинаковы углы наклона этих диагоналей к основанию трапеции.
  4. Только около равнобедренной трапеции можно описать окружность, поскольку сумма противолежащих углов четырехугольника 180 0 – обязательное условие для этого.
  5. Из предыдущего пункта следует свойство равнобедренной трапеции – если возле трапеции можно описать окружность, она является равнобедренной.
  6. Из особенностей равнобедренной трапеции вытекает свойство высоты трапеции: если ее диагонали пересекаются под прямым углом, то длина высоты равна половине суммы оснований: h = (a + b)/2 .
  7. Снова проведите отрезок ТХ через середины оснований трапеции – в равнобедренной трапеции он является перпендикуляром к основаниям. И одновременно ТХ – ось симметрии равнобедренной трапеции.
  8. На этот раз опустите на большее основание (обозначим его a) высоту из противолежащей вершины трапеции. Получится два отрезка. Длину одного можно найти, если длины оснований сложить и разделить пополам: (a + b)/2 . Второй получим, когда из большего основания вычтем меньшее и полученную разность разделим на два: (a – b)/2 .

Свойства трапеции, вписанной в окружность

Раз уже речь зашла о вписанной в окружность трапеции, остановимся на этом вопросе подробней. В частности на том, где находится центр окружности по отношению к трапеции. Тут тоже рекомендуется не полениться взять карандаш в руки и начертить то, о чем пойдет речь ниже. Так и поймете быстрее, и запомните лучше.

  1. Расположение центра окружности определяется углом наклона диагонали трапеции к ее боковой стороне. Например, диагональ может выходить из вершины трапеции под прямым углом к боковой стороне. В таком случае большее основание пересекает центр описанной окружности точно посередине (R = ½АЕ).
  2. Диагональ и боковая сторона могут встречаться и под острым углом – тогда центр окружности оказывается внутри трапеции.
  3. Центр описанной окружности может оказаться вне пределов трапеции, за большим ее основанием, если между диагональю трапеции и боковой стороной – тупой угол.
  4. Угол, образованный диагональю и большим основанием трапеции АКМЕ (вписанный угол) составляет половину того центрального угла, который ему соответствует:МАЕ = ½МОЕ .
  5. Коротко про два способа найти радиус описанной окружности. Способ первый: посмотрите внимательно на свой чертеж – что вы видите? Вы без труда заметите, что диагональ разбивает трапецию на два треугольника. Радиус можно найти через отношение стороны треугольника к синусу противолежащего угла, умноженному на два. Например, R = АЕ/2*sinАМЕ . Аналогичным образом формулу можно расписать для любой из сторон обоих треугольников.
  6. Способ второй: находим радиус описанной окружности через площадь треугольника, образованного диагональю, боковой стороной и основанием трапеции: R = АМ*МЕ*АЕ/4*S АМЕ .

Свойства трапеции, описанной около окружности

Вписать окружность в трапецию можно, если соблюдается одно условие. Подробней о нем ниже. И вместе эта комбинация фигур имеет ряд интересных свойств.

  1. Если в трапецию вписана окружность, длину ее средней линии можно без труда найти, сложив длины боковых сторон и разделив полученную сумму пополам: m = (c + d)/2 .
  2. У трапеции АКМЕ, описанной около окружности, сумма длин оснований равна сумме длин боковых сторон: АК + МЕ = КМ + АЕ .
  3. Из этого свойства оснований трапеции вытекает обратное утверждение: окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон.
  4. Точка касания окружности с радиусом r, вписанной в трапецию, разбивает боковую сторону на два отрезка, назовем их a и b. Радиус окружности можно вычислить по формуле: r = √ab .
  5. И еще одно свойство. Чтобы не запутаться, этот пример тоже начертите сами. У нас есть старая-добрая трапеция АКМЕ, описанная около окружности. В ней проведены диагонали, пересекающиеся в точке О. Образованные отрезками диагоналей и боковыми сторонами треугольники АОК и ЕОМ – прямоугольные.
    Высоты этих треугольников, опущенные на гипотенузы (т.е. боковые стороны трапеции), совпадают с радиусами вписанной окружности. А высота трапеции – совпадает с диаметром вписанной окружности.

Свойства прямоугольной трапеции

Прямоугольной называют трапецию, один из углов которой является прямым. И ее свойства проистекают из этого обстоятельства.

  1. У прямоугольной трапеции одна из боковых сторон перпендикулярна основаниям.
  2. Высота и боковая сторона трапеции, прилежащая к прямому углу, равны. Это позволяет вычислять площадь прямоугольной трапеции (общая формула S = (a + b) * h/2 ) не только через высоту, но и через боковую сторону, прилежащую к прямому углу.
  3. Для прямоугольной трапеции актуальны уже описанные выше общие свойства диагоналей трапеции.

Доказательства некоторых свойств трапеции

Равенство углов при основании равнобедренной трапеции:

  • Вы уже наверное и сами догадались, что тут нам снова потребуется трапеция АКМЕ – начертите равнобедренную трапецию. Проведите из вершины М прямую МТ, параллельную боковой стороне АК (МТ || АК).

Полученный четырехугольник АКМТ – параллелограмм (АК || МТ, КМ || АТ). Поскольку МЕ = КА = МТ, ∆ МТЕ – равнобедренный и МЕТ = МТЕ.

АК || МТ, следовательно МТЕ = КАЕ, МЕТ = МТЕ = КАЕ.

Откуда АКМ = 180 0 — МЕТ = 180 0 — КАЕ = КМЕ.

Что и требовалось доказать.

Теперь на основании свойства равнобедренной трапеции (равенства диагоналей) докажем, что трапеция АКМЕ является равнобедренной :

  • Для начала проведем прямую МХ – МХ || КЕ. Получим параллелограмм КМХЕ (основание – МХ || КЕ и КМ || ЕХ).

∆АМХ – равнобедренный, поскольку АМ = КЕ = МХ, а МАХ = МЕА.

МХ || КЕ, КЕА = МХЕ, поэтому МАЕ = МХЕ.

У нас получилось, что треугольники АКЕ и ЕМА равны между собой, т.к АМ = КЕ и АЕ – общая сторона двух треугольников. А также МАЕ = МХЕ. Можем сделать вывод, что АК = МЕ, а отсюда следует и что трапеция АКМЕ – равнобедренная.

Задача для повторения

Основания трапеции АКМЕ равны 9 см и 21 см, боковая сторона КА, равная 8 см, образует угол 150 0 с меньшим основанием. Требуется найти площадь трапеции.

Решение: Из вершины К опустим высоту к большему основанию трапеции. И начнем рассматривать углы трапеции.

Углы АЕМ и КАН являются односторонними. А это значит, в сумме они дают 180 0 . Поэтому КАН = 30 0 (на основании свойства углов трапеции).

Рассмотрим теперь прямоугольный ∆АНК (полагаю, этот момент очевиден читателям без дополнительных доказательств). Из него найдем высоту трапеции КН – в треугольнике она является катетом, который лежит напротив угла в 30 0 . Поэтому КН = ½АВ = 4 см.

Площадь трапеции находим по формуле: S АКМЕ = (КМ + АЕ) * КН/2 = (9 + 21) * 4/2 = 60 см 2 .

Послесловие

Если вы внимательно и вдумчиво изучили эту статью, не поленились с карандашом в руках начертить трапеции для всех приведенных свойств и разобрать их на практике, материал должен был неплохо вами усвоиться.

Конечно, информации тут много, разнообразной и местами даже запутанной: не так уж сложно перепутать свойства описанной трапеции со свойствами вписанной. Но вы сами убедились, что разница огромна.

Теперь у вас есть подробный конспект всех общих свойств трапеции. А также специфических свойств и признаков трапеций равнобедренной и прямоугольной. Им очень удобно пользоваться, чтобы готовиться к контрольным и экзаменам. Попробуйте сами и поделитесь ссылкой с друзьями!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В равнобедренной трапеции суммы противоположных сторон равны.

Трапеция
Раздел содержит задачи по геометрии (раздел планиметрия) о трапециях. Если Вы не нашли решения задачи — пишите об этом на форуме. Курс наверняка будет дополнен.

Трапеция. Определение, формулы и свойства

Трапе́ция (от др.-греч. τραπέζιον — «столик»; τράπεζα — «стол, еда») — четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.

Трапеция — четырёхугольник, у которого пара противолежащих сторон параллельна.

Примечание. В этом случае параллелограмм является частным случаем трапеции.

Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами.

Трапеции бывают:

разносторонние ;

равнобокие ;

прямоугольные

.
Красным и коричневым цветами обозначены боковые стороны, зеленым и синим — основания трапеции.

A — равнобокая (равнобедренная, равнобочная) трапеция
B — прямоугольная трапеция
C — разносторонняя трапеция

У разносторонней трапеции все стороны разной длины, а основания параллельны.

У боковые стороны равны, а основания параллельны.

У основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона — наклонная к основаниям.

Свойства трапеции

  • Средняя линия трапеции параллельна основаниям и равна их полусумме
  • Отрезок, соединяющий середины диагоналей , равен половине разности оснований и лежит на средней линии. Его длина
  • Параллельные прямые, пересекающие стороны любого угла трапеции, отсекают от сторон угла пропорциональные отрезки (см. Теорему Фалеса)
  • Точка пересечения диагоналей трапеции , точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой (см. также свойства четырехугольника)
  • Треугольники, лежащие на основаниях трапеции, вершины которых являются точкой пересечения ее диагоналей являются подобными. Соотношение площадей таких треугольников равно квадрату соотношения оснований трапеции
  • Треугольники, лежащие на боковых сторонах трапеции, вершины которых являются точкой пересечения ее диагоналей являются равновеликими (равными по площади)
  • В трапецию можно вписать окружность , если сумма длин оснований трапеции равна сумме длин её боковых сторон. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований)
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен удвоенному произведению оснований, деленному на их сумму 2ab / (a +b) (Формула Буракова)

Углы трапеции

Углы трапеции бывают острые, прямые и тупые .
Прямыми бывают только два угла.

У прямоугольной трапеции два угла прямые , а два других – острый и тупой. У других видов трапеций бывают: два острых угла и два тупых.

Тупые углы трапеции принадлежат меньшему по длине основанию, а острые – большему основанию.

Любую трапецию можно рассматривать как усеченный треугольник , у которого линия сечения параллельна основанию треугольника.
Важно . Обратите внимание, что таким способом (дополнительным построением трапеции до треугольника) могут решаться некоторые задачи про трапецию и доказываются некоторые теоремы.

Как найти стороны и диагонали трапеции

Нахождение сторон и диагоналей трапеции делают с помощью формул, которые приведены ниже:


В указанных формулах применяются обозначения, как на рисунке.

a — меньшее из оснований трапеции
b — большее из оснований трапеции
c,d — боковые стороны
h 1 h 2 — диагонали


Сумма квадратов диагоналей трапеции равна удвоенному произведению оснований трапеции плюс сумма квадратов боковых сторон (Формула 2)

Тема урока

Трапеция

Цели урока

Продолжать знакомить с новыми определениями в геометрии;
Закрепить знания об уже изученных геометрических фигурах;
Познакомить с формулировкой и доказательствами свойств трапеции;
Обучить применению свойств различных фигур при решении задач и выполнении заданий;
Продолжать развивать у школьников внимание, логическое мышление и математическую речь;
Воспитывать интерес к предмету.

Задачи урока

Вызвать интерес к знаниям по геометрии;
Продолжать упражнять школьников в решении задач;
Вызвать познавательный интерес к урокам математики.

План урока

1. Повторить материал, изученный ранее.
2. Знакомство с трапецией, ее свойствами и признаками.
3. Решение задач и выполнение заданий.

Повторение ранее изученного материала

На предыдущем уроке вы знакомились с такой фигурой, как четырехугольник. Давайте закрепим пройденный материал и ответим на поставленные вопросы:

1. Сколько углов и сторон имеет 4-х угольник?
2. Сформулируйте определение 4-х угольника?
3. Какое название носят противоположные стороны 4-х угольника?
4. Какие виды четырехугольников вам известны? Перечислите их и дайте определение каждого из них.
5. Изобразите пример выпуклого и невыпуклого четырехугольника.

Трапеция. Общие свойства и определение

Трапеция — это такая четырехугольная фигура, у которой только одна пара противолежащих сторон параллельна.

В геометрическом определении к трапеции относится такой 4-х угольник, который имеет две параллельные стороны, а две другие – нет.

Название такой необычной фигуры, как «трапеция» произошло от слова «трапезион», что в переводе с греческого языка, обозначает слово «столик», от которого произошли также слово «трапеза» и другие родственные слова.

В некоторых случаях в трапеции пара противоположных сторон параллельна, а другая его пара не является параллельной. В таком случае трапеция носит название криволинейной.

Элементы трапеции



Трапеция состоит из таких элементов, как основание, боковые линии, средняя линия и ее высота.

Основанием трапеции называют ее параллельные стороны;
Боковыми сторонами называют две другие стороны трапеции, которые не есть параллельными;
Средней линией трапеции называют отрезок, который соединяет середины его боковых сторон;
Высотой трапеции считается расстояние между ее основаниями.

Виды трапеций



Задание:

1. Сформулируйте определение равнобедренной трапеции.
2. Какая трапеция называется прямоугольной?
3. Что значит остроугольная трапеция?
4. Какая трапеция относится к тупоугольной?

Общие свойства трапеции

Во-первых, средняя линия трапеции находится параллельно основанию фигуры и равняется ее полусумме;

Во-вторых, отрезок, который соединяет середины диагоналей 4-х угольной фигуры, равняется полуразности ее оснований;

В-третьих, в трапеции параллельно лежащие прямые, которые пересекают стороны угла данной фигуры, отсекают пропорциональные отрезки от сторон угла.

В-четвертых, в любого из видов трапеции сумма углов, которые прилегают к ее боковой стороне, равны 180°.

Где еще присутствует трапеция

Слово «трапеция» присутствует не только в геометрии, она имеет более широкое применение в повседневной жизни.

Это необычное слово мы можем встретить, просматривая спортивные соревнования гимнастов, выполняющих акробатические упражнения на трапеции. В гимнастике трапецией называют спортивный снаряд, который состоит из перекладины, подвешенной на двух веревках.

Также это слово можно услышать, занимаясь в спортивном зале или в среде людей, которые занимаются бодибилдингом, так как трапеции — это не только геометрическая фигура или спортивный акробатический снаряд, но и мощные мышцы спины, которые расположены сзади за шеей.



На рисунке изображена воздушная трапеция, которую изобрел для цирковых акробатов артист Джулиус Леотард еще в девятнадцатом веке во Франции. Вначале создатель этого номера устанавливал свой снаряд на небольшой высоте, но в итоге он был перенесен под самый купол цирка.

Воздушные гимнасты в цирке выполняют трюки перелетов из трапеции на трапецию, исполняют перекрёстные полёты, проделывают в воздухе сальто-мортале.

В конном виде спорта, трапецией называют упражнение для растяжки или потягивание тела лошади, которое очень полезно и приятно для животного. Во время стойки лошади в положении трапеции работает растяжка ног животного или мышц его спины. Это красивое упражнение мы можем наблюдать во время поклона или так называемого «переднего кранча», когда лошадь глубоко прогибается.

Задание: Наведите свои примеры о том, где еще в повседневной жизни можно услышать слова «трапеция»?

А известно ли вам, что впервые в 1947 году известный французский модельер Кристиан Диор произвел показ мод, в котором присутствовал силуэт юбки-трапеции. И хотя уже прошло более шестидесяти лет, этот силуэт до сих пор в моде, и не теряет своей актуальности, и по сей день.



В гардеробе английской королевы юбка-трапеция стала непременным предметом и ее визитной карточкой.

Напоминающая геометрическую форму трапеции, юбка с одноименным названием прекрасно сочетается с любыми кофточками, блузами, топами и пиджаками. Классичность и демократичность этого популярного фасона позволяет ее носить и со строгими пиджаками и немного легкомысленными топами. В такой юбке будет уместно появляться как в офисе, так и на дискотеке.

Задачи с трапецией

Для облегчения решения задач с трапециями важно помнить несколько основных правил:

Во-первых, проведите две высоты: ВF и СК.

В одном из случаев, в результате вы получите прямоугольник – ВСFК из чего понятно, что FК=ВС.

АD=АF+FК+КD, отсюда АD=АF+ВС+КD.

К тому же сразу очевидно, что АВF и DСК – это прямоугольные треугольники.


Возможен еще такой вариант, когда трапеция не совсем стандартная, где

АD=АF+FD=АF+FК–DК=АF+ВС–DК.


Но самый простой вариант, если наша трапеция – равнобедренная. Тогда решать задачу становиться еще легче, потому что АВF и DСК – это прямоугольные треугольники, и они равны. АВ=СD, так как трапеция равнобедренная, а ВF=СК, как высоты трапеции. Из равенства треугольников следует равенство соответствующих сторон.

\[{\Large{\text{Произвольная трапеция}}}\]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию. \circ\) .

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle BDA\) как накрест лежащие.
Также \(\angle BOC=\angle AOD\) как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\) .

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\) . Пусть \(h\) – высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot AD=S_{\triangle ACD}\) . Тогда: \

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.


Доказательство*

1) Докажем параллельность.


Проведем через точку \(M\) прямую \(MN»\parallel AD\) (\(N»\in CD\) ). Тогда по теореме Фалеса (т.к. \(MN»\parallel AD\parallel BC, AM=MB\) ) точка \(N»\) — середина отрезка \(CD\) . Значит, точки \(N\) и \(N»\) совпадут.

2) Докажем формулу.

Проведем \(BB»\perp AD, CC»\perp AD\) . Пусть \(BB»\cap MN=M», CC»\cap MN=N»\) .


Тогда по теореме Фалеса \(M»\) и \(N»\) — середины отрезков \(BB»\) и \(CC»\) соответственно. Значит, \(MM»\) – средняя линия \(\triangle ABB»\) , \(NN»\) — средняя линия \(\triangle DCC»\) . Поэтому: \

Т.к. \(MN\parallel AD\parallel BC\) и \(BB», CC»\perp AD\) , то \(B»M»N»C»\) и \(BM»N»C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B»M»=M»B\) . Значит, \(B»M»N»C»\) и \(BM»N»C\) – равные прямоугольники, следовательно, \(M»N»=B»C»=BC\) .

Таким образом:

\ \[=\dfrac12 \left(AB»+B»C»+BC+C»D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.


Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем, что точки \(P\) , \(N\) и \(M\) лежат на одной прямой.


Проведем прямую \(PN\) (\(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\) ). Пусть она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

Рассмотрим \(\triangle BPN\) и \(\triangle APM\) . Они подобны по двум углам (\(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\) . Они подобны по двум углам (\(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\) . Но \(BN=NC\) , следовательно, \(AM=DM\) .

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.


Пусть \(N\) – середина \(BC\) , \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\) , она пересечет сторону \(AD\) в точке \(M\) . Докажем, что \(M\) – середина \(AD\) .

\(\triangle BNO\sim \triangle DMO\) по двум углам (\(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\) . Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\) . Но \(BN=CN\) , следовательно, \(AM=MD\) .

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\) .

Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\) , то \(BM\parallel CN\) ; \(AD\parallel BC\) , тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\) .

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\) . Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\) , то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\) .

2)

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку . Следовательно, \(AC=BD\) .

3) Т.к. \(\triangle ABD=\triangle ACD\) , то \(\angle BDA=\angle CAD\) . Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Рассмотрим трапецию \(ABCD\) , такую что \(\angle A = \angle D\) .


Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\) , то треугольник \(AED\) равнобедренный и \(AE = ED\) . Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\) . Аналогично равны углы \(2\) и \(4\) , но \(\angle 1 = \angle 2\) , тогда \(\angle 3 = \angle 1 = \angle 2 = \angle 4\) , следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\) .

В итоге \(AB = AE — BE = DE — CE = CD\) , то есть \(AB = CD\) , что и требовалось доказать.

2) Пусть \(AC=BD\) . Т.к. \(\triangle AOD\sim \triangle BOC\) , то обозначим их коэффициент подобия за \(k\) . Тогда если \(BO=x\) , то \(OD=kx\) . Аналогично \(CO=y \Rightarrow AO=ky\) .


Т.к. \(AC=BD\) , то \(x+kx=y+ky \Rightarrow x=y\) . Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\) .

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) (\(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\) , чтд.

С такой формой как трапеция, мы встречаемся в жизни довольно часто. К примеру, любой мост который выполнен из бетонных блоков, является ярким примером. Более наглядным вариантом можно считать рулевое управление каждого транспортного средства и прочее. О свойствах фигуры было известно еще в Древней Греции , которую более детально описал Аристотель в своем научном труде «Начала». И знания, выведенные тысячи лет назад актуальны и по сегодня. Поэтому ознакомимся с ними более детально.

Вконтакте

Основные понятия

Рисунок 1. Классическая форма трапеции.

Трапеция по своей сути является четырехугольником, состоящим из двух отрезков которые параллельны, и двух других, которые не параллельны. Говоря об этой фигуре всегда необходимо помнить о таких понятиях как: основания, высота и средняя линия. Два отрезка четырехугольника которые друг другу называются основаниями (отрезки AD и BC). Высотой называют отрезок перпендикулярный каждому из оснований (EH), т.е. пересекаются под углом 90° (как это показано на рис.1).

Если сложить все градусные меры внутренних , то сумма углов трапеции будет равна 2π (360°), как и у любого четырехугольника. Отрезок, концы которого являются серединами боковин (IF) именуют средней линей. Длина этого отрезка составляет сумму оснований BC и AD деленную на 2.

Существует три вида геометрической фигуры: прямая, обычная и равнобокая. Если хоть один угол при вершинах основания будет прямой (например, если ABD=90°), то такой четырехугольник называют прямой трапецией. Если боковые отрезки равны (AB и CD), то она называется равнобедренной (соответственно углы при основаниях равны).

Как найти площадь

Для того, чтобы найти площадь четырехугольника ABCD пользуются следующей формулой:

Рисунок 2. Решение задачи на поиск площади

Для более наглядного примера решим легкую задачу. К примеру, пускай верхнее и нижнее основания равны по 16 и 44 см соответственно, а боковые стороны – 17 и 25 см. Построим перпендикулярный отрезок из вершины D таким образом, чтобы DE II BC (как это изображено на рисунке 2). Отсюда получаем, что

Пускай DF – будет . Из ΔADE (который будет равнобоким), получим следующее:

Т.е., выражаясь простым языком, мы вначале нашли высоту ΔADE, которая по совместительству является и высотой трапеции. Отсюда вычислим по уже известной формуле площадь четырехугольника ABCD, с уже известным значением высоты DF.

Отсюда, искомая площадь ABCD равна 450 см³. То есть можно с уверенностью сказать, что для того, чтобы вычислить площадь трапеции потребуется только сумма оснований и длина высоты.

Важно! При решении задача не обязательно найти значение длин по отдельности, вполне допускается, если будут применены и другие параметры фигуры, которые при соответствующем доказательстве будут равны сумме оснований.

Виды трапеций

В зависимости от того, какие стороны имеет фигура, какие углы образованы при основаниях, выделяют три вида четырехугольника: прямоугольная, разнобокая и равнобокая.

Разнобокая

Существует две формы: остроугольная и тупоугольная . ABCD остроугольна только в том случае, когда углы при основании (AD) острые, а длины сторон разные. Если величина одного угла число Пи/2 более (градусная мера более 90°), то получим тупоугольную.

Если боковины по длине равны

Рисунок 3. Вид равнобокой трапеции

Если непараллельные стороны равны по длине, тогда ABCD называется равнобокой (правильной). При этом у такого четырехугольника градусная мера углов при основании одинакова, их угол будет всегда меньше прямого. Именно по этой причине равнобедренная никогда не делится на остроугольные и тупоугольные. Четырехугольник такой формы имеет свои специфические отличия, к числу которых относят:

  1. Отрезки соединяющие противоположные вершины равны.
  2. Острые углы при большем основании составляют 45° (наглядный пример на рисунке 3).
  3. Если сложить градусные меры противоположных углов, то в сумме они будут давать 180°.
  4. Вокруг любой правильной трапеции можно построить .
  5. Если сложить градусную меру противоположных углов, то она равна π.

Более того, в силу своего геометрического расположения точек существуют основные свойства равнобедренной трапеции :

Значение угла при основании 90°

Перпендикулярность боковой стороны основания — емкая характеристика понятия «прямоугольная трапеция». Двух боковых сторон с углами при основании быть не может, потому как в противном случае это будет уже прямоугольник. В четырехугольниках такого типа вторая боковая сторона всегда будет образовывать острый угол с большим основанием, а с меньшим — тупой. При этом, перпендикулярная сторона также будет являться и высотой.

Отрезок между серединами боковин

Если соединить середины боковых сторон, и полученный отрезок будет параллельный основаниям, и равен по длине половине их суммы, то образованная прямая будет средней линией. Значение этого расстояния вычисляется по формуле:

Для более наглядного примера рассмотрим задачу с применением средней линии.

Задача. Средняя линия трапеции равна 7 см, известно, что одна из сторон больше другой на 4 см (рис.4). Найти длины оснований.

Рисунок 4. Решение задачи на поиск длин оснований

Решение. Пусть меньшее основание DC будет равно x см, тогда большее основание будет равняться соответственно (x+4) см. Отсюда, используя формулу средней линии трапеции получим:

Получается, что меньшее основание DC равно 5 см, а большее равняется 9 см.

Важно! Понятие средней линии является ключевым при решении многих задач по геометрии. На основании её определения, строятся многие доказательства для других фигур. Используя понятие на практике, возможно более рациональное решение и поиск необходимой величины.

Определение высоты, и способы как её найти

Как уже отмечалось ранее, высота представляет собой отрезок, который пересекает основания под углом 2Пи/4 и является кратчайшим расстоянием между ними. Перед тем как найти высоту трапеции, следует определиться какие даны входные значения. Для лучшего понимания рассмотрим задачу. Найти высоту трапеции при условии, что основания равны 8 и 28 см, боковые стороны 12 и 16 см соответственно.

Рисунок 5. Решение задачи на поиск высоты трапеции

Проведем отрезки DF и CH под прямыми углами к основанию AD.Согласно определению, каждый из них будет являться высотой заданной трапеции (рис.5). В таком случае, зная длину каждой боковины, при помощи теоремы Пифагора, найдем чему равна высота в треугольниках AFD и BHC.

Сумма отрезков AF и HB равна разности оснований, т.е.:

Пускай длина AF будет равняться x cм, тогда длина отрезка HB= (20 – x)см. Как было установлено, DF=CH , отсюда .

Тогда получим следующее уравнение:

Получается, что отрезок AF в треугольнике AFD равен 7,2 см, отсюда вычислим по той же теореме Пифагора высоту трапеции DF:

Т.е. высота трапеции ADCB будет равна 9,6 см. Как можно убедиться, что вычисление высоты — процесс больше механический, и основывается на вычислениях сторон и углов треугольников. Но, в ряде задач по геометрии, могут быть известны только градусы углов, в таком случае вычисления будут производиться через соотношение сторон внутренних треугольников.

Важно! В сущности трапецию часто рассматривают как два треугольника, или как комбинацию прямоугольника и треугольника. Для решения 90% всех задач, встречаемых в школьных учебниках, свойства и признаки этих фигур. Большинство формул, для этого ГМТ, выведены полагаясь на «механизмы» для указанных двух типов фигур.

Как быстро вычислить длину основания

Перед тем, как найти основание трапеции необходимо определить какие параметры уже даны, и как их рационально использовать. Практическим подходом является извлечение длины неизвестного основания из формулы средней линии. Для более ясного восприятия картинки покажем на примере задачи, как это можно сделать. Пускай известно, что средняя линия трапеции составляет 7 см, а одно из оснований 10 см. Найти длину второй основы.

Решение: Зная, что средняя линия равна половине суммы основ, можно утверждать, что их сумма равна 14 см.

(14 см = 7 см × 2). Из условия задачи, мы знаем, что одно из равно 10 см, отсюда меньшая сторона трапеции будет равна 4 см (4 см = 14 – 10).

Более того, для более комфортного решения задач подобного плана, рекомендуем хорошо выучить такие формулы из области трапеции как :

  • средняя линия;
  • площадь;
  • высота;
  • диагонали.

Зная суть (именно суть) этих вычислений можно без особого труда узнать искомое значение.

Видео: трапеция и ее свойства

Видео: особенности трапеции

Вывод

Из рассмотренных примеров задач можно сделать нехитрый вывод, что трапеция, в плане вычисления задач, является одной из простейших фигур геометрии. Для успешного решения задач прежде всего не стоит определиться с тем, какая информация известна об описываем объекте, в каких формулах их можно применить, и определиться с тем, что требуется найти. Выполняя этот простой алгоритм, ни одна задача с применением этой геометрической фигуры не составит усилий.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings. ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}}/500 {{l10n_strings.ТЕГИ}} {{$элемент}} {{l10n_strings.ПРОДУКТЫ}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.ЯЗЫК}} {{$select.selected.display}}

{{article. content_lang.display}}

{{l10n_strings.АВТОР}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

(PDF) Кто такая эта трапеция?

196 ПРЕПОДАВАНИЕ МАТЕМАТИКИ В СРЕДНЕЙ ШКОЛЕ ● Vol.18, No. 4, ноябрь 2012 г. одна пара

противоположных сторон, которые параллельны.

(Serra 2008, p. 64)

В обеих книгах, однако, используются сходные подходы к обучению их определению

трапеции. Учебный план CMP

позволяет учащимся сначала изучить

свойства различных форм, а затем

классифицировать их по одному или еще

свойствам, которые у них есть общие.

Таким образом, у учащихся развивается способность

различать фигуры по

их свойствам. Гораздо позже, в

единице, студенты знакомятся с

приведенной выше терминологией, описывающей трапецию

.

Аналогичным образом текст Discovering Geometry

дает учащимся возможность

сначала изучить свойства трапеций

, попросив их изучить примеры

и не примеры трапеций.Это исследование свойства

согласуется

с соответствующим определением

трапеции выше. Затем

учащихся просят разработать свои собственные определения.

Затем обсуждение приводит к уточнению

Определение 2 (см. выше) как

определение трапеции. Очевидно, что оба подхода согласуются с конструктивистской теорией обучения, которая утверждает, что

учащихся должны активно участвовать в

процессе определения и классификации

четырехугольников.

ОПРЕДЕЛЕНИЯ И

ОБУЧЕНИЕ

Мои размышления об этой ситуации с двумя определениями привели меня к

удивлению, как существование различных определений

математики влияет на

3 учащихся. Согласно Виннеру (1991), определения созданы человеком и, следовательно, произвольны. Он утверждает

, что непонимание относительно

произвольного характера определений

может вызвать массу проблем.В добавлении

Виннер утверждает, что «знание наизусть

определения понятия не гарантирует понимания понятия

» (стр. 69). Он полагает, что

понять означает иметь концепт

образ, невербальное нечто в нашей

памяти, связанное с конкретным

концептом. Как только образ понятия

сформирован, студенты редко возвращаются к

формальным определениям понятия.Например,

мы не ссылаемся на определения стола, машины или здания, чтобы

понять значение предложения

, которое содержит эти слова. Скорее,

, когда мы слышим слово «стол», например,

, мы ассоциируем его с образом

, возникающим в результате нашего восприятия конкретного стола.

Хотя обращаться к определениям

для понимания утверждений в контексте

повседневной жизни не обязательно, определения в

в математике имеют решающее значение

Кто такая эта трапеция?

Gorjana Popovic

Мнения, выраженные в On My Mind

, не обязательно отражают взгляды редакционной

коллегии MTMS или NCTM.Отправляйте заявки

в этот отдел по адресу

mtms.msubmit.net. Читателям предлагается ответить на эту редакционную статью, отправив

писем в MTMS по адресу [email protected] org для возможной публикации в Readers Write.

Вы когда-нибудь встречали разные

определения математических терминов в

учебниках? У меня есть. Моя недавняя встреча с определениями трапеций

вызвала у меня вопросы о

последствиях того, чему мы учим

студентов, что имеется в виду в документах

, касающихся стандартов и определений,

и как оценивать имеет дело с

разнообразием определений.

Два разных определения

трапеции обычно встречаются в

учебниках по математике. С одной стороны,

в книге Connected Mathematics Project

(CMP) Shapes and Designs используется

всеобъемлющее определение трапеции,

и параллелограмм считается

частным случаем трапеции:

Трапецией называется четырехугольник

, у которого хотя бы одна пара

противоположных сторон параллельна.

(Lappan et al. 2006, стр. 93)

С другой стороны, в учебнике Discovering

Geometry: An Investigative Approach

используется исключительное определение

Copyright © 2012 The National Council of Teachers of Mathematics, Inc. www.nctm.org. Все права защищены.

Этот материал нельзя копировать или распространять в электронном виде или в любом другом формате без письменного разрешения NCTM.

Разница между ромбом, ромбом и трапецией

Опубликовано Admin

Алмаз, ромб против трапеции
 

Алмаз, Ромб и Трапеция — это четырехугольники , которые являются многоугольниками с четырьмя сторонами.В то время как ромб и трапеция правильно определены в математике, ромб (или ромбовидная форма) — это непрофессиональный термин для обозначения ромба.

Ромб и ромб

Четырехугольник, у которого все стороны равны по длине, называется ромбом. Его также называют равносторонним четырехугольником . Считается, что он имеет ромбовидную форму, похожую на игральные карты. Форма ромба не является точно определенной геометрической единицей.

 

Ромб

является частным случаем параллелограмма .Его можно рассматривать как параллелограмм с равными сторонами. Квадрат можно рассматривать как частный случай ромба, у которого внутренние углы прямые. В общем случае ромб обладает следующими особыми свойствами

• Все четыре стороны имеют одинаковую длину. (AB=DC=AD=BC)

• Диагонали ромба делят друг друга пополам под прямым углом; диагонали перпендикулярны друг другу,

в дополнение к следующим свойствам параллелограмма.

•  Две пары противоположных углов равны по размеру. (DAB = BĈD, A ̂ DC=A ̂ BC)

Соседние углы Дополнительные DAB + A DC = A DC + B CD = B CD + A BC = A BC + D ̂ AB = 180° = π рад

•  Пара сторон, противолежащих друг другу, параллельна и имеет одинаковую длину. (AB=DC и AB∥DC)

•  Диагонали делят друг друга пополам (AO=OC, BO=OD)

•  Каждая диагональ делит четырехугольник на два равных треугольника. ( ADB ≡ BCD, ABC ≡ ADC)

•  Диагонали делят пополам два противоположных внутренних угла.

Площадь ромба можно рассчитать по следующей формуле.

Площадь ромба = ½ (AC × BD)

Трапеция (трапеция)

Трапеция – выпуклый четырехугольник, у которого по крайней мере две стороны параллельны и неравны по длине.Параллельные стороны трапеции известны как основания , а две другие стороны называются ножками .

  

Ниже приведены основные характеристики трапеций;

•  Если смежные углы не лежат на одном основании трапеции, они являются дополнительными углами. то есть в сумме они составляют 180° (BA ̂D+AD ̂C = AB ̂C+BC ̂D = 180°)

•  Две диагонали трапеции пересекаются в одинаковом отношении (соотношения между сечениями диагоналей равны).

Если a и b — основания, а c, d — стороны, то длины диагоналей равны

 

Площадь трапеции можно рассчитать по следующей формуле.

Прочтите Разница между параллелограммом и трапецией

В чем разница между ромбом, ромбом и трапецией?

• Ромб и трапеция – это четко определенные математические объекты, тогда как форма ромба — термин, используемый неспециалистами.Каждая форма имеет четыре стороны, а форма ромба относится к ромбу.

• У ромба равные стороны, а противоположные стороны параллельны друг другу. У трапеции в общем случае стороны неравны, причем две стороны параллельны друг другу. Равными могут быть только стороны трапеции.

• Любая диагональ ромба делит ромб на два конгруэнтных треугольника. Треугольники, образованные диагоналями трапеции, не обязательно равны.

• Диагонали ромба пересекаются под прямым углом, а диагонали трапеции не обязательно перпендикулярны друг другу.

• Диагонали ромба делят друг друга пополам, а диагонали ромба пересекаются в одинаковом отношении.

Занятия в классе: свойства трапеций — Texas Instruments

Категория Описание Разрешить
Аналитические и эксплуатационные файлы cookie Эти файлы cookie, в том числе файлы cookie из Google Analytics, позволяют нам распознавать и подсчитывать количество посетителей на сайтах TI, а также отслеживать, как посетители перемещаются по нашим сайтам.Это помогает нам улучшить работу сайтов TI (например, упрощая поиск информации на сайте).
Рекламные и маркетинговые файлы cookie Эти файлы cookie позволяют размещать рекламу на основе интересов на сайтах TI и сторонних веб-сайтах с использованием информации, которую вы предоставляете нам при взаимодействии с нашими сайтами. Объявления на основе интересов отображаются для вас на основе файлов cookie, связанных с вашими действиями в Интернете, такими как просмотр продуктов на наших сайтах. Мы также можем передавать эту информацию третьим лицам для этих целей. Эти файлы cookie помогают нам адаптировать рекламные объявления, чтобы они лучше соответствовали вашим интересам, управлять частотой, с которой вы видите рекламу, и понимать эффективность нашей рекламы.
Функциональные файлы cookie

Эти файлы cookie помогают определить, кто вы, и сохраняют информацию о вашей деятельности и учетной записи, чтобы обеспечить расширенные функциональные возможности, включая более персонализированный и актуальный опыт на наших сайтах.Если вы не разрешите использование этих файлов cookie, некоторые или все функции и службы сайта могут работать неправильно.

Если вы не разрешите эти файлы cookie, некоторые или все функции и службы сайта могут работать неправильно.

Файлы cookie социальных сетей Эти файлы cookie позволяют идентифицировать пользователей и контент, связанный с онлайн-социальными сетями, такими как Facebook, Twitter и другие платформы социальных сетей, и помогают TI улучшить охват социальных сетей.
Строго необходимо Эти файлы cookie необходимы для работы сайтов TI или для выполнения ваших запросов (например, для отслеживания того, какие товары вы положили в свою корзину на TI.com, для доступа к защищенным областям сайта TI или для управления настроенными настройки файлов cookie). Всегда включен

включая определение трапеции | Облегчение синдрома спешки

Таблица заявлений о доказательствах PARCC для Geometry EOY, G-CO.3, говорится: Трапеция определяется как «четырехугольник с по крайней мере одной парой параллельных сторон».

Усыскин (и я уверен, что другие — он просто был первым, от кого я это прочитал) называют это инклюзивным определением трапеции.

Я уже несколько лет предлагаю это определение своим ученикам как возможность. Что произойдет , если мы определим трапецию как четырехугольник по крайней мере с одной парой параллельных сторон? Тогда параллелограмм тоже трапеция.Наши всегда/иногда/никогда не заполняют пустые утверждения «Параллелограмм — это ____ трапеция» или «Трапеция — это ____ квадрат» изменяются с никогда на иногда. Но поскольку в нашем учебнике трапеция определяется как четырехугольник с ровно одной парой параллельных сторон, мы тоже так поступили. В этом году мы определили трапецию, как будет PARCC. Мои коллеги и я думали о влиянии этого определения на нашу дедуктивную систему.

Кстати, я искал настоящие ресурсы по геометрии CCSS.Я обычно сначала смотрю, где находится блок по преобразованиям. Если не 1-й и не 2-й, то для меня это явный признак того, что текст действительно не редактировался для CCSS-M. Я все забыл посмотреть, как они говорят о трапециях. Не то, чтобы каждый ресурс учебника CCSS-M должен определять трапеции, как это делает PARCC, но предлагают ли они вообще инклюзивное определение как возможность?

Наше расположение четырехугольников на диаграмме Венна было удалено.

  

Некоторые из наших практических задач пришлось переписать:

Old: По определению, что такое четырехугольник, у которого ровно одна пара противоположных сторон параллельна?

Новое: По определению, что такое четырехугольник с по крайней мере одной парой параллельных противоположных сторон?

Old: Что такое четырехугольник, у которого обе пары противоположных сторон параллельны по определению?

Новое: По определению, что такое трапеция , у которой обе пары противоположных сторон параллельны?

Технически мы могли бы сохранить старый вопрос, но мы изменили его, поскольку хотим подчеркнуть новое определение.

Старый: Какое утверждение НИКОГДА не верно?

A. Квадрат ABCD — ромб.

B. Параллелограмм PQRS является квадратом.

C. Трапеция GHJK является параллелограммом.

D. Квадрат WXYZ — параллелограмм.

E. Трапеция EFGH – равнобедренная трапеция.

Новое: мы полностью удалили этот вопрос. Но теперь, когда я смотрю на это более внимательно, я думаю, что мы могли бы изменить параллелограмм в выборе C на воздушный змей .

Старый: Два последовательных угла трапеции прямые.Четыре из следующих утверждений о трапеции могут быть верными. Какое утверждение НЕ МОЖЕТ быть верным?

A. Два прямых угла являются углами при основании.

B. Диагонали не равны.

C. Две стороны равны.

D. Никакие две стороны не конгруэнтны.

E. Ровно две стороны параллельны.

Новое: мы добавили слово Ровно в начало основы вопроса.

Старый: Напишите номер каждой из пяти фигур в соответствующей области диаграммы.

Новое: нам не нужно было менять вопрос… только решение.

Другие разговоры, которые у нас были, были о том, как определять другие четырехугольники. Если мы определим трапецию как четырехугольник, по крайней мере, с одной парой параллельных сторон, то не должен ли параллелограмм быть трапецией, у которой обе пары противоположных сторон параллельны? Мы всегда определяли прямоугольник как параллелограмм с четырьмя конгруэнтными углами, ромб как параллелограмм с четырьмя конгруэнтными сторонами и квадрат как параллелограмм, который одновременно является прямоугольником и ромбом. Эти определения, кажется, все еще работают. Но являются ли они лучшими определениями? Изменим ли мы наше определение воздушного змея с четырехугольника с двумя парами последовательных конгруэнтных сторон на четырехугольник с по крайней мере двумя парами последовательных конгруэнтных сторон? И если да, то должны ли мы определять ромб как воздушный змей с четырьмя конгруэнтными сторонами? Как определить равнобедренную трапецию в этой дедуктивной системе? Кажется, что трапеция с конгруэнтными катетами больше не работает. А трапеция с равными диагоналями? Или трапеция с равными углами при основании? Мы вообще говорим о основаниях и катетах трапеции?

Еще один вопрос, который у меня возник, заключается в том, знают ли учителя K-8 об этом исчерпывающем определении трапеции.Беспокоит ли учащихся изменение определения в середине школьных лет? Или нам нужно начать кампанию, чтобы информировать учителей об этом определении, которые, возможно, не читают Таблицу заявлений о доказательствах PARCC для геометрии EOY? Просто для протокола: я думаю, мои ученики согласны с этим определением. На самом деле они были более гибкими в своем мышлении, чем учителя.

В прошлом году мой 2-й -й ученик пришел домой с этим вопросом на листе, который я поделился со своими учениками.

К сожалению, я хотел отметить один ответ, хотя моя дочь отметила более одного ответа.

Можете ли вы представить себе страдания, связанные с наличием 4-й -й фигуры, которая не является специальной трапецией с указаниями «Отметить трапецию»?

Что касается изучения свойств трапеции, мне очень нравится всеобъемлющее определение трапеции. Мы построили трапецию, используя наше программное обеспечение для динамической геометрии. Мы признаем, что две пары последовательных углов являются дополнительными.Но когда мы перемещаем вершины, чтобы наблюдать, что остается неизменным, а что меняется, мы понимаем, что бывают моменты, когда все пары последовательных углов являются дополнительными. Трапеция может быть параллелограммом.

Мы также использовали наше программное обеспечение для динамической геометрии, чтобы наблюдать, что происходит, когда мы создаем средний сегмент трапеции. Что верно в отношении середины трапеции? Она параллельна основаниям. Он разрезает трапецию на две меньшие трапеции. Откуда вы знаете? Как мы можем показать, что ABNM также является трапецией?

А что верно в отношении длины среднего сегмента по сравнению с основаниями? Это половина суммы оснований.Как показать, что длина среднего отрезка всегда равна половине суммы оснований?

Я рад, что этот разговор был начат в другом месте, и что я легко нашел его через Google. Графический органайзер постов в блоге мистера Чейза очень помог обдумать это изменение.

Почему я ненавижу определение трапеций

Почему я ненавижу определение трапеций (снова)

Почему я ненавижу определение трапеций (часть 3)

Еще нашел задания для 4 и 5 классов по Иллюстративной математике:

Что такое трапеция? (Часть 1)

Что такое трапеция? (Часть 2)

Приятно не быть одному, ведь путешествие продолжается….

 

Что такое трапеция.

— ттафакар. думаю

المحتويات (Содержание)

Определение трапеции.

Трапеция — это четырехсторонняя замкнутая двумерная фигура, имеющая площадь и периметр. Две стороны трапеции параллельны друг другу и называются основаниями трапеции. Непараллельные стороны известны как стороны или боковые стороны трапеции. Кратчайшее расстояние между двумя параллельными сторонами называется высотой.Поскольку противоположные стороны параллельны друг другу, вычислить площадь трапеции несложно.

Свойства трапеции.

Эти свойства трапеции отличают ее от других четырехугольников:

▪️Основания (верхнее и нижнее) параллельны друг другу.

▪️Противоположные стороны трапеции (равнобедренной) имеют одинаковую длину.

▪️Углы рядом друг с другом в сумме составляют 180°.

▪️Медиана параллельна обоим основаниям.

▪️Длина медианы – это среднее значение обоих оснований, т. е. (a +b)/2.

▪️Если у трапеции обе пары противоположных сторон параллельны, то она считается параллелограммом.

▪️Если обе пары противоположных сторон параллельны, все стороны имеют одинаковую длину и расположены под прямым углом друг к другу, то трапецию можно считать квадратом.

▪️ Если обе пары противоположных сторон параллельны, ее противоположные стороны имеют одинаковую длину и находятся под прямым углом друг к другу, то трапецию можно рассматривать как прямоугольник.

Типы трапеций.

Существует три типа трапеций, они приведены ниже:

1. Равнобедренная трапеция.

Если катеты или непараллельные стороны трапеции равны по длине, то она называется равнобедренной трапецией. Углы параллельных сторон (основания) в равнобедренной трапеции равны между собой. У равнобедренной трапеции есть линия симметрии и обе диагонали равны по длине.

В приведенной ниже равнобедренной трапеции XYZW, XY и WZ называются основаниями трапеции. WX и YZ называются катетами трапеции, так как они не параллельны друг другу.

2. Разносторонняя трапеция.

Когда ни стороны, ни углы трапеции не равны, то это разносторонняя трапеция. В приведенной ниже разносторонней трапеции все четыре стороны, то есть AB, BC, CD и DA, имеют разную длину. Основания И.е. DC и AB параллельны друг другу, но имеют разную длину.

3. Правая трапеция.

Прямоугольная трапеция, также называемая прямоугольной, имеет пару прямых углов. Эти виды трапеций используются для оценки площадей под кривой. В приведенной ниже прямой трапеции или прямоугольной трапеции есть два прямых угла, один в D, а другой в A. Одна пара противоположных сторон, то есть DC и AB, параллельны друг другу.

Площадь трапеции.

Площадь трапеции вычисляется путем измерения среднего значения параллельных сторон и умножения его на высоту.

Добавить комментарий

Ваш адрес email не будет опубликован.

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск