Решать окислительно восстановительные реакции: Окислительно-восстановительные реакции – примеры уравнений (9 класс, химия)

Содержание

Подборка химического эксперимента при изучении темы «Окислительно-восстановительные реакции

Подборка химического эксперимента при изучении темы

«Окислительно-восстановительные реакции»

Пояснительная записка

В программе по химии для изучения окислительно-восстановительных реакций отводится недостаточно времени. Этот раздел является одним из важнейших и интересных в курсе общей химии. Данная тема очень важна при подготовке к ЕГЭ, так как несколько лет подряд окислительно-восстановительные реакции включаются в задания.

Наряду с теоретическими понятиями, которые можно развить, обобщить и систематизировать в процессе изучения данной темы необходимо проводить химический эксперимент как демонстрационно, так и при проведении лабораторных и практических работ.

Основные цели при изучении темы «ОВР»:

Развитие познавательного интереса к естественнонаучным дисциплинам и создание мотивационной основы для осознанного выбора профессии.

Систематизировать, углубить и расширить знания учащихся о сущности окислительно-восстановительных реакций, их практическом значении, самых известных окислителях и восстановителях, о влиянии среды на характер протекания ОВР.

Научить правильно классифицировать окислительно-восстановительные реакции, решать задачи.

Составлять любые уравнения ОВР, используя методы: электронного баланса, электронно-ионный.

Сформировать представление у учащихся о процессе электролиза, научить составлять уравнения анодных и катодных процессов, расширить представления о коррозии металлов.

Отработать навыки самостоятельной работы, развивать умения анализировать, обобщать, делать выводы, доказывать их.

Способствовать правильному выбору и хорошей подготовке учащихся к сдаче единого государственного экзамена по химии.

Задачи при изучении темы «ОВР»:

  1. Актуализация и углубление знаний об окислительно-восстановительных реакциях.

  2. Реализация межпредметных связей естественнонаучных дисциплин.

  3. Развитие познавательной активности и самостоятельности.

  4. Усвоение учащимися практического применения важнейших окислителей.

  5. Формировать умение планировать и проводить лабораторные исследования и химический эксперимент.

  6. Демонстрация практического значения окислительно-восстановительных реакций в природе и технике.

Требования к уровню усвоения темы «ОВР»

Учащиеся должны знать: определение, классификацию и типы окислительно-восстановительных реакций; основные окислители и восстановители, применяемые в химической промышленности; изменение степеней окисления марганца и хрома в зависимости от среды растворов; правила по технике безопасности при работе с важнейшими окислителями и восстановителями, условия их хранения.

Учащиеся должны уметь: правильно определять окислители и восстановители, изменение их степеней окисления, составлять электронный баланс двумя методами, уравнивать химические уравнения и решать задачи с их использованием. Самостоятельно работать с дополнительной литературой, уметь выделять главное из общего, аргументировано отвечать на поставленные вопросы, делать выводы.

Предлагаемая подборка химического эксперимента позволит лучше усвоить данную тему.

ЛАБОРАТОРНАЯ РАБОТА
« Окислительно-восстановительные реакции»

Общее задание:

1. Проделать опыт.

2. Описать внешние признаки исходных веществ и растворов. Указать особенности протекания данной реакции: изменение окраски раствора, выделение газа, выпадение осадка и его цвет.

3. Указать окислитель, восстановитель и характер среды в данной реакции. Подобрать коэффициенты методом электронного баланса.

4. Приведите сокращённые ионные уравнения реакций.

5. Соблюдайте правила по технике безопасности.

Окислительные свойства перманганата калия (KMnO4) в кислой, нейтральной и щелочной средах.

ОПЫТ 1.

В 3 ячейки внести по 2–3 капли раствора KMnO4, затем в первую – 5–6 капель раствора серной кислоты, во вторую – такой же объём воды; в третью – раствор щёлочи NaOH. Затем в каждую из пробирок добавить по капле раствора сульфита натрия (Na2SO3).


Окислительно-восстановительные свойства пероксида водорода (H2O2).

ОПЫТ 2.

а) В ячейку поместить 2 мл раствора пероксида водорода (H2O2). Добавить 3 капли раствора серной кислоты, а затем 2-3 капли раствора иодида калия (KI). По окончании реакции содержимое ячейки разбавить водой и перенести 2-3 капли в соседнюю ячейку, прилить несколько капель крахмала. О чём говорит появления окраски раствора?

б) В ячейку налить 2 мл раствора H2O2, добавить 5-6 капель раствора серной кислоты, затем прилить 5-6 капель перманганата калия. Какой газ выделяется?

 

Окислительные свойства бихромата калия (K2Cr2O7).

ОПЫТ 3.

В ячейку поместить 2-3 капли раствора бихромата калия, прилить несколько капель раствора H

2SO4, а затем добавить 8-10 капель раствора Na2SO3.

Окислительно-восстановительные реакции в органической химии – УчМет

Муниципальное образовательное учреждение

средняя общеобразовательная школа № 36

ПРОГРАММА элективного курса

«Окислительно-восстановительные реакции

в органической химии»

(углубленный курс)

Возраст обучающихся: 14-16 лет (10-11 класс)

Срок реализации – 0,5 года

Занятия проводятся по 1,5 ч в неделю (спаренные уроки)

Составитель: Сикорская Ольга Эдуардовна

Владикавказ, 2011г

Пояснительная записка.

Предлагаемый элективный курс может быть проведен во втором полугодии 10 класса или в 11 классе для углубленного изучения темы в классах естественно-математического профиля. Курс рассчитан на учащихся с хорошим уровнем базовой подготовки.

Знание химии совершенно необходимо специалистам большинства отраслей народного хозяйства. Глубокое изучение основ химии очень важно будущим врачам для более полного освоения биологии, биохимии, физиологии, фармакологии; химикам-технологам, инженерам-биотехнологам, военным специалистам, агрономам, ветеринарам и т. д. Знания – сила. Но знание может быть разным. Можно вызубрить таблицу умножения, но при этом не суметь решить простейшую задачу. Только знать мало, вряд ли кто-либо станет отрицать тот факт, что теория и практика не могут существовать друг без друга. Потребность в теории непосредственно вытекает из практики; в свою очередь теория служит необходимым руководством практической деятельности. Предлагаемый курс позволяет на практике отработать теоретические вопросы.

На процессы, связанные с окислительно-восстановительными реакциями, мы обращаем внимание учащихся при изучении практически каждого класса органических веществ. Однако, существующие рамки программы, а также недостаток часов, не позволяют учителю всесторонне и глубоко рассмотреть сущность и закономерности протекания данных процессов. Вместе с тем эта тема является одной из сложных тем школьного курса химии. В ряде заданий единого государственного экзамена по химии части C требуется не только привести схему реакции, а составить именно уравнение реакции окисления органического соединения с правильно подобранными коэффициентами.

Целями данного курса являются:

  • повышение компетентностей учащихся в области знаний об окислительно-восстановительных процессах;

  • подробное изучение ОВР с участием органических веществ, прогнозирование продуктов реакции;

  • создание условий для формирования и развития у учащихся умения самостоятельно работать с научной литературой, собственными конспектами и другими источниками информации;

  • воспитание убежденности в познаваемости химической составляющей окружающей действительности.

Задачи данной программы таковы:

  • углубить представления учащихся об ОВР с участием органических веществ;

  • научить прогнозировать состав продуктов ОВР;

  • совершенствовать навыки составления ОВР используя метод электронного баланса и метод макроподстановки.

После изучения предлагаемого курса учащиеся должны:

Знать:

  • основные понятия и законы теории ОВР

  • классификацию ОВР в органической химии;

  • отношение к восстановителям и окислителям различных классов органических веществ;

Уметь:

  • в свете представлений об индуктивном и мезомерном эффектах, рассматривать взаимное влияние атомов в молекулах органических веществ;

  • определять степени окисления атомов в органических веществах алгебраическим и графическим методами;

  • прогнозировать продукты реакций;

  • составлять и уравнивать ОВР с участием органических веществ;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для критической оценки достоверности химической информации, поступающей из различных источников.

  • оформлять результаты своей работы;

  • осуществлять самоконтроль за результатами своей работы.

Основным положительным результатом работы по данному курсу является возможность выработать у учащихся более позитивный подход к решению ОВР с участием органических веществ.

Хочу дать некоторые разъяснения относительно последовательности тем предлагаемого курса.

Изучение первого раздела предполагает последовательное обобщение, систематизацию и углубление знаний основных понятий ОВР и структуры органических веществ.

В ОВР органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических веществ зависит от доступности электронов при взаимодействии с окислителем. Все факторы, вызывающие увеличение электронной плотности в молекуле, будут повышать их способность к окислению. Поэтому мне кажется целесообразным одно из занятий данного элективного курса посвятить изучению электронных эффектов в молекулах органических веществ.

Для расстановки коэффициентов обычно используют метод электронного баланса, что требует у учащихся умения расставлять степени окисления в органических веществах. В связи с этим на одном занятии мы разбираем способы определения степени окисления в органических веществах, причем как алгебраическим способом, так и графическим. А одно из занятий мы посвящаем уравниванию этих реакций, разбирая особенности метода электронного баланса, и знакомимся с методом макроподстановки (хотя он конечно оказывается более востребован учащимися уже при обучении в ВУЗе).

Все ОВР в органике можно условно разделить на 3 группы: полное окисление или горение, мягкое окисление и жесткое окисление (деструктивное окисление). Для того чтобы учащиеся более осознанно в дальнейшем оперировали этими понятиями, мне кажется целесообразным на одном из занятий показать все эти реакции и на готовых (но не уравненных) уравнениях: потренироваться в их различении.

На дальнейших занятиях более детально изучаются процессы окисления и восстановления различных классов органических веществ.

Итогом работы учащихся станет выполнение зачетной работы, содержащей задания из части С ЕГЭ по химии.

В приложении я привожу примерный теоретический и практический материал, отрабатываемый на занятиях. Объем предложенного материала варьируется в зависимости от уровня подготовки учащихся и их дальнейшей профессиональной ориентации.

Занятия рекомендуется проводить продолжительностью не менее 1,5 часа (спаренные уроки), что способствует более полному рассмотрению тем и вместе с тем позволяет отработать на практике теоретические вопросы.

Занятия желательно проводить в различных формах:

  • уроки проблемного обучения;

  • лекции-беседы;

  • практикумы;

  • уроки-исследования;

  • семинарские занятия.

Учебно-тематический план.

темы

Тема занятия

Количество занятий

1.

Введение.

4

2

Окислительные процессы с участием углеводородов.

5

3.

Окислительные процессы с участием кислородсодержащих органических веществ.

4

4.

Окисление аминов.

1

5.

Восстановительные процессы с участием органических веществ.

1

6.

Окислительно- восстановительные реакции в заданиях ЕГЭ.

1

7

Итоговое занятие.

1

Итого 17 занятий.

Содержание тем программы.

Тема занятия

Основное содержание.

Введение (4 часа)

1

Вводное занятие.

Знакомство с целями и задачами курса, его структурой. Основные положения теории ОВР(повторение и обобщение изученного в обязательном курсе). Электроотрицательность, валентность, степень окисления, их сходство и различия. Правила определения степени окисления. Способы определения степени окисления в органических веществах: алгебраический и графический методы.

2

Взаимное влияние атомов в молекулах органических веществ.

Электронные эффекты в органических веществах:. мезомерный и индуктивный эффекты. Их влияние на реакционную способность молекул.

3

Составление уравнение окислительно-восстановительных реакций.

Важнейшие окислители и восстановители. Таблицы поведение типичных окислителей и восстановителей. Метод электронного баланса и метод макроподстановки. Особые случаи составления электронного баланса.

4

Классификация ОВР в неорганической и органической химии.

Межмолекуляроное окисление-восстановление, внутримолекулярное окисление- восстановление, реакции диспропорционирования. Классификация ОВР в органической химии: полное окисление или горение, мягкое окисление и жесткое окисление

(деструктивное окисление).

Окислительные процессы с участием углеводородов. (5 часов)

5

Окисление алканов

Полное окисление, неполное сгорание, неполное каталитическое окисление. Решение задач на вывод формул по продуктам сгорания алканов.

6

Окисление алкенов

Мягкое окисление алкенов: эпоксидирование или неполное каталитическое окисление, реакция Вагнера. Жесткое окисление. Озонолиз. Полное сгорание.

7

Окисление алкинов

Реакция Кучерова, окисление KMnO4, K2Cr2O7 в кислой, нейтральной или щелочной средах. Полное окисление.

8

Окисление аренов.

Бензол: полное окисление озонолиз. Гомологи бензола: окисление перманганатом калия (зависимость продуктов реакции от характера среды). Окисление кумола и стирола.

9

Окисление углеводородов.

Тренировочные упражнения, содержащие задания по окислению углеводородов.

Окислительные процессы с участием кислородсодержащих органических веществ.

(4 часа)

10

Окисление спиртов.

Полное окисление. Частичное окисление первичных, вторичных и третичных спиртов. Окисление гликолей. Окисление фенола.

11

Окисление альдегидов.

Получение реактива Толленса и гидроксида меди (II). Окисление аммиачным раствором оксида серебра, окисление свежеосаждённым гидроксидом меди (II). Окисление перманганатом калия в кислой, нейтральной и щелочной средах. Особенности окисления муравьиного альдегида. Окисление кетонов.

12

Окисление карбоновых кислот

Окисление муравьиной и щавелевой кислот.

13

Окисление углеводов.

Реакция серебряного зеркала. Реакция моносахаридов с гидроксидом меди(II) при нагревании. Окисление моносахаридов азотной кислотой и бромной водой. Брожение и его виды.

Окисление аминов. (1 час)

14

Окисление аминов.

Полное окисление аминов. Получение красителей.

Восстановление органических веществ (1 час)

15

Восстановительные процессы.

Восстановление алкенов, алкинов, аренов, спиртов и альдегидов. Восстановление альдегидов и кетонов алюмогидридом лития или боргидридом натрия. Восстановление моносахаридов. Реакция Зинина.

Окислительно- восстановительные реакции в заданиях ЕГЭ.

16

Подведем итоги.

Обобщение по всему курсу. Выполнение упражнений по материалам ЕГЭ.

17

Итоговое занятие

Выполнение итоговой работы.

Литература для учащихся:

  1. Архангельская О.В., Тюльков И.А. Задачи по теме «Уравнения окислительно-восстановительных реакций».

  2. Дерябина Г.И. , Кантария Г.В. Интерактивный мультимедиа учебник Органическая химия 1998-2011. (http://www.chemistry.ssu.samara.ru).

  3. Каверина А.А., Медведев Ю.Н., Добротин Д.Ю. ЕГЭ 2009 Химия.- М.:Эксмо, 2009.

  4. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии: в 2 т.- М: Федеративная книготорговая компания, 1998.

  5. Кузьменко Н.Е., Еремин В.В., 2500 задач по химии с решениями для поступающих в ВУЗы.- М: «Экзамен», 2005.

  6. Кузнецова Н.Е., Лёвкин А.Н., Задачник по химии для учащихся 10 класса (профильный уровень). –М.: Вентана-Граф,2007.

  7. Литвинова Т.Н., Мельникова Е.Д., Соловьёва М.В., Ажипа Л.Т., Выскубова Н.К. Химия в задачах для поступающих в ВУЗы. М:ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2009.

  8. Потапов В.М., Татаринчик С.Н. Органическая химия.-М.: Химия,1989.

  9. Хомченко Г. П., Севастьянова К.Е. Окислительно-восстановительные реакции, М: Просвещение, 1989.

  10. Хомченко Г.П., Хомченко И.Г. Задачи по химии для поступающих в ВУЗы.- М.: Высшая школа,1987.

Литература для учителя:

  1. Гостев М.М. Химический кружок в школе. М.: Изд-во АПН РСФСР. М., 1958.

  2. Денисова В.Г. Материалы мастер-класса «Химические свойства веществ в заданиях ЕГЭ». (http://www.it-n.ru/communities.aspx?cat_no=131642&lib_no=229027&tmpl=lib)

  3. Дерябина Н.Е. Прием макроподстановки как способ определения коэффициентов в уравнениях ОВР // Химия в школе.-2007.-№9.-С. 40-44

  4. Дерябина Н.Е. Методика формирования умения определять степень окисления атома // Химия в школе.-2007.-№7.-С. 24-27

  5. Ермаков, Д.С. Элективные курсы для профильного обучения / Д. С. Ермаков // Педагогика. – 2005. – № 2.

  6. Нейланд О.Я. Органическая химия. М.: Высшая школа,1990.

  7. Солдатова Т.М.. Тренинги и тесты с ответами по теме: «Окислительно-восстановительные реакции».-Волгоград: Учитель, 2007.

  8. Шарп Дж., Госни И., Роули А. Практикум по органической химии / Пер. с англ. М.: Мир, 1993.

  9. Шарпенак А.Э., Косенко С.А. Практикум по органической химии. М.: Высшая школа, 1965.

  10. Шабаров Ю.С. “Органическая химия”, М., Химия, 2000.

  11. Элективные курсы в профильном обучении / Министерство образования РФ. – Национальный фонд подготовки кадров. – М.: Вита-Пресс, 2004.

Приложение.

Примерный теоретический и практический материал, отрабатываемый на занятиях.

Определение степени окисления в органических веществах.

Окислительно-восстановительные реакции органических веществ – важнейшее свойство, объединяющее эти вещества. Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу.

Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, их классифицируют в зависимости оттого, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).

Степень окисления. Основные способы определения степени окисления в неорганических и органических веществах.

Степень окисления (СО) – формальный заряд, который можно приписать атому, входящему в состав какой-либо частицы (молекулы, иона), исходя из предположения о чисто ионном характере связи в данной частице.

Правила расчета степени окисления (СО)

(при их использовании предпочтение отдаётся правилу с меньшим номером).

1. Сумма СО всех атомов в частице равна заряду этой частицы (в простых веществах СО всех атомов равна 0).

2. В соединениях с ионным и ковалентно-полярным характером связи более электроотрицательным атомам соответствует более низкая СО. В бинарных ионных соединениях, атомы неметалла, как правило, проявляют минимальные СО,

3. Атомы, приведённые в таблице 1, в большинстве своих соединений проявляют постоянную СО. При определении СО предпочтение отдают элементу, который расположен выше:

Характерные СО для некоторых элементов

Щелочные металлы

+1

Be, Mg, Ca, Sr, Ba, Zn, Cd

+2

F

-1

H

+1,-1 (в гидридах)

O

-2 (-1 в пероксидах,+2 в ОF2)

Cl, Br

-1

B, Al, Ga, In, Sc, Y, La и большинство лантанидов

+3

Например,

Ca+2(S-2C+4N-3)2

Кальций имеет постоянную степень окисления в веществе +2. Значит, ион SCN имеет заряд -1.В этом ионе наиболее электроотрицательным является азот, значит, он будет иметь степень окисления -3. Наименее элекроотрицательным будет углерод, он приобретет степень окисления +4. Пусть степень окисления серы х, так как алгебраическая сумма степеней окисления в молекуле равна нулю, то: (+2) +2∙(х+(+4) +(-3))= 0, откуда х = -2.

K+14[Fe+2(C+2N-3)6]

Калий имеет постоянную степень окисления +1. 4 атома калия дают заряд 4+. Следовательно, комплексный ион имеет заряд 4-. Цианид ион имеет заряд 1-. таких ионов 6. Значит, они дают -6. Тогда степень окисления железа равна х+6∙ (-1) = -4. Откуда х =+2. Определим степень окисления атомов в цианид ионе. В нем азот более электроотрицательный элемент, чем углерод. Значит, азот имеет степень окисления -3. Тогда степень окисления углерода (у) равна у+(-3) =-1, у=+2

Определение степени окисления атомов в органических веществах.

Применение понятия «степени окисления» (СО) в органической химии очень ограничено и реализуется, прежде всего, при составлении уравнений окислительно-восстановительных реакций. Однако, учитывая, что более или менее постоянной состав продуктов реакции возможен только при полном окислении (горении) органических веществ, целесообразность расстановки коэффициентов в реакциях неполного окисления отпадает. По этой причине обычно ограничиваются составлением схемы превращений органических соединений.

Степень окисления любого атома углерода в органическом веществе равна алгебраической сумме всех его связей с более электроотрицательных элементов (Cl, O, S,N, и др.), учитываемых со знаком «+», и связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-». При этом связи с соседними атомами углерода не учитываются.

Существуют два подхода к определению степеней окисления элементов в органических веществах.

1. Вычисляют среднюю степень окисления атома углерода в молекуле органического соединения.

В органических веществах можно определять степени окисления элементов алгебраическим методом, при этом получается усредненное значение степени окисления. Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).

2. Графический способ.

Однако, определение степени окисления атомов органических веществ по молекулярной формуле носит формальный характер, так как в органической химии большое значение имеют структурные формулы. В связи с этим для определения степени окисления атомов в органике используют графический способ. Для этого воспользуемся следующим порядком действий:

1) напишем полную структурную формулу вещества;

2) по каждой связи стрелкой покажем смещение электронной плотности к наиболее электроотрицательному элементу;

3) все связи С – С будем считать неполярными

4) далее ведем подсчет: сколько стрелок направлено к атому углерода , столько «–» , сколько от атома углерода – столько «+». Сумма «–» и «+» определяет степень окисления атома.

Например,

Название вещества

Усредненное значение степени окисления

Степень окисления каждого атома углерода

2- аминопропан

1,2 –дихлорпропан


Метилфенилкетон

Оставшуюся часть занятия учащиеся выполняют упражнения.

Составление уравнений окислительно-восстановительных

реакций

При составлении уравнений окислительно-восстановительных реакций

применяют:

1. Метод электронного баланса.

2. Метод ионно-электронный.( в данном курсе не рассматривается)

3. Метод макроподстановки (подробно рассмотрен в материалах мастер–класса у Денисовой В.Г.

Редокс (Окисление и восстановление) реакции

Редокс (Окисление и восстановление) реакции

Если перенос вещества происходит между веществами, эти реакции называются окислительно-восстановительными реакциями или окислительно-восстановительными реакциями. Если атом / соединение или элемент принимает электрон, этот процесс называется восстановлением; напротив, если атом / соединение или элемент дает электрон, этот процесс называется окислением. Посмотрите на следующие примеры окислительно-восстановительных реакций;

Примеры:

1. Mg → Mg+2 + 2e-

Атом Mg теряет два электрона и окисляется.

2. S-2 → S+6 + 8e-

Ион S теряет восемь электронов и окисляется.

3. S + 2e- → S-2

Атом S получает два электрона, и он уменьшается.

4. S+6 + 2e- → S+4

S+6 получает два электрона и уменьшается.

5. 2Al(s) + 3Cu+2(aq) → 2Al+3(aq) + 3Cu(s)

В этой реакции нейтральный реагент Al жертвует 3 электрона и окисляется, и, поскольку он восстанавливает Cu, мы называем Al «восстановителем», Cu изначально имеет степень окисления плюс два, и он получает два электрона и восстанавливается, так как он окисляет Al, мы называем его «окислением». агент «. Эта реакция называется окислительно-восстановительной или окислительно-восстановительной реакцией.

Некоторые важные моменты о состоянии окисления веществ

1. Свободные элементы имеют степень окисления 0. H2, Na, Cu имеют степень окисления 0.

2. Степень окисления моноатомного иона равна заряду иона. Например, Na+ имеет степень окисления +1, S-2 имеет степень окисления -2.

3. Фтор имеет степень окисления -1 во всех соединениях.

4. Обычно водород имеет степень окисления +1, но есть некоторые исключения, что он имеет степень окисления -1 в таких соединениях, как LiH, NaH, BaH2.

5. В целом, кислород имеет степень окисления -2, есть два исключения, в которых он имеет степень окисления -1, подобно Na2O2, H2O2, и в соединении OF2 O имеет степень окисления +2.

6. В соединении сумма степеней окисления элементов равна нулю. Например;

В соединении K2CO3 позвольте мне найти степень окисления C, используя известные значения.

К имеет +1 степень окисления, а О имеет степень окисления -2.

2.(+1) +(X)+3(-2)=0

X=+4

7. В многоатомном ионе сумма степеней окисления атомов равна заряду иона.

Пример:

Найти степень окисления Cr в соединении Cr2O7-2.

О имеет степень окисления -2.

2X+7.(-2)=-2

X=+6

8. Если металл имеет более одной степени окисления, мы находим степень окисления его, используя известные значения в ионе.

Пример: Найти степени окисления Cu и N в соединении CuNO3.

Cu может иметь +1 и +2 степени окисления в соединениях. Нитрат NO3 имеет степень окисления -1, поэтому Cu должен иметь степень окисления +1.

Мы находим степень окисления N с использованием соединения, как указано ниже;

CuNO3

+1+X+3.(-2)=0

X=+5

N имеет степень окисления +5 в этом соединении.

Пример: Какие из следующих реакций являются окислительно-восстановительной реакцией?

I. 2SO2 + O2 → 2SO3

II. Mg + 2HCl → MgCl2 + H2

III. AgNO3 + KCl → AgCl +KNO3

Быть окислительно-восстановительной реакцией; должно быть хотя бы одно восстановление или одно окисление. Теперь мы исследуем данные реакции, независимо от того, изменяются ли степени окисления элементов.

I. 2SO2 + O2 → 2SO3

В SO2 S имеет значение

S+2(-2)=0

S=+4

В SO3 S имеет степень окисления;

S+3.(-2)=0

S = + 6 Таким образом, I является окислительно-восстановительной реакцией.

II. Mg + 2HCl → MgCl2 + H2

Mg на левой стороне имеет степень окисления 0, однако на стороне продукта он имеет значение;

Mg+2(-1)=0

Mg=+2

И H имеет +1 значение в соединении HCl и 0 значение на стороне продукта.

II также является окислительно-восстановительной реакцией.

III. AgNO3 + KCl → AgCl +KNO3

Поскольку степени окисления видов не изменяются, эта реакция не является окислительно-восстановительной реакцией.

Ag имеет +1 степень окисления, K имеет +1 степень окисления, Cl имеет -1 степень окисления и NO3 имеет -1 степень окисления в реагентах и продуктах.

Химические реакции Экзамены и решение проблем

Помощь студентам в учёбе от Людмилы Фирмаль

Здравствуйте!

Я, Людмила Анатольевна Фирмаль, бывший преподаватель математического факультета Дальневосточного государственного физико-технического института со стажем работы более 17 лет. На данный момент занимаюсь онлайн обучением и помощью по любыми предметам. У меня своя команда грамотных, сильных бывших преподавателей ВУЗов. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И не важно: она по объёму на две формулы или огромная сложно структурированная на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.

Срок выполнения разный: возможно онлайн (сразу пишите и сразу помогаю), а если у Вас что-то сложное – то от двух до пяти дней.

Для качественного оформления работы обязательно нужны методические указания и, желательно, лекции. Также я провожу онлайн-занятия и занятия в аудитории для студентов, чтобы дать им более качественные знания.


Моё видео:



Как вы работаете?

Вам нужно написать сообщение в Telegram . После этого я оценю Ваш заказ и укажу срок выполнения. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за заказ, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл заказа в личные сообщения.

Сколько может стоить заказ?

Стоимость заказа зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

Какой срок выполнения заказа?

Минимальный срок выполнения заказа составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

Как оплатить заказ?

Сначала пришлите задание, я оценю, после вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Какие гарантии и вы исправляете ошибки?

В течение 1 года с момента получения Вами заказа действует гарантия. В течении 1 года я и моя команда исправим любые ошибки в заказе.


Качественно сфотографируйте задание, или если у вас файлы, то прикрепите методички, лекции, примеры решения, и в сообщении напишите дополнительные пояснения, для того, чтобы я сразу поняла, что требуется и не уточняла у вас. Присланное качественное задание моментально изучается и оценивается.

Теперь напишите мне в Telegram или почту и прикрепите задания, методички и лекции с примерами решения, и укажите сроки выполнения. Я и моя команда изучим внимательно задание и сообщим цену.

Если цена Вас устроит, то я вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Мы приступим к выполнению, соблюдая указанные сроки и требования. 80% заказов сдаются раньше срока.

После выполнения отправлю Вам заказ в чат, если у Вас будут вопросы по заказу – подробно объясню. Гарантия 1 год. В течении 1 года я и моя команда исправим любые ошибки в заказе.