Решение неполных квадратных уравнений калькулятор онлайн: Решение квадратных уравнений онлайн

Содержание

линейные, квадратные и дробные. Решение квадратных уравнений Неполные квадратные уравнения

Рассмотрим функцию y=k/y. Графиком этой функции является линия, называемая в математике гиперболой. Общий вид гиперболы, представлен на рисунке ниже. (На графике представлена функция y равно k разделить на x, у которой k равно единице.)

Видно, что график состоит из двух частей. Эти части называют ветвями гиперболы. Стоит отметить также, что каждая ветвь гиперболы подходит в одном из направлений все ближе и ближе к осям координат. Оси координат в таком случае называют асимптотами.

Вообще любые прямые линии, к которым бесконечно приближается график функции, но не достигает их, называются асимптотами. У гиперболы, как и у параболы, есть оси симметрии. Для гиперболы, представленной на рисунке выше, это прямая y=x.

Теперь разберемся с двумя общими случаями гипербол. Графиком функции y = k/x, при k ≠0, будет являться гипербола, ветви которой расположены либо в первом и третьем координатных углах, при k>0, либо во втором и четвертом координатных углах, при k

Основные свойства функции y = k/x, при k>0

График функции y = k/x, при k>0

5. y>0 при x>0; y6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Основные свойства функции y = k/x, при k

График функции y = k/x, при k

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат — асимптоты гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x0.

6. Функция возрастает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

y(x) = e x , производная которой равна самой функции.

Экспоненту обозначают так , или .

Число e

Основанием степени экспоненты является число e . Это иррациональное число. Оно примерно равно
е ≈ 2,718281828459045. ..

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел :
.

Также число e можно представить в виде ряда:
.

График экспоненты

График экспоненты, y = e x .

На графике представлена экспонента, е в степени х .
y(x) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

;
;
;

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y(x) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени

е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
— ∞ Ее множество значений:
0 .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Если говорить просто, то это овощи, приготовленные в воде по специальному рецепту.

Я буду рассматривать два исходных компонента (овощной салат и воду) и готовый результат — борщ. Геометрически это можно представить как прямоугольник, в котором одна сторона обозначает салат, вторая сторона обозначает воду. Сумма этих двух сторон будет обозначать борщ. Диагональ и площадь такого «борщевого» прямоугольника являются чисто математическими понятиями и никогда не используются в рецептах приготовления борща.


Как салат и вода превращаются в борщ с точки зрения математики? Как сумма двух отрезков может превратиться в тригонометрию? Чтобы понять это, нам понадобятся линейные угловые функции.


В учебниках математики вы ничего не найдете о линейных угловых функциях. А ведь без них не может быть математики. Законы математики, как и законы природы, работают независимо от того, знаем мы о их существовании или нет.

Линейные угловые функции — это законы сложения. Посмотрите, как алгебра превращается в геометрию, а геометрия превращается в тригонометрию.

Можно ли обойтись без линейных угловых функций? Можно, ведь математики до сих пор без них обходятся. Хитрость математиков заключается в том, что они всегда рассказывают нам только о тех задачах, которые они сами умеют решать, и никогда не рассказывают о тех задачах, которые они решать не умеют. Смотрите. Если нам известен результат сложения и одно слагаемое, для поиска другого слагаемого мы используем вычитание. Всё. Других задач мы не знаем и решать не умеем. Что делать в том случае, если нам известен только результат сложения и не известны оба слагаемые? В этом случае результат сложения нужно разложить на два слагаемых при помощи линейных угловых функций. Дальше мы уже сами выбираем, каким может быть одно слагаемое, а линейные угловые функции показывают, каким должно быть второе слагаемое, чтобы результат сложения был именно таким, какой нам нужен. Таких пар слагаемых может быть бесконечное множество. В повседневной жизни мы прекрасно обходимся без разложения суммы, нам достаточно вычитания.

А вот при научных исследованиях законов природы разложение суммы на слагаемые очень может пригодиться.

Ещё один закон сложения, о котором математики не любят говорить (ещё одна их хитрость), требует, чтобы слагаемые имели одинаковые единицы измерения. Для салата, воды и борща это могут быть единицы измерения веса, объема, стоимости или единицы измерения.

На рисунке показаны два уровня различий для математических . Первый уровень — это различия в области чисел, которые обозначены a , b , c . Это то, чем занимаются математики. Второй уровень — это различия в области единиц измерения, которые показаны в квадратных скобках и обозначены буквой

U . Этим занимаются физики. Мы же можем понимать третий уровень — различия в области описываемых объектов. Разные объекты могут иметь одинаковое количество одинаковых единиц измерения. Насколько это важно, мы можем увидеть на примере тригонометрии борща. Если мы добавим нижние индексы к одинаковому обозначению единиц измерения разных объектов, мы сможем точно говорить, какая математическая величина описывает конкретный объект и как она изменяется с течением времени или в связи с нашими действиями. Буквой W я обозначу воду, буквой S обозначу салат и буквой B — борщ. Вот как будут выглядеть линейные угловые функции для борща.

Если мы возьмем какую-то часть воды и какую-то часть салата, вместе они превратятся в одну порцию борща. Здесь я предлагаю вам немного отвлечься от борща и вспомнить далекое детство. Помните, как нас учили складывать вместе зайчиков и уточек? Нужно было найти, сколько всего зверушек получится. Что же нас тогда учили делать? Нас учили отрывать единицы измерения от чисел и складывать числа. Да, одно любое число можно сложить с другим любым числом. Это прямой путь к аутизму современной математики — мы делаем непонятно что, непонятно зачем и очень плохо понимаем, как это относится к реальности, ведь из трех уровней различия математики оперируют только одним. Более правильно будет научиться переходить от одних единиц измерения к другим.

И зайчиков, и уточек, и зверушек можно посчитать в штуках. Одна общая единица измерения для разных объектов позволяет нам сложить их вместе. Это детский вариант задачи. Давайте посмотрим на похожую задачу для взрослых. Что получится, если сложить зайчиков и деньги? Здесь можно предложить два варианта решения.

Первый вариант . Определяем рыночную стоимость зайчиков и складываем её с имеющейся денежной суммой. Мы получили общую стоимость нашего богатства в денежном эквиваленте.

Второй вариант . Можно количество зайчиков сложить с количеством имеющихся у нас денежных купюр. Мы получим количество движимого имущества в штуках.

Как видите, один и тот же закон сложения позволяет получить разные результаты. Всё зависит от того, что именно мы хотим знать.

Но вернемся к нашему борщу. Теперь мы можем посмотреть, что будет происходить при разных значениях угла линейных угловых функций.

Угол равен нулю. У нас есть салат, но нет воды. Мы не можем приготовить борщ. Количество борща также равно нулю. Это совсем не значит, что ноль борща равен нулю воды. Ноль борща может быть и при нуле салата (прямой угол).


Лично для меня, это основное математическое доказательство того факта, что . Ноль не изменяет число при сложении. Это происходит потому, что само сложение невозможно, если есть только одно слагаемое и отсутствует второе слагаемое. Вы к этому можете относиться как угодно, но помните — все математические операции с нулем придумали сами математики, поэтому отбрасывайте свою логику и тупо зубрите определения, придуманные математиками: «деление на ноль невозможно», «любое число, умноженное на ноль, равняется нулю», «за выколом точки ноль» и прочий бред. Достаточно один раз запомнить, что ноль не является числом, и у вас уже никогда не возникнет вопрос, является ноль натуральным числом или нет, потому что такой вопрос вообще лишается всякого смысла: как можно считать числом то, что числом не является. Это всё равно, что спрашивать, к какому цвету отнести невидимый цвет. Прибавлять ноль к числу — это то же самое, что красить краской, которой нет. Сухой кисточкой помахали и говорим всем, что » мы покрасили».

Но я немного отвлекся.

Угол больше нуля, но меньше сорока пяти градусов. У нас много салата, но мало воды. В результате мы получим густой борщ.

Угол равен сорок пять градусов. Мы имеем в равных количествах воду и салат. Это идеальный борщ (да простят меня повара, это просто математика).

Угол больше сорока пяти градусов, но меньше девяноста градусов. У нас много воды и мало салата. Получится жидкий борщ.

Прямой угол. У нас есть вода. От салата остались только воспоминания, поскольку угол мы продолжаем измерять от линии, которая когда-то обозначала салат. Мы не можем приготовить борщ. Количество борща равно нулю. В таком случае, держитесь и пейте воду, пока она есть)))

Вот. Как-то так. Я могу здесь рассказать и другие истории, которые будут здесь более чем уместны.

Два друга имели свои доли в общем бизнесе. После убийства одного из них, всё досталось другому.

Появление математики на нашей планете.

Все эти истории на языке математики рассказаны при помощи линейных угловых функций. Как-нибудь в другой раз я покажу вам реальное место этих функций в структуре математики. А пока, вернемся к тригонометрии борща и рассмотрим проекции.

суббота, 26 октября 2019 г.

Просмотрел интересное видио про ряд Гранди Один минус один плюс один минус один — Numberphile . Математики врут. Они не выполнили проверку равенства в ходе своих рассуждений.

Это перекликается с моими рассуждениями о .

Давайте более детально рассмотрим признаки обмана нас математиками. В самом начале рассуждений, математики говорят, что сумма последовательности ЗАВИСИТ от того, четное количество элементов в ней или нет. Это ОБЪЕКТИВНО УСТАНОВЛЕННЫЙ ФАКТ. Что происходит дальше?

Дальше математики из единицы вычитают последовательность. К чему это приводит? Это приводит к изменению количества элементов последовательности — четное количество изменяется на нечетное, нечетное изменяется на четное. Ведь мы добавили к последовательности один элемент, равный единице. Несмотря на всю внешнюю схожесть, последовательность до преобразования не равна последовательности после преобразования. Даже если мы рассуждаем о бесконечной последовательности, необходимо помнить, что бесконечная последовательность с нечетным количеством элементов не равна бесконечной последовательности с четным количеством элементов.

Ставя знак равенства между двумя разными по количеству элементов последовательностями, математики утверждают, что сумма последовательности НЕ ЗАВИСИТ от количества элементов в последовательности, что противоречит ОБЪЕКТИВНО УСТАНОВЛЕННОМУ ФАКТУ. Дальнейшие рассуждения о сумме бесконечной последовательности являются ложными, поскольку основаны на ложном равенстве.

Если вы видите, что математики в ходе доказательств расставляют скобки, переставляют местами элементы математического выражения, что-нибудь добавляют или убирают, будьте очень внимательны, скорее всего вас пытаются обмануть. Как карточные фокусники, математики различными манипуляциями с выражением отвлекают ваше внимание, чтобы в итоге подсунуть вам ложный результат. Если карточный фокус вы не можете повторить, не зная секрета обмана, то в математике всё гораздо проще: вы даже ничего не подозреваете об обмане, но повторение всех манипуляций с математическим выражением позволяет вам убедить других в правильности полученного результата, точно так же, как когда-то убедили вас.

Вопрос из зала: А бесконечность (как количество элементов в последовательности S), она четная или нечётная? Как можно поменять четность у того, что четности не имеет?

Бесконечность для математиков, как Царство Небесное для попов — никто никогда там не был, но все точно знают, как там всё устроено))) Согласен, после смерти вам будет абсолютно безразлично, четное или нечетное количество дней вы прожили, но… Добавив всего один день в начало вашей жизни, мы получим совсем другого человека: фамилия, имя и отчество у него точно такие же, только дата рождения совсем другая — он родился за один день до вас.

А теперь по существу))) Допустим, конечная последовательность, имеющая четность, теряет эту четность при переходе к бесконечности. Тогда и любой конечный отрезок бесконечной последовательности должен потерять четность. Мы этого не наблюдаем. То, что мы не можем точно сказать, четное или нечетное количество элементов у бесконечной последовательности, совсем не означает, что четность исчезла. Не может четность, если она есть, бесследно исчезнуть в бесконечности, как в рукаве шулера. Для этого случая есть очень хорошая аналогия.

Вы никогда не спрашивали у кукушки, сидящей в часах, в каком направлении вращается стрелка часов? Для неё стрелка вращается в обратном направлении тому, которое мы называем «по часовой стрелке». Как это не парадоксально звучит, но направление вращения зависит исключительно от того, с какой стороны мы вращение наблюдаем. И так, у нас есть одно колесо, которое вращается. Мы не можем сказать, в каком направлении происходит вращение, поскольку мы его можем наблюдать как с одной стороны плоскости вращения, так и с другой. Мы можем только засвидетельствовать факт, что вращение есть. Полная аналогия с четностью бесконечной последовательности S .

Теперь добавим второе вращающееся колесо, плоскость вращения которого параллельна плоскости вращения первого вращающегося колеса. Мы по прежнему не можем точно сказать, в каком направлении вращаются эти колеса, но мы абсолютно точно можем сказать, вращаются оба колеса в одну сторону или в противоположные. Сравнивая две бесконечные последовательности S и 1-S , я при помощи математики показал, что у этих последовательностей разная четность и ставить знак равенства между ними — это ошибка. Лично я верю математике, я не доверяю математикам))) Кстати, для полного понимания геометрии преобразований бесконечных последовательностей, необходимо вводить понятие «одновременность» . Это нужно будет нарисовать.

среда, 7 августа 2019 г.

Завершая разговор о , нужно рассмотреть бесконечное множество. Дало в том, что понятие «бесконечность» действует на математиков, как удав на кролика. Трепетный ужас перед бесконечностью лишает математиков здравого смысла. Вот пример:

Первоисточник находится . Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:

Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда «дуракам закон не писан». Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.

Что же такое «бесконечная гостиница»? Бесконечная гостиница — это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре «для посетителей» заняты, есть другой бесконечный коридор с номерами «для гостей». Таких коридоров будет бесконечное множество. При этом у «бесконечной гостиницы» бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда — всегда только один, гостиница — она одна, коридор — только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно «впихнуть невпихуемое».

Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует — одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.

Вариант первый. «Пусть нам дано» одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:

Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.

Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю — РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:

Нижние индексы «один» и «два» указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.

Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.

Вы можете принимать или не принимать мои рассуждения — это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).

pozg.ru

воскресенье, 4 августа 2019 г.

Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:

Читаем: «… богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы.»

Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:

Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.

За подтверждением своих слов я далеко ходить не буду — имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.

суббота, 3 августа 2019 г.

Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.

Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку «люди» Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения «половой признак» и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество «люди» превратилось в множество «люди с половыми признаками». После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой — мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет — умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.

После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат — «множество людей состоит из подмножества мужчин и подмножества женщин». Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.

Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.

Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как «правильно» применять их «знания». Этим «знаниям» они обучают нас.

В заключение, я хочу показать вам, как математики манипулируют с
Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт… Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что «… дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось… к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса… » [Википедия, » Апории Зенона «]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие «бесконечность» в этой ситуации, то правильно будет говорить «Ахиллес бесконечно быстро догонит черепаху».

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию «Ахиллес и черепаха» очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто — достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве — это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.
Покажу процесс на примере. Отбираем «красное твердое в пупырышку» — это наше «целое». При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть «целого» и формируем множество «с бантиком». Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.

А теперь сделаем маленькую пакость. Возьмем «твердое в пупырышку с бантиком» и объединим эти «целые» по цветовому признаку, отобрав красные элементы. Мы получили множество «красное». Теперь вопрос на засыпку: полученные множества «с бантиком» и «красное» — это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.

Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество «красное твердое в пупырышку с бантиком». Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.

Буква «а» с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется «целое» на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат — элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут «интуитивно» придти к такому же результату, аргументируя его «очевидностью», ведь единицы измерения не входят в их «научный» арсенал.

При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a )

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

Что если дискриминант отрицательный.

Калькулятор онлайн

Важно! В корнях четной кратности функция знак не меняет.

Обратите внимание! Любое нелинейное неравенство школьного курса алгебры нужно решать с помощью метода интервалов.

Предлагаю вам подробный алгоритм решения неравенств методом интервалов , следуя которому вы сможете избежать ошибок прирешении нелинейных неравенств .

Решение квадратных уравнений с отрицательными дискриминантами

Как мы знаем,

i 2 = — 1.

Вместе с тем

(- i ) 2 = (- 1 i ) 2 = (- 1) 2 i 2 = -1.

Таким образом, существуют по крайней мере два значения корня квадратного из — 1, а именно i и — i . Но, может быть, есть еще какие-нибудь комплексные числа, квадраты которых равны — 1?

Чтобы выяснить этот вопрос, предположим, что квадрат комплексного числа а + bi равен — 1. Тогда

(а + bi ) 2 = — 1,

а 2 + 2аbi b 2 = — 1

Два комплексных числа равны тогда и только тогда, когда равны их действительные части и коэффициенты при мнимых частях. Поэтому

{ а 2 — b 2 = — 1 ab = 0 (1)

Согласно второму уравнению системы (1) хотя бы одно из чисел а и b должно равняться нулю. Если b = 0, то из первого уравнения получается а 2 = — 1. Число а действительное, и поэтому а 2 > 0. Неотрицательное число а 2 не может равняться отрицательному числу — 1. Поэтому равенство b = 0 в данном случае невозможно. Остается признать, что а = 0, но тогда из первого уравнения системы получаем: —b 2 = — 1, b = ± 1.

Следовательно, комплексными числами, квадраты которых равны -1, являются только числа i и —i , Условно это записывается в виде:

√-1 = ± i .

Аналогичными рассуждениями учащиеся могут убедиться в том, что существует ровно два числа, квадраты которых равны отрицательному числу —а . Такими числами являются √ai и -√ai . Условно это записывается так:

— а = ± √ai .

Под √a здесь подразумевается арифметический, то есть положительный, корень. Например, √4 = 2, √9 =.3; поэтому

√-4 = + 2i , √-9= ± 3i

Если раньше при рассмотрении квадратных уравнений с отрицательными дискриминантами мы говорили, что такие уравнения не имеют корней, то теперь так говорить уже нельзя. Квадратные уравнения с отрицательными дискриминантами имеют комплексные корни. Эти корни получаются по известным нам формулам. Пусть, например, дано уравнение x 2 + 2х + 5 = 0; тогда

х 1,2 = — 1 ± √1 -5 = — 1 ± √-4 = — 1 ± 2i .

Итак, данное уравнение имеет два корня: х 1 = — 1 +2i , х 2 = — 1 — 2i . Эти корни являются взаимно сопряженными. Интересно отметить, что сумма их равна — 2, а произведение 5, так что выполняется теорема Виета.

Понятие комплексного числа

Комплексным числом называется выражение вида a + ib , где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:

  1. Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
    a = b и c = d .
  2. Суммой двух комплексных чисел a + ib и c + id называется комплексное число
    a + c + i (b + d).
  3. Произведением двух комплексных чисел a + ib и c + id называется комплексное число
    ac – bd + i (ad + bc).

Комплексные числа часто обозначают одной буквой, например, z = a + ib . Действительное число a называется действительной частью комплексного числа z , действительная часть обозначается a = Re z . Действительное число b называется мнимой частью комплексного числа z , мнимая часть обозначается b = Im z . Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,

Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi , например, 0 + i 3 = 3 i . Чисто мнимое число i1 = 1 i = i обладает удивительным свойством:
Таким образом,

№ 4 .1. В математике числовая функция — это функция, области определения и значений которой являются подмножествами числовых множеств — как правило, множествавещественных чисел или множества комплексных чисел .

График функции

Фрагмент графика функции

Способы задания функции

[править]Аналитический способ

Обычно функция задаётся с помощью формулы, в которую входят переменные, операции и элементарные функции. Возможно, кусочное задание, то есть различное для различных значений аргумента.

[править]Табличный способ

Функцию можно задать, перечислив все её возможные аргументы и значения для них. После этого, если это необходимо, функцию можно доопределить для аргументов, которых нет в таблице, путём интерполяции или экстраполяции. Примерами могут служить программа передач, расписание поездов или таблица значений булевой функции:

[править]Графический способ

Осциллограмма задаёт значение некоторой функции графически.

Функцию можно задать графически, отобразив множество точек её графика на плоскости. Это может быть приблизительный набросок, как должна выглядеть функция, или показания, снятые с прибора, например, с осциллографа. Этот способ задания может страдать от недостатка точности, однако в некоторых случаях другие способы задания вообще не могут быть применены. Кроме того, такой способ задания один из самых презентативных, удобных для восприятия и качественного эвристического анализа функции.

[править]Рекурсивный способ

Функция может быть задана рекурсивно, то есть через саму себя. В этом случае одни значения функции определяются через другие её значения.

  • факториал;
  • числа Фибоначчи;
  • функция Аккермана.

[править]Словесный способ

Функцию можно описать словами на естественном языке каким-либо однозначным способом, например, описав её входные и выходные значения, или алгоритм, с помощью которого функция задаёт соответствия между этими значениями. Наряду с графическим способом, иногда это единственный способ описать функцию, хотя естественные языки и не столь детерминированы, как формальные.

  • функция, возвращающая цифру в записи числа пи по её номеру;
  • функция, возвращающая число атомов во вселенной в определённый момент времени;
  • функция, принимающая в качестве аргумента человека, и возвращающая число людей, которое родится на свет после его рождени

В современном обществе умение производить действия с уравнениями, содержащими переменную, возведённую в квадрат, может пригодиться во многих областях деятельности и широко применяется на практике в научных и технических разработках. Свидетельством тому может служить конструирование морских и речных судов, самолётов и ракет. При помощи подобных расчётов определяют траектории перемещения самых разных тел, в том числе и космических объектов. Примеры с решением квадратных уравнений находят применение не только в экономическом прогнозировании, при проектировании и строительстве зданий, но и в самых обычных житейских обстоятельствах. Они могут понадобиться в туристических походах, на спортивных состязаниях, в магазинах при совершении покупок и в других весьма распространённых ситуациях.

Разобьём выражение на составляющие множители

Степень уравнения определяется максимальным значением степени у переменной, которую содержит данное выражение. В случае, если она равна 2, то подобное уравнение как раз и называется квадратным.

Если изъясняться языком формул, то указанные выражения, как бы они ни выглядели, всегда можно привести к виду, когда левая часть выражения состоит из трёх слагаемых. Среди них: ax 2 (то есть переменная, возведённая в квадрат со своим коэффициентом), bx (неизвестное без квадрата со своим коэффициентом) и c (свободная составляющая, то есть обычное число). Всё это в правой части приравнивается 0. В случае, когда у подобного многочлена отсутствует одно из его составляющих слагаемых, за исключением ax 2 , оно называется неполным квадратным уравнением. Примеры с решением таких задач, значение переменных в которых найти несложно, следует рассмотреть в первую очередь.

Если выражение на вид выглядит таким образом, что слагаемых у выражения в правой части два, точнее ax 2 и bx, легче всего отыскать х вынесением переменной за скобки. Теперь наше уравнение будет выглядеть так: x(ax+b). Далее становится очевидно, что или х=0, или задача сводится к нахождению переменной из следующего выражения: ax+b=0. Указанное продиктовано одним из свойств умножения. Правило гласит, что произведение двух множителей даёт в результате 0, только если один из них равен нулю.

Пример

x=0 или 8х — 3 = 0

В результате получаем два корня уравнения: 0 и 0,375.

Уравнения такого рода могут описывать перемещение тел под действием силы тяжести, начавших движение из определённой точки, принятой за начало координат. Здесь математическая запись принимает следующую форму: y = v 0 t + gt 2 /2. Подставив необходимые значения, приравняв правую часть 0 и найдя возможные неизвестные, можно узнать время, проходящее с момента подъёма тела до момента его падения, а также многие другие величины. Но об этом мы поговорим позднее.

Разложение выражения на множители

Описанное выше правило даёт возможность решать указанные задачи и в более сложных случаях. Рассмотрим примеры с решением квадратных уравнений такого типа.

X 2 — 33x + 200 = 0

Этот квадратный трёхчлен является полным. Для начала преобразуем выражение и разложим его на множители. Их получается два: (x-8) и (x-25) = 0. В результате имеем два корня 8 и 25.

Примеры с решением квадратных уравнений в 9 классе позволяют данным методом находить переменную в выражениях не только второго, но даже третьего и четвёртого порядков.

Например: 2x 3 + 2x 2 — 18x — 18 = 0. При разложении правой части на множители с переменной, их получается три, то есть (x+1),(x-3) и (x+3).

В результате становится очевидно, что данное уравнение имеет три корня: -3; -1; 3.

Извлечение квадратного корня

Другим случаем неполного уравнения второго порядка является выражение, на языке букв представленное таким образом, что правая часть строится из составляющих ax 2 и c. Здесь для получения значения переменной свободный член переносится в правую сторону, а после этого из обеих частей равенства извлекается квадратный корень. Следует обратить внимание, что и в данном случае корней уравнения обычно бывает два. Исключением могут служить лишь только равенства, вообще не содержащие слагаемое с, где переменная равна нулю, а также варианты выражений, когда правая часть оказывается отрицательной. В последнем случае решений вообще не существует, так как указанные выше действия невозможно производить с корнями. Примеры решений квадратных уравнений такого типа необходимо рассмотреть.

В данном случае корнями уравнения окажутся числа -4 и 4.

Вычисление пощади земельного участка

Потребность в подобного рода вычислениях появилась в глубокой древности, ведь развитие математики во многом в те далёкие времена было обусловлено необходимостью определять с наибольшей точностью площади и периметры земельных участков.

Примеры с решением квадратных уравнений, составленных на основе задач такого рода, следует рассмотреть и нам.

Итак, допустим имеется прямоугольный участок земли, длина которого на 16 метров больше, чем ширина. Следует найти длину, ширину и периметр участка, если известно, что его площадь равна 612 м 2 .

Приступая к делу, сначала составим необходимое уравнение. Обозначим за х ширину участка, тогда его длина окажется (х+16). Из написанного следует, что площадь определяется выражением х(х+16), что, согласно условию нашей задачи, составляет 612. Это значит, что х(х+16) = 612.

Решение полных квадратных уравнений, а данное выражение является именно таковым, не может производиться прежним способом. Почему? Хотя левая часть его по-прежнему содержит два множителя, произведение их совсем не равно 0, поэтому здесь применяются другие методы.

Дискриминант

Прежде всего произведём необходимые преобразования, тогда внешний вид данного выражения будет выглядеть таким образом: x 2 + 16x — 612 = 0. Это значит, мы получили выражение в форме, соответствующей указанному ранее стандарту, где a=1, b=16, c=-612.

Это может стать примером решения квадратных уравнений через дискриминант. Здесь необходимые расчёты производятся по схеме: D = b 2 — 4ac. Данная вспомогательная величина не просто даёт возможность найти искомые величины в уравнении второго порядка, она определяет количество возможных вариантов. В случае, если D>0, их два; при D=0 существует один корень. В случае, если D

О корнях и их формуле

В нашем случае дискриминант равен: 256 — 4(-612) = 2704. Это говорит о том, что ответ у нашей задачи существует. Если знать, к , решение квадратных уравнений нужно продолжать с применением ниже приведённой формулы. Она позволяет вычислить корни.

Это значит, что в представленном случае: x 1 =18, x 2 =-34. Второй вариант в данной дилемме не может являться решением, потому что размеры земельного участка не могут измеряться в отрицательных величинах, значит х (то есть ширина участка) равна 18 м. Отсюда вычисляем длину: 18+16=34, и периметр 2(34+18)=104(м 2).

Примеры и задачи

Продолжаем изучение квадратных уравнений. Примеры и подробное решение нескольких из них будут приведены далее.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Перенесём всё в левую часть равенства, сделаем преобразование, то есть получим вид уравнения, который принято именовать стандартным, и приравняем его нулю.

15x 2 + 20x + 5 — 12x 2 — 27x — 1 = 0

Сложив подобные, определим дискриминант: D = 49 — 48 = 1. Значит у нашего уравнения будет два корня. Вычислим их согласно приведённой выше формуле, а это значит, что первый из них буде равен 4/3, а второй 1.

2) Теперь раскроем загадки другого рода.

Выясним, есть ли вообще здесь корни x 2 — 4x + 5 = 1? Для получения исчерпывающего ответа приведём многочлен к соответствующему привычному виду и вычислим дискриминант. В указанном примере решение квадратного уравнения производить не обязательно, ведь суть задачи заключается совсем не в этом. В данном случае D = 16 — 20 = -4, а значит, корней действительно нет.

Теорема Виета

Квадратные уравнения удобно решать через указанные выше формулы и дискриминант, когда из значения последнего извлекается квадратный корень. Но это бывает не всегда. Однако способов для получения значений переменных в данном случае существует множество. Пример: решения квадратных уравнений по теореме Виета. Она названа в честь который жил в XVI веке во Франции и сделал блестящую карьеру благодаря своему математическому таланту и связям при дворе. Портрет его можно увидеть в статье.

Закономерность, которую заметил прославленный француз, заключалась в следующем. Он доказал, что корни уравнения в сумме численно равны -p=b/a, а их произведение соответствует q=c/a.

Теперь рассмотрим конкретные задачи.

3x 2 + 21x — 54 = 0

Для простоты преобразуем выражение:

x 2 + 7x — 18 = 0

Воспользуемся теоремой Виета, это даст нам следующее: сумма корней равна -7, а их произведение -18. Отсюда получим, что корнями уравнения являются числа -9 и 2. Сделав проверку, убедимся, что эти значения переменных действительно подходят в выражение.

График и уравнение параболы

Понятия квадратичная функция и квадратные уравнения тесно связаны. Примеры подобного уже были приведены ранее. Теперь рассмотрим некоторые математические загадки немного подробнее. Любое уравнение описываемого типа можно представить наглядно. Подобная зависимость, нарисованная в виде графика, называется параболой. Различные её виды представлены на рисунке ниже.

Любая парабола имеет вершину, то есть точку, из которой выходят её ветви. В случае если a>0, они уходят высоко в бесконечность, а когда a

Наглядные изображения функций помогают решать любые уравнения, в том числе и квадратные. Этот метод называется графическим. А значением переменной х является координата абсцисс в точках, где происходит пересечение линии графика с 0x. Координаты вершины можно узнать по только что приведённой формуле x 0 = -b/2a. И, подставив полученное значение в изначальное уравнение функции, можно узнать y 0 , то есть вторую координату вершины параболы, принадлежащую оси ординат.

Пересечение ветвей параболы с осью абсцисс

Примеров с решением квадратных уравнений очень много, но существуют и общие закономерности. Рассмотрим их. Понятно, что пересечение графика с осью 0x при a>0 возможно только если у 0 принимает отрицательные значения. А для a0. В противном случае D

По графику параболы можно определить и корни. Верно также обратное. То есть если получить наглядное изображение квадратичной функции нелегко, можно приравнять правую часть выражения к 0 и решить полученное уравнение. А зная точки пересечения с осью 0x, легче построить график.

Из истории

С помощью уравнений, содержащих переменную, возведённую в квадрат, в старину не только делали математические расчёты и определяли площади геометрических фигур. Подобные вычисления древним были нужны для грандиозных открытий в области физики и астрономии, а также для составления астрологических прогнозов.

Как предполагают современные деятели науки, одними из первых решением квадратных уравнений занялись жители Вавилона. Произошло это за четыре столетия до наступления нашей эры. Разумеется, их вычисления в корне отличались от ныне принятых и оказывались гораздо примитивней. К примеру, месопотамские математики понятия не имели о существовании отрицательных чисел. Незнакомы им были также другие тонкости из тех, которые знает любой школьник современности.

Возможно, ещё раньше учёных Вавилона решением квадратных уравнений занялся мудрец из Индии Баудхаяма. Произошло это примерно за восемь столетий до наступления эры Христа. Правда, уравнения второго порядка, способы решения которых он привёл, были самыми наипростейшими. Кроме него, подобными вопросами интересовались в старину и китайские математики. В Европе квадратные уравнения начали решать лишь в начале XIII столетия, но зато позднее их использовали в своих работах такие великие учёные, как Ньютон, Декарт и многие другие. 2 + j * w + k равный 0, где «i» и «j» — первый и второй коэффициент соответственно, «k» — константа, которую иногда именуют «свободным членом», а «w» — переменная. Его корнями окажутся все значения переменной, при которых оно превращается в тождество. Такое равенство допустимо переписать, как произведение i, (w — w1) и (w — w2) равное 0. В этом случае очевидно, что если коэффициент «i» не обращается в ноль, то функция в левой части станет нулевой только в случае, если x принимает значение w1 или w2. Эти значения являются результатом приравнивания многочлена к нулю.

Для нахождения значения переменной, при котором квадратный многочлен обращается в ноль, используется вспомогательная конструкция, построенная на его коэффициентах и названная дискриминантом. Эта конструкция рассчитывается согласно формуле D равняется j * j — 4 * i * k. Зачем она используется?

  1. Она говорит, имеются ли действительные результаты.
  2. Она помогает их высчитать.

Как это значение показывает наличие вещественных корней:

  • Если оно положительное, то можно найти два корня в области действительных чисел. (1/2).
  • Нахождение результата в соответствии с формулой (-j +/- d) / (2 * i).
  • Подстановка полученного результата в исходное равенство для проверки.
  • Некоторые частные случаи

    В зависимости от коэффициентов решение может несколько упрощаться. Очевидно, что если коэффициент перед переменной во второй степени равен нулю, то получается линейное равенство. Когда коэффициент перед переменной в первой степени нулевой, то возможны два варианта:

    1. многочлен раскладывается в разность квадратов при отрицательном свободном члене;
    2. при положительной константе действительных решений найти нельзя.

    Если свободный член нулевой, то корни будут {0; -j}

    Но есть и другие частные случаи, упрощающие нахождение решения.

    Приведенное уравнение второй степени

    Приведенным именуют такой квадратный трёхчлен, где коэффициент перед старшим членом — единица. Для данной ситуации применима теорема Виета, гласящая, что сумма корней равняется коэффициенту при переменной в первой степени, помноженному на -1, а произведение соответствует константе «k». 2 + 18 * i * j * k * m.

    Допустим, дискриминант превосходит ноль . Это значит, что имеется три корня в области действительных чисел. При нулевом есть кратные решения. Если D отрицательное значение при возведении в квадрат, а также один корень — вещественный.

    Видео

    Наше видео подробно расскажет о вычислении дискриминанта.

    Не получили ответ на свой вопрос? Предложите авторам тему.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень…»
    И для тех, кто «очень даже…»)

    Виды квадратных уравнений

    Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является «квадратное». Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.

    Говоря математическим языком, квадратное уравнение — это уравнение вида:

    Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:

    Здесь а =1; b = 3; c = -4

    Здесь а =2; b = -0,5; c = 2,2

    Здесь а =-3; b = 6; c = -18

    Ну, вы поняли…

    В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.

    Такие квадратные уравнения называются полными.

    А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается.) Получается, например:

    5х 2 -25 = 0,

    2х 2 -6х=0,

    -х 2 +4х=0

    И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:

    2х 2 =0,

    -0,3х 2 =0

    Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

    Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе…

    Вот и все главные виды квадратных уравнений. Полные и неполные.

    Решение квадратных уравнений.

    Решение полных квадратных уравнений.

    Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

    Если уравнение вам дано уже в таком виде — первый этап делать не нужно.) Главное — правильно определить все коэффициенты, а , b и c .

    Формула для нахождения корней квадратного уравнения выглядит так:

    Выражение под знаком корня называется дискриминант . Но о нём — ниже. Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:

    а =1; b = 3; c = -4. Вот и записываем:

    Пример практически решён:

    Это ответ.

    Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

    Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

    Предположим, надо вот такой примерчик решить:

    Здесь a = -6; b = -5; c = -1

    Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

    Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

    Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

    Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

    Узнали?) Да! Это неполные квадратные уравнения .

    Решение неполных квадратных уравнений.

    Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с .

    Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

    Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

    И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
    Не получается? То-то…
    Следовательно, можно уверенно записать: х 1 = 0 , х 2 = 4 .

    Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым — абсолютно безразлично. Удобно записывать по порядочку, х 1 — то, что меньше, а х 2 — то, что больше.

    Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

    Остаётся корень извлечь из 9, и всё. Получится:

    Тоже два корня. х 1 = -3 , х 2 = 3 .

    Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
    Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

    Дискриминант. Формула дискриминанта.

    Волшебное слово дискриминант ! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:

    Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D . Формула дискриминанта:

    D = b 2 — 4ac

    И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют… Буквы и буквы.

    Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

    1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

    2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых . Но, в упрощённом варианте, принято говорить об одном решении.

    3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

    Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно — в уравнениях с параметрами. Такие уравнения — высший пилотаж на ГИА и ЕГЭ!)

    Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

    А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности. … За которые потом бывает больно и обидно…

    Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
    Допустим, после всяких преобразований вы получили вот такое уравнение:

    Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

    И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

    А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

    Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку.

    Если получилось — надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
    Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

    Приём третий . Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке «Как решать уравнения? Тождественные преобразования». При работе с дробями ошибки, почему-то так и лезут…

    Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

    Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

    Вот и всё! Решать – одно удовольствие!

    Итак, подытожим тему.

    Практические советы:

    1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

    2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

    3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

    4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

    Теперь можно и порешать.)

    Решить уравнения:

    8х 2 — 6x + 1 = 0

    х 2 + 3x + 8 = 0

    х 2 — 4x + 4 = 0

    (х+1) 2 + x + 1 = (x+1)(x+2)

    Ответы (в беспорядке):

    х 1 = 0
    х 2 = 5

    х 1,2 = 2

    х 1 = 2
    х 2 = -0,5

    х — любое число

    х 1 = -3
    х 2 = 3

    решений нет

    х 1 = 0,25
    х 2 = 0,5

    Всё сходится? Отлично! Квадратные уравнения — не ваша головная боль. Первые три получились, а остальные — нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

    Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    Среди всего курса школьной программы алгебры одной из самых объемных тем является тема о квадратных уравнениях. При этом под квадратным уравнением понимается уравнение вида ax 2 + bx + c = 0, где a ≠ 0 (читается: а умножить на икс в квадрате плюс бэ икс плюс цэ равно нулю, где а неравно нулю). При этом основное место занимают формулы нахождения дискриминанта квадратного уравнения указанного вида, под которым понимается выражение, позволяющее определить наличие или отсутствие корней у квадратного уравнения, а также их количество (при наличии).

    Формула (уравнение) дискриминанта квадратного уравнения

    Общепринятая формула дискриминанта квадратного уравнения выглядит следующим образом: D = b 2 – 4ac. Вычисляя дискриминант по указанной формуле, можно не только определить наличие и количество корней у квадратного уравнения, но и выбрать способ нахождения этих корней, которых существует несколько в зависимости от типа квадратного уравнения.

    Что значит если дискриминант равен нулю \ Формула корней квадратного уравнения если дискриминант равен нулю

    Дискриминант, как следует из формулы, обозначается латинской буквой D. В случае, когда дискриминант равен нулю, следует сделать вывод, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, имеет только один корень, который вычисляется по упрощенной формуле. Данная формула применяется только при нулевом дискриминанте и выглядит следующим образом: x = –b/2a, где х – корень квадратного уравнения, b и а – соответствующие переменные квадратного уравнения. Для нахождения корня квадратного уравнения необходимо отрицательное значение переменной b разделить на удвоенное значение переменной а. Полученной выражение будет решением квадратного уравнения.

    Решение квадратного уравнения через дискриминант

    Если при вычислении дискриминанта по вышеприведенной формуле получается положительное значение (D больше нуля), то квадратное уравнение имеет два корня, которые вычисляются по следующим формулам: x 1 = (–b + vD)/2a, x 2 = (–b – vD)/2a. Чаще всего, дискриминант отдельно не высчитывается, а в значение D, из которого извлекается корень, просто подставляется подкоренное выражение в виде формулы дискриминанта. Если переменная b имеет четное значение, то для вычисления корней квадратного уравнения вида ax 2 + bx + c = 0, где a ≠ 0, можно также использовать следующие формулы: x 1 = (–k + v(k2 – ac))/a, x 2 = (–k + v(k2 – ac))/a, где k = b/2.

    В некоторых случаях для практического решения квадратных уравнений можно использовать Теорему Виета, которая гласит, что для суммы корней квадратного уравнения вида x 2 + px + q = 0 будет справедливо значение x 1 + x 2 = –p, а для произведения корней указанного уравнения – выражение x 1 x x 2 = q.

    Может ли дискриминант быть меньше нуля

    При вычислении значения дискриминанта можно столкнуться с ситуацией, которая не попадает ни под один из описанных случаев – когда дискриминант имеет отрицательное значение (то есть меньше нуля). В этом случае принято считать, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, действительных корней не имеет, следовательно, его решение будет ограничиваться вычислением дискриминанта, а приводимые выше формулы корней квадратного уравнения в данном случае применяться не будут. При этом в ответе к квадратному уравнению записывается, что «уравнение действительных корней не имеет».

    Поясняющее видео:

    Как решать квадратное уравнение.

    Калькулятор онлайн

    Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


    Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

    Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

    Квадратное уравнение – это уравнение вида:

    где коэффициенты a, b и с произвольные числа, при чём a≠0.

    В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

    1. Имеют два корня.

    2. *Имеют только один корень.

    3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

    Как вычисляются корни? Просто!

    Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

    Формулы корней имеют следующий вид:

    *Эти формулы нужно знать наизусть.

    Можно сразу записывать и решать:

    Пример:


    1. Если D > 0, то уравнение имеет два корня.

    2. Если D = 0, то уравнение имеет один корень.

    3. Если D

    Давайте рассмотрим уравнение:


    По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

    Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

    х 1 = 3 х 2 = 3

    Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

    Теперь следующий пример:


    Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

    Вот и весь процесс решения.

    Квадратичная функция.

    Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

    Это функция вида:

    где х и у — переменные

    a, b, с – заданные числа, при чём a ≠ 0

    Графиком является парабола:

    То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

    Рассмотрим примеры:

    Пример 1: Решить 2x 2 +8 x –192=0

    а=2 b=8 c= –192

    D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

    Ответ: х 1 = 8 х 2 = –12

    *Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

    Пример 2: Решить x 2 –22 x+121 = 0

    а=1 b=–22 c=121

    D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

    Получили, что х 1 = 11 и х 2 = 11

    В ответе допустимо записать х = 11.

    Ответ: х = 11

    Пример 3: Решить x 2 –8x+72 = 0

    а=1 b= –8 c=72

    D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

    Дискриминант отрицательный, решения в действительных числах нет.

    Ответ: решения нет

    Дискриминант отрицательный. Решение есть!

    Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

    Понятие комплексного числа.

    Немного теории.

    Комплексным числом z называется число вида

    z = a + bi

    где a и b – действительные числа, i – так называемая мнимая единица.

    a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

    Мнимая единица равна корню из минус единицы:

    Теперь рассмотрим уравнение:


    Получили два сопряжённых корня.

    Неполное квадратное уравнение.

    Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

    Случай 1. Коэффициент b = 0.

    Уравнение приобретает вид:

    Преобразуем:

    Пример:

    4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

    Случай 2. Коэффициент с = 0.

    Уравнение приобретает вид:

    Преобразуем, раскладываем на множители:

    *Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

    Пример:

    9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

    x 1 = 0 x 2 = 5

    Случай 3. Коэффициенты b = 0 и c = 0.

    Здесь понятно, что решением уравнения всегда будет х = 0.

    Полезные свойства и закономерности коэффициентов.

    Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

    а x 2 + bx + c =0 выполняется равенство

    a + b + с = 0, то

    — если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

    a + с = b , то

    Данные свойства помогают решить определённого вида уравнения.

    Пример 1: 5001 x 2 –4995 x – 6=0

    Сумма коэффициентов равна 5001+( 4995)+( 6) = 0, значит

    Пример 2: 2501 x 2 +2507 x +6=0

    Выполняется равенство a + с = b , значит

    Закономерности коэффициентов.

    1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

    аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

    Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

    х 1 = –6 х 2 = –1/6.

    2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

    аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

    Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

    х 1 = 15 х 2 = 1/15.

    3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

    аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

    Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

    х 1 = – 17 х 2 = 1/17.

    4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

    аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

    Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

    х 1 = 10 х 2 = – 1/10

    Теорема Виета.

    Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

    45 = 1∙45 45 = 3∙15 45 = 5∙9.

    В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

    Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

    СПОСОБ ПЕРЕБРОСКИ

    При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Если а ± b+c ≠ 0, то используется прием переброски, например:

    2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

    По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

    Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

    х 1 = 5 х 2 = 0,5.

    Каково обоснование? Посмотрите что происходит.

    Дискриминанты уравнений (1) и (2) равны:

    Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


    У второго (изменённого) корни получаются в 2 раза больше.

    Потому результат и делим на 2.

    *Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

    Ответ: х 1 = 5 х 2 = 0,5

    Кв. ур-ие и ЕГЭ.

    О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

    Что стоит отметить!

    1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

    15+ 9x 2 — 45x = 0 или 15х+42+9x 2 — 45x=0 или 15 -5x+10x 2 = 0.

    Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

    2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

    Просто. По формулам и чётким несложным правилам. На первом этапе

    надо заданное уравнение привести к стандартному виду, т.е. к виду:

    Если уравнение вам дано уже в таком виде — первый этап делать не нужно. Самое главное — правильно

    определить все коэффициенты, а , b и c .

    Формула для нахождения корней квадратного уравнения.

    Выражение под знаком корня называется дискриминант . Как видим, для нахождения икса, мы

    используем только a, b и с . Т.е. коэффициенты из квадратного уравнения . Просто аккуратно подставляем

    значения a, b и с в эту формулу и считаем. Подставляем со своими знаками!

    Например , в уравнении:

    а =1; b = 3; c = -4.

    Подставляем значения и записываем:

    Пример практически решён:

    Это ответ.

    Самые распространённые ошибки — путаница со знаками значений a, b и с . Вернее, с подстановкой

    отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы

    с конкретными числами. Если есть проблемы с вычислениями, так и делайте!

    Предположим, надо вот такой пример решить:

    Здесь a = -6; b = -5; c = -1

    Расписываем все подробно, внимательно, ничего не упуская со всеми знаками и скобками:

    Часто квадратные уравнения выглядят слегка иначе. Например, вот так:

    А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок.

    Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду.

    Что это означает?

    Допустим, после всяких преобразований вы получили вот такое уравнение:

    Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с.

    Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

    Избавьтесь от минуса. Как? Надо умножить всё уравнение на -1. Получим:

    А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример.

    Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

    Приём второй. Проверяйте корни! По теореме Виета .

    Для решения приведённых квадратных уравнений, т.е. если коэффициент

    x 2 +bx+c=0,

    тогда x 1 x 2 =c

    x 1 +x 2 =− b

    Для полного квадратного уравнения, в котором a≠1 :

    x 2 + b x+ c =0,

    делим все уравнение на а:

    → →

    где x 1 и x 2 — корни уравнения.

    Приём третий . Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте

    уравнение на общий знаменатель.

    Вывод. Практические советы:

    1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

    2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего

    уравнения на -1.

    3. Если коэффициенты дробные — ликвидируем дроби умножением всего уравнения на соответствующий

    множитель.

    4. Если икс в квадрате — чистый, коэффициент при нём равен единице, решение можно легко проверить по

    », то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

    Что называют квадратным уравнением

    Важно!

    Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

    Если максимальная степень, в которой стоит неизвестное — «2 », значит, перед вами квадратное уравнение.

    Примеры квадратных уравнений

    • 5x 2 − 14x + 17 = 0
    • −x 2 + x + = 0
    • x 2 + 0,25x = 0
    • x 2 − 8 = 0

    Важно! Общий вид квадратного уравнения выглядит так:

    A x 2 + b x + c = 0

    «a », «b » и «c » — заданные числа.
    • «a » — первый или старший коэффициент;
    • «b » — второй коэффициент;
    • «c » — свободный член.

    Чтобы найти «a », «b » и «c » нужно сравнить свое уравнение с общим видом квадратного уравнения «ax 2 + bx + c = 0 ».

    Давайте потренируемся определять коэффициенты «a », «b » и «c » в квадратных уравнениях.

    5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x + = 0 x 2 + 0,25x = 0
    Уравнение Коэффициенты
    • a = −7
    • b = −13
    • с = 8
    x 2 − 8 = 0

    Как решать квадратные уравнения

    В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

    Запомните!

    Чтобы решить квадратное уравнение нужно:

    • привести квадратное уравнение к общему виду «ax 2 + bx + c = 0 ». То есть в правой части должен остаться только «0 »;
    • использовать формулу для корней:

    Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

    X 2 − 3x − 4 = 0

    Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду «ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

    Определим коэффициенты «a », «b » и «c » для этого уравнения.


    x 1;2 =
    x 1;2 =
    x 1;2 =
    x 1;2 =

    С её помощью решается любое квадратное уравнение.

    В формуле «x 1;2 = » часто заменяют подкоренное выражение
    «b 2 − 4ac » на букву «D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант ».

    Рассмотрим другой пример квадратного уравнения.

    x 2 + 9 + x = 7x

    В данном виде определить коэффициенты «a », «b » и «c » довольно сложно. Давайте вначале приведем уравнение к общему виду «ax 2 + bx + c = 0 ».

    X 2 + 9 + x = 7x
    x 2 + 9 + x − 7x = 0
    x 2 + 9 − 6x = 0
    x 2 − 6x + 9 = 0

    Теперь можно использовать формулу для корней.

    X 1;2 =
    x 1;2 =
    x 1;2 =
    x 1;2 =
    x =


    x = 3
    Ответ: x = 3

    Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень…»
    И для тех, кто «очень даже…»)

    Виды квадратных уравнений

    Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является «квадратное». Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.

    Говоря математическим языком, квадратное уравнение — это уравнение вида:

    Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:

    Здесь а =1; b = 3; c = -4

    Здесь а =2; b = -0,5; c = 2,2

    Здесь а =-3; b = 6; c = -18

    Ну, вы поняли…

    В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.

    Такие квадратные уравнения называются полными.

    А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается. ) Получается, например:

    5х 2 -25 = 0,

    2х 2 -6х=0,

    -х 2 +4х=0

    И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:

    2х 2 =0,

    -0,3х 2 =0

    Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

    Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе…

    Вот и все главные виды квадратных уравнений. Полные и неполные.

    Решение квадратных уравнений.

    Решение полных квадратных уравнений.

    Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

    Если уравнение вам дано уже в таком виде — первый этап делать не нужно. ) Главное — правильно определить все коэффициенты, а , b и c .

    Формула для нахождения корней квадратного уравнения выглядит так:

    Выражение под знаком корня называется дискриминант . Но о нём — ниже. Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:

    а =1; b = 3; c = -4. Вот и записываем:

    Пример практически решён:

    Это ответ.

    Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

    Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

    Предположим, надо вот такой примерчик решить:

    Здесь a = -6; b = -5; c = -1

    Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

    Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

    Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

    Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

    Узнали?) Да! Это неполные квадратные уравнения .

    Решение неполных квадратных уравнений.

    Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с .

    Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

    Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

    И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
    Не получается? То-то…
    Следовательно, можно уверенно записать: х 1 = 0 , х 2 = 4 .

    Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым — абсолютно безразлично. Удобно записывать по порядочку, х 1 — то, что меньше, а х 2 — то, что больше.

    Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

    Остаётся корень извлечь из 9, и всё. Получится:

    Тоже два корня. х 1 = -3 , х 2 = 3 .

    Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
    Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

    Дискриминант. Формула дискриминанта.

    Волшебное слово дискриминант ! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:

    Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D . Формула дискриминанта:

    D = b 2 — 4ac

    И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют… Буквы и буквы.

    Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

    1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

    2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых . Но, в упрощённом варианте, принято говорить об одном решении.

    3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

    Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно — в уравнениях с параметрами. Такие уравнения — высший пилотаж на ГИА и ЕГЭ!)

    Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

    А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

    Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
    Допустим, после всяких преобразований вы получили вот такое уравнение:

    Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

    И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

    А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

    Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку.

    Если получилось — надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
    Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

    Приём третий . Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке «Как решать уравнения? Тождественные преобразования». При работе с дробями ошибки, почему-то так и лезут…

    Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

    Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

    Вот и всё! Решать – одно удовольствие!

    Итак, подытожим тему.

    Практические советы:

    1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

    2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

    3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

    4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

    Теперь можно и порешать.)

    Решить уравнения:

    8х 2 — 6x + 1 = 0

    х 2 + 3x + 8 = 0

    х 2 — 4x + 4 = 0

    (х+1) 2 + x + 1 = (x+1)(x+2)

    Ответы (в беспорядке):

    х 1 = 0
    х 2 = 5

    х 1,2 = 2

    х 1 = 2
    х 2 = -0,5

    х — любое число

    х 1 = -3
    х 2 = 3

    решений нет

    х 1 = 0,25
    х 2 = 0,5

    Всё сходится? Отлично! Квадратные уравнения — не ваша головная боль. Первые три получились, а остальные — нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

    Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    Библиографическое описание: Гасанов А. Р., Курамшин А. А., Ельков А. А., Шильненков Н. В., Уланов Д. Д., Шмелева О. В. Способы решения квадратных уравнений // Юный ученый. — 2016. — №6.1. — С. 17-20..02.2019).

    

    Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать самим и познакомить одноклассников с этими способами.

    Что же такое «квадратные уравнения»?

    Квадратное уравнение — уравнение вида ax 2 + bx + c = 0 , где a , b , c — некоторые числа (a ≠ 0 ), x — неизвестное.

    Числа a, b,c называются коэффициентами квадратного уравнения.

    • a называется первым коэффициентом;
    • b называется вторым коэффициентом;
    • c — свободным членом.

    А кто же первый «изобрёл» квадратные уравнения?

    Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений.

    Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

    Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

    Вавилонские математики примерно с IV века до н.э. использовали метод дополнения квадрата для решения уравнений с положительными корнями. Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения. Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы, был индийский ученый Брахмагупта (Индия, VII столетие нашей эры).

    Брахмагупта изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

    ax2 + bх = с, а>0

    В этом уравнении коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

    В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

    В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

    1) «Квадраты равны корням», т. е. ах2 = bх.

    2) «Квадраты равны числу», т. е. ах2 = с.

    3) «Корни равны числу», т. е. ах2 = с.

    4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.

    5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

    6) «Корни и числа равны квадратам», т. е. bх + с == ах2.

    Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

    Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи . Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

    Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М. Штифелем.

    Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья,Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

    Рассмотрим несколько способов решения квадратных уравнений.

    Стандартные способы решения квадратных уравнений из школьной программы:

    1. Разложение левой части уравнения на множители.
    2. Метод выделения полного квадрата.
    3. Решение квадратных уравнений по формуле.
    4. Графическое решение квадратного уравнения.
    5. Решение уравнений с использованием теоремы Виета.

    Остановимся подробнее на решение приведенных и не приведенных квадратных уравнений по теореме Виета.

    Напомним, что для решения приведенных квадратных уравнений достаточно найти два числа такие, произведение которых равно свободному члену, а сумма — второму коэффициенту с противоположным знаком.

    Пример. x 2 -5x+6=0

    Нужно найти числа, произведение которых равно 6, а сумма 5. Такими числами будут 3 и 2.

    Ответ: x 1 =2, x 2 =3.

    Но можно использовать этот способ и для уравнений с первым коэффициентом не равным единице.

    Пример. 3x 2 +2x-5=0

    Берём первый коэффициент и умножаем его на свободный член: x 2 +2x-15=0

    Корнями этого уравнения будут числа, произведение которых равно — 15, а сумма равна — 2. Эти числа — 5 и 3. Чтобы найти корни исходного уравнения, полученные корни делим на первый коэффициент.

    Ответ: x 1 =-5/3, x 2 =1

    6. Решение уравнений способом «переброски».

    Рассмотрим квадратное уравнение ах 2 + bх + с = 0, где а≠0.

    Умножая обе его части на а, получаем уравнение а 2 х 2 + аbх + ас = 0.

    Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у 2 + by + ас = 0, равносильному данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета.

    Окончательно получаем х 1 = у 1 /а и х 2 = у 2 /а.

    При этом способе коэффициент a умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Пример. 2 — 11х + 15 = 0.

    «Перебросим» коэффициент 2 к свободному члену и сделав замену получим уравнение у 2 — 11у + 30 = 0.

    Согласно обратной теореме Виета

    у 1 = 5, х 1 = 5/2, х 1 =2,5 ;у 2 = 6, x 2 = 6/2, x 2 = 3.

    Ответ: х 1 =2,5; х 2 = 3.

    7. Свойства коэффициентов квадратного уравнения.

    Пусть дано квадратное уравнение ах 2 + bх + с = 0, а ≠ 0.

    1. Если a+ b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х 1 = 1.

    2. Если а — b + с = 0, или b = а + с, то х 1 = — 1.

    Пример. 345х 2 — 137х — 208 = 0.

    Так как а + b + с = 0 (345 — 137 — 208 = 0), то х 1 = 1, х 2 = -208/345.

    Ответ: х 1 =1; х 2 = -208/345 .

    Пример. 132х 2 + 247х + 115 = 0

    Т.к. a-b+с = 0 (132 — 247 +115=0), то х 1 = — 1, х 2 = — 115/132

    Ответ: х 1 = — 1; х 2 =- 115/132

    Существуют и другие свойства коэффициентов квадратного уравнения. но ихиспользование более сложное.

    8. Решение квадратных уравнений с помощью номограммы.

    Рис 1. Номограмма

    Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.

    Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

    Криволинейная шкала номограммы построена по формулам (рис. 1):

    Полагая ОС = р, ED = q, ОЕ = а (все в см), из рис.1 подобия треугольников САН и CDF получим пропорцию

    откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

    Рис. 2 Решение квадратных уравнения с помощью номограммы

    Примеры.

    1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0

    Ответ:8,0; 1,0.

    2) Решим с помощью номограммы уравнение

    2z 2 — 9z + 2 = 0.

    Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 — 4,5z + 1 = 0.

    Номограмма дает корни z 1 = 4 и z 2 = 0,5.

    Ответ: 4; 0,5.

    9. Геометрический способ решения квадратных уравнений.

    Пример. х 2 + 10х = 39.

    В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39».

    Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5x. Полученную фигуру дополняют затем до нового квадрата АВСD, достраивая в углах четыре равных квадрата, сторона каждого из них 2,5, а площадь 6,25

    Рис. 3 Графический способ решения уравнения х 2 + 10х = 39

    Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4∙2,5x = 10х) и четырех пристроенных квадратов (6,25∙ 4 = 25) , т. е. S = х 2 + 10х = 25. Заменяя х 2 + 10х числом 39, получим что S = 39+ 25 = 64, откуда следует, что сторона квадрата АВСD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

    10. Решение уравнений с использованием теоремы Безу.

    Теорема Безу. Остаток от деления многочлена P(x) на двучлен x — α равен P(α) (т.е. значению P(x) при x = α).

    Если число α является корнем многочлена P(x), то этот многочлен делится на x -α без остатка.

    Пример. х²-4х+3=0

    Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Разделим Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3

    х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0

    х-1=0; х=1, или х-3=0, х=3; Ответ: х 1 =2, х 2 =3.

    Вывод: Умение быстро и рационально решать квадратные уравнения просто необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений. Изучив все найденные способы решения квадратных уравнений, мы можем посоветовать одноклассникам, кроме стандартных способов, решение способом переброски (6) и решение уравнений по свойству коэффициентов (7), так как они являются более доступными для понимания.

    Литература:

    1. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.
    2. Алгебра 8 класс: учебник для 8 кл. общеобразоват. учреждений Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. под ред. С. А. Теляковского 15-е изд., дораб. — М.: Просвещение, 2015
    3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
    4. Глейзер Г.И. История математики в школе. Пособие для учителей. / Под ред. В.Н. Молодшего. — М.: Просвещение, 1964.

    Формула корней кв уравнения. Калькулятор онлайн

    Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


    Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

    Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

    Квадратное уравнение – это уравнение вида:

    где коэффициенты a, b и с произвольные числа, при чём a≠0.

    В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

    1. Имеют два корня.

    2. *Имеют только один корень.

    3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

    Как вычисляются корни? Просто!

    Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

    Формулы корней имеют следующий вид:

    *Эти формулы нужно знать наизусть.

    Можно сразу записывать и решать:

    Пример:


    1. Если D > 0, то уравнение имеет два корня.

    2. Если D = 0, то уравнение имеет один корень.

    3. Если D

    Давайте рассмотрим уравнение:


    По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

    Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

    х 1 = 3 х 2 = 3

    Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

    Теперь следующий пример:


    Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

    Вот и весь процесс решения.

    Квадратичная функция.

    Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

    Это функция вида:

    где х и у — переменные

    a, b, с – заданные числа, при чём a ≠ 0

    Графиком является парабола:

    То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

    Рассмотрим примеры:

    Пример 1: Решить 2x 2 +8 x –192=0

    а=2 b=8 c= –192

    D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

    Ответ: х 1 = 8 х 2 = –12

    *Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

    Пример 2: Решить x 2 –22 x+121 = 0

    а=1 b=–22 c=121

    D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

    Получили, что х 1 = 11 и х 2 = 11

    В ответе допустимо записать х = 11.

    Ответ: х = 11

    Пример 3: Решить x 2 –8x+72 = 0

    а=1 b= –8 c=72

    D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

    Дискриминант отрицательный, решения в действительных числах нет.

    Ответ: решения нет

    Дискриминант отрицательный. Решение есть!

    Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

    Понятие комплексного числа.

    Немного теории.

    Комплексным числом z называется число вида

    z = a + bi

    где a и b – действительные числа, i – так называемая мнимая единица.

    a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

    Мнимая единица равна корню из минус единицы:

    Теперь рассмотрим уравнение:


    Получили два сопряжённых корня.

    Неполное квадратное уравнение.

    Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

    Случай 1. Коэффициент b = 0.

    Уравнение приобретает вид:

    Преобразуем:

    Пример:

    4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

    Случай 2. Коэффициент с = 0.

    Уравнение приобретает вид:

    Преобразуем, раскладываем на множители:

    *Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

    Пример:

    9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

    x 1 = 0 x 2 = 5

    Случай 3. Коэффициенты b = 0 и c = 0.

    Здесь понятно, что решением уравнения всегда будет х = 0.

    Полезные свойства и закономерности коэффициентов.

    Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

    а x 2 + bx + c =0 выполняется равенство

    a + b + с = 0, то

    — если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

    a + с = b , то

    Данные свойства помогают решить определённого вида уравнения.

    Пример 1: 5001 x 2 –4995 x – 6=0

    Сумма коэффициентов равна 5001+(4995)+(6) = 0, значит

    Пример 2: 2501 x 2 +2507 x +6=0

    Выполняется равенство a + с = b , значит

    Закономерности коэффициентов.

    1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

    аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

    Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

    х 1 = –6 х 2 = –1/6.

    2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

    аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

    Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

    х 1 = 15 х 2 = 1/15.

    3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

    аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

    Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

    х 1 = – 17 х 2 = 1/17.

    4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

    аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

    Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

    х 1 = 10 х 2 = – 1/10

    Теорема Виета.

    Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

    45 = 1∙45 45 = 3∙15 45 = 5∙9.

    В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

    Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

    СПОСОБ ПЕРЕБРОСКИ

    При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Если а ± b+c ≠ 0, то используется прием переброски, например:

    2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

    По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

    Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

    х 1 = 5 х 2 = 0,5.

    Каково обоснование? Посмотрите что происходит.

    Дискриминанты уравнений (1) и (2) равны:

    Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


    У второго (изменённого) корни получаются в 2 раза больше.

    Потому результат и делим на 2.

    *Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

    Ответ: х 1 = 5 х 2 = 0,5

    Кв. ур-ие и ЕГЭ.

    О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

    Что стоит отметить!

    1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

    15+ 9x 2 — 45x = 0 или 15х+42+9x 2 — 45x=0 или 15 -5x+10x 2 = 0.

    Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

    2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

    Уравнение вида

    Выражение D = b 2 — 4 ac называют дискриминантом квадратного уравнения. Если D = 0, то уравнение имеет один действительный корень; если D > 0, то уравнение имеет два действительных корня.
    В случае, когда D = 0 , иногда говорят, что квадратное уравнение имеет два одинаковых корня.
    Используя обозначение D = b 2 — 4 ac , можно переписать формулу (2) в виде

    Если b = 2 k , то формула (2) принимает вид:

    где k = b / 2 .
    Последняя формула особенно удобна в тех случаях, когда b / 2 — целое число, т.е. коэффициент b — четное число.
    Пример 1: Решить уравнение 2 x 2 5 x + 2 = 0 . Здесь a = 2, b = -5, c = 2 . Имеем D = b 2 4 ac = (-5) 2- 4*2*2 = 9 . Так как D > 0 , то уравнение имеет два корня. Найдем их по формуле (2)

    Итак x 1 =(5 + 3) / 4 = 2, x 2 =(5 — 3) / 4 = 1 / 2 ,
    то есть x 1 = 2 и x 2 = 1 / 2 — корни заданного уравнения.
    Пример 2: Решить уравнение 2 x 2 — 3 x + 5 = 0 . Здесь a = 2, b = -3, c = 5 . Находим дискриминант D = b 2 4 ac = (-3) 2- 4*2*5 = -31 . Так как D 0 , то уравнение не имеет действительных корней.

    Неполные квадратные уравнения. Если в квадратном уравнении ax 2 + bx + c =0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным . Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения — проще решить уравнение методом разложения его левой части на множители.
    Пример 1: решить уравнение 2 x 2 — 5 x = 0 .
    Имеем x (2 x — 5) = 0 . Значит либо x = 0 , либо 2 x — 5 = 0 , то есть x = 2. 5 . Итак, уравнение имеет два корня: 0 и 2.5
    Пример 2: решить уравнение 3 x 2 — 27 = 0 .
    Имеем 3 x 2 = 27 . Следовательно корни данного уравнения — 3 и -3 .

    Теорема Виета. Если приведенное квадратное уравнение x 2 + px + q =0 имеет действительные корни, то их сумма равна p , а произведение равно q , то есть

    x 1 + x 2 = -p ,
    x 1 x 2 = q

    (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).

    В современном обществе умение производить действия с уравнениями, содержащими переменную, возведённую в квадрат, может пригодиться во многих областях деятельности и широко применяется на практике в научных и технических разработках. Свидетельством тому может служить конструирование морских и речных судов, самолётов и ракет. При помощи подобных расчётов определяют траектории перемещения самых разных тел, в том числе и космических объектов. Примеры с решением квадратных уравнений находят применение не только в экономическом прогнозировании, при проектировании и строительстве зданий, но и в самых обычных житейских обстоятельствах. Они могут понадобиться в туристических походах, на спортивных состязаниях, в магазинах при совершении покупок и в других весьма распространённых ситуациях.

    Разобьём выражение на составляющие множители

    Степень уравнения определяется максимальным значением степени у переменной, которую содержит данное выражение. В случае, если она равна 2, то подобное уравнение как раз и называется квадратным.

    Если изъясняться языком формул, то указанные выражения, как бы они ни выглядели, всегда можно привести к виду, когда левая часть выражения состоит из трёх слагаемых. Среди них: ax 2 (то есть переменная, возведённая в квадрат со своим коэффициентом), bx (неизвестное без квадрата со своим коэффициентом) и c (свободная составляющая, то есть обычное число). Всё это в правой части приравнивается 0. В случае, когда у подобного многочлена отсутствует одно из его составляющих слагаемых, за исключением ax 2 , оно называется неполным квадратным уравнением. Примеры с решением таких задач, значение переменных в которых найти несложно, следует рассмотреть в первую очередь.

    Если выражение на вид выглядит таким образом, что слагаемых у выражения в правой части два, точнее ax 2 и bx, легче всего отыскать х вынесением переменной за скобки. Теперь наше уравнение будет выглядеть так: x(ax+b). Далее становится очевидно, что или х=0, или задача сводится к нахождению переменной из следующего выражения: ax+b=0. Указанное продиктовано одним из свойств умножения. Правило гласит, что произведение двух множителей даёт в результате 0, только если один из них равен нулю.

    Пример

    x=0 или 8х — 3 = 0

    В результате получаем два корня уравнения: 0 и 0,375.

    Уравнения такого рода могут описывать перемещение тел под действием силы тяжести, начавших движение из определённой точки, принятой за начало координат. Здесь математическая запись принимает следующую форму: y = v 0 t + gt 2 /2. Подставив необходимые значения, приравняв правую часть 0 и найдя возможные неизвестные, можно узнать время, проходящее с момента подъёма тела до момента его падения, а также многие другие величины. Но об этом мы поговорим позднее.

    Разложение выражения на множители

    Описанное выше правило даёт возможность решать указанные задачи и в более сложных случаях. Рассмотрим примеры с решением квадратных уравнений такого типа.

    X 2 — 33x + 200 = 0

    Этот квадратный трёхчлен является полным. Для начала преобразуем выражение и разложим его на множители. Их получается два: (x-8) и (x-25) = 0. В результате имеем два корня 8 и 25.

    Примеры с решением квадратных уравнений в 9 классе позволяют данным методом находить переменную в выражениях не только второго, но даже третьего и четвёртого порядков.

    Например: 2x 3 + 2x 2 — 18x — 18 = 0. При разложении правой части на множители с переменной, их получается три, то есть (x+1),(x-3) и (x+3).

    В результате становится очевидно, что данное уравнение имеет три корня: -3; -1; 3.

    Извлечение квадратного корня

    Другим случаем неполного уравнения второго порядка является выражение, на языке букв представленное таким образом, что правая часть строится из составляющих ax 2 и c. Здесь для получения значения переменной свободный член переносится в правую сторону, а после этого из обеих частей равенства извлекается квадратный корень. Следует обратить внимание, что и в данном случае корней уравнения обычно бывает два. Исключением могут служить лишь только равенства, вообще не содержащие слагаемое с, где переменная равна нулю, а также варианты выражений, когда правая часть оказывается отрицательной. В последнем случае решений вообще не существует, так как указанные выше действия невозможно производить с корнями. Примеры решений квадратных уравнений такого типа необходимо рассмотреть.

    В данном случае корнями уравнения окажутся числа -4 и 4.

    Вычисление пощади земельного участка

    Потребность в подобного рода вычислениях появилась в глубокой древности, ведь развитие математики во многом в те далёкие времена было обусловлено необходимостью определять с наибольшей точностью площади и периметры земельных участков.

    Примеры с решением квадратных уравнений, составленных на основе задач такого рода, следует рассмотреть и нам.

    Итак, допустим имеется прямоугольный участок земли, длина которого на 16 метров больше, чем ширина. Следует найти длину, ширину и периметр участка, если известно, что его площадь равна 612 м 2 .

    Приступая к делу, сначала составим необходимое уравнение. Обозначим за х ширину участка, тогда его длина окажется (х+16). Из написанного следует, что площадь определяется выражением х(х+16), что, согласно условию нашей задачи, составляет 612. Это значит, что х(х+16) = 612.

    Решение полных квадратных уравнений, а данное выражение является именно таковым, не может производиться прежним способом. Почему? Хотя левая часть его по-прежнему содержит два множителя, произведение их совсем не равно 0, поэтому здесь применяются другие методы.

    Дискриминант

    Прежде всего произведём необходимые преобразования, тогда внешний вид данного выражения будет выглядеть таким образом: x 2 + 16x — 612 = 0. Это значит, мы получили выражение в форме, соответствующей указанному ранее стандарту, где a=1, b=16, c=-612.

    Это может стать примером решения квадратных уравнений через дискриминант. Здесь необходимые расчёты производятся по схеме: D = b 2 — 4ac. Данная вспомогательная величина не просто даёт возможность найти искомые величины в уравнении второго порядка, она определяет количество возможных вариантов. В случае, если D>0, их два; при D=0 существует один корень. В случае, если D

    О корнях и их формуле

    В нашем случае дискриминант равен: 256 — 4(-612) = 2704. Это говорит о том, что ответ у нашей задачи существует. Если знать, к , решение квадратных уравнений нужно продолжать с применением ниже приведённой формулы. Она позволяет вычислить корни.

    Это значит, что в представленном случае: x 1 =18, x 2 =-34. Второй вариант в данной дилемме не может являться решением, потому что размеры земельного участка не могут измеряться в отрицательных величинах, значит х (то есть ширина участка) равна 18 м. Отсюда вычисляем длину: 18+16=34, и периметр 2(34+18)=104(м 2).

    Примеры и задачи

    Продолжаем изучение квадратных уравнений. Примеры и подробное решение нескольких из них будут приведены далее.

    1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

    Перенесём всё в левую часть равенства, сделаем преобразование, то есть получим вид уравнения, который принято именовать стандартным, и приравняем его нулю.

    15x 2 + 20x + 5 — 12x 2 — 27x — 1 = 0

    Сложив подобные, определим дискриминант: D = 49 — 48 = 1. Значит у нашего уравнения будет два корня. Вычислим их согласно приведённой выше формуле, а это значит, что первый из них буде равен 4/3, а второй 1.

    2) Теперь раскроем загадки другого рода.

    Выясним, есть ли вообще здесь корни x 2 — 4x + 5 = 1? Для получения исчерпывающего ответа приведём многочлен к соответствующему привычному виду и вычислим дискриминант. В указанном примере решение квадратного уравнения производить не обязательно, ведь суть задачи заключается совсем не в этом. В данном случае D = 16 — 20 = -4, а значит, корней действительно нет.

    Теорема Виета

    Квадратные уравнения удобно решать через указанные выше формулы и дискриминант, когда из значения последнего извлекается квадратный корень. Но это бывает не всегда. Однако способов для получения значений переменных в данном случае существует множество. Пример: решения квадратных уравнений по теореме Виета. Она названа в честь который жил в XVI веке во Франции и сделал блестящую карьеру благодаря своему математическому таланту и связям при дворе. Портрет его можно увидеть в статье.

    Закономерность, которую заметил прославленный француз, заключалась в следующем. Он доказал, что корни уравнения в сумме численно равны -p=b/a, а их произведение соответствует q=c/a.

    Теперь рассмотрим конкретные задачи.

    3x 2 + 21x — 54 = 0

    Для простоты преобразуем выражение:

    x 2 + 7x — 18 = 0

    Воспользуемся теоремой Виета, это даст нам следующее: сумма корней равна -7, а их произведение -18. Отсюда получим, что корнями уравнения являются числа -9 и 2. Сделав проверку, убедимся, что эти значения переменных действительно подходят в выражение.

    График и уравнение параболы

    Понятия квадратичная функция и квадратные уравнения тесно связаны. Примеры подобного уже были приведены ранее. Теперь рассмотрим некоторые математические загадки немного подробнее. Любое уравнение описываемого типа можно представить наглядно. Подобная зависимость, нарисованная в виде графика, называется параболой. Различные её виды представлены на рисунке ниже.

    Любая парабола имеет вершину, то есть точку, из которой выходят её ветви. В случае если a>0, они уходят высоко в бесконечность, а когда a

    Наглядные изображения функций помогают решать любые уравнения, в том числе и квадратные. Этот метод называется графическим. А значением переменной х является координата абсцисс в точках, где происходит пересечение линии графика с 0x. Координаты вершины можно узнать по только что приведённой формуле x 0 = -b/2a. И, подставив полученное значение в изначальное уравнение функции, можно узнать y 0 , то есть вторую координату вершины параболы, принадлежащую оси ординат.

    Пересечение ветвей параболы с осью абсцисс

    Примеров с решением квадратных уравнений очень много, но существуют и общие закономерности. Рассмотрим их. Понятно, что пересечение графика с осью 0x при a>0 возможно только если у 0 принимает отрицательные значения. А для a0. В противном случае D

    По графику параболы можно определить и корни. Верно также обратное. То есть если получить наглядное изображение квадратичной функции нелегко, можно приравнять правую часть выражения к 0 и решить полученное уравнение. А зная точки пересечения с осью 0x, легче построить график.

    Из истории

    С помощью уравнений, содержащих переменную, возведённую в квадрат, в старину не только делали математические расчёты и определяли площади геометрических фигур. Подобные вычисления древним были нужны для грандиозных открытий в области физики и астрономии, а также для составления астрологических прогнозов.

    Как предполагают современные деятели науки, одними из первых решением квадратных уравнений занялись жители Вавилона. Произошло это за четыре столетия до наступления нашей эры. Разумеется, их вычисления в корне отличались от ныне принятых и оказывались гораздо примитивней. К примеру, месопотамские математики понятия не имели о существовании отрицательных чисел. Незнакомы им были также другие тонкости из тех, которые знает любой школьник современности.

    Возможно, ещё раньше учёных Вавилона решением квадратных уравнений занялся мудрец из Индии Баудхаяма. Произошло это примерно за восемь столетий до наступления эры Христа. Правда, уравнения второго порядка, способы решения которых он привёл, были самыми наипростейшими. Кроме него, подобными вопросами интересовались в старину и китайские математики. В Европе квадратные уравнения начали решать лишь в начале XIII столетия, но зато позднее их использовали в своих работах такие великие учёные, как Ньютон, Декарт и многие другие. 2 + b*x + c = 0 ,где x — переменная, a,b,c – константы; a0 . Задача состоит в отыскании корней уравнения.

    Геометрический смысл квадратного уравнения

    Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения — это точки пересечения параболы с осью абсцисс (х) . Из этого следует, что есть три возможных случая:
    1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

    2) парабола имеет одну точку пересечения с осью Ох . Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

    3) Последний случай на практике интересный больше — существует две точки пересечения параболы с осью абсцисс. 2 и осуществим преобразование

    Отсюда находим

    Формула дискриминанта и корней квадратного уравнения

    Дискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0 При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле

    Теорема Виета

    Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p , взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q . Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета. 2+x-6=0 .

    Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения

    С второго условия получаем, что произведение должно быть равно -6 . Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2} . С учетом первого условия вторую пару решений отвергаем.
    Корни уравнения равны

    Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см 2 .

    Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
    х(18-х)=77;
    или
    х 2 -18х+77=0.
    Найдем дискриминант уравнения

    Вычисляем корни уравнения

    Если х=11 , то 18-х=7 , наоборот тоже справедливо (если х=7 , то 21-х=9 ).

    Задача 6. Разложить квадратное 10x 2 -11x+3=0 уравнения на множители.

    Решение: Вычислим корни уравнения, для этого находим дискриминант

    Подставляем найденное значение в формулу корней и вычисляем

    Применяем формулу разложения квадратного уравнения по корнями

    Раскрыв скобки получим тождество. 2+(2а+6)х-3а-9=0 имеет более одного корня?

    Решение: Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3 . При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0 .
    Вычислим дискриминант

    и найдем значения а при котором оно положительно

    С первого условия получим а>3 . Для второго находим дискриминант и корни уравнения


    Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0 . Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0 , которую следует исключить, поскольку в ней исходное уравнение имеет один корень.
    В результате получим два интервала, которые удовлетворяют условию задачи

    Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень…»
    И для тех, кто «очень даже…»)

    Виды квадратных уравнений

    Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является «квадратное». Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.

    Говоря математическим языком, квадратное уравнение — это уравнение вида:

    Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:

    Здесь а =1; b = 3; c = -4

    Здесь а =2; b = -0,5; c = 2,2

    Здесь а =-3; b = 6; c = -18

    Ну, вы поняли…

    В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.

    Такие квадратные уравнения называются полными.

    А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается.) Получается, например:

    5х 2 -25 = 0,

    2х 2 -6х=0,

    -х 2 +4х=0

    И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:

    2х 2 =0,

    -0,3х 2 =0

    Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

    Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе…

    Вот и все главные виды квадратных уравнений. Полные и неполные.

    Решение квадратных уравнений.

    Решение полных квадратных уравнений.

    Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

    Если уравнение вам дано уже в таком виде — первый этап делать не нужно.) Главное — правильно определить все коэффициенты, а , b и c .

    Формула для нахождения корней квадратного уравнения выглядит так:

    Выражение под знаком корня называется дискриминант . Но о нём — ниже. Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:

    а =1; b = 3; c = -4. Вот и записываем:

    Пример практически решён:

    Это ответ.

    Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

    Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

    Предположим, надо вот такой примерчик решить:

    Здесь a = -6; b = -5; c = -1

    Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

    Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

    Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

    Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

    Узнали?) Да! Это неполные квадратные уравнения .

    Решение неполных квадратных уравнений.

    Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с .

    Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

    Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

    И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
    Не получается? То-то…
    Следовательно, можно уверенно записать: х 1 = 0 , х 2 = 4 .

    Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым — абсолютно безразлично. Удобно записывать по порядочку, х 1 — то, что меньше, а х 2 — то, что больше.

    Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

    Остаётся корень извлечь из 9, и всё. Получится:

    Тоже два корня. х 1 = -3 , х 2 = 3 .

    Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
    Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

    Дискриминант. Формула дискриминанта.

    Волшебное слово дискриминант ! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:

    Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D . Формула дискриминанта:

    D = b 2 — 4ac

    И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют… Буквы и буквы.

    Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

    1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

    2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых . Но, в упрощённом варианте, принято говорить об одном решении.

    3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

    Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно — в уравнениях с параметрами. Такие уравнения — высший пилотаж на ГИА и ЕГЭ!)

    Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

    А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

    Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
    Допустим, после всяких преобразований вы получили вот такое уравнение:

    Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

    И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

    А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

    Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку.

    Если получилось — надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
    Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

    Приём третий . Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке «Как решать уравнения? Тождественные преобразования». При работе с дробями ошибки, почему-то так и лезут…

    Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

    Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

    Вот и всё! Решать – одно удовольствие!

    Итак, подытожим тему.

    Практические советы:

    1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

    2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

    3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

    4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

    Теперь можно и порешать.)

    Решить уравнения:

    8х 2 — 6x + 1 = 0

    х 2 + 3x + 8 = 0

    х 2 — 4x + 4 = 0

    (х+1) 2 + x + 1 = (x+1)(x+2)

    Ответы (в беспорядке):

    х 1 = 0
    х 2 = 5

    х 1,2 = 2

    х 1 = 2
    х 2 = -0,5

    х — любое число

    х 1 = -3
    х 2 = 3

    решений нет

    х 1 = 0,25
    х 2 = 0,5

    Всё сходится? Отлично! Квадратные уравнения — не ваша головная боль. Первые три получились, а остальные — нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

    Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

    Если Вам нравится этот сайт…

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    можно познакомиться с функциями и производными.

    Калькулятор квадратных формул — Решение квадратных уравнений

    Что такое квадратное уравнение?


    Квадратные уравнения представляют собой вторичные алгебраические выражения вида ax2 + bx + c = 0. Слово Квадратное происходит от слова «Квадрат», что означает квадрат. Другими словами, это уравнение является «уравнением второй степени». Одним из применений этого уравнения является описание времени запуска ракетки. Квадратное уравнение представляет собой уравнение, которое появляется в форме x 2 + bx + c = 0 . X представляет неизвестное в этом выражении, а a, b и c представляют известные числа или коэффициенты. Все значения x, которые могут ему удовлетворять, называются решениями. Этот тип формулы имеет два решения. Если нет реального решения, есть два сложных решения. Квадратное уравнение всегда имеет два корня, если включены комплексные корни, а под двукратным корнем подразумевается два.

    История


    Вавилонские математики заботятся о вопросах идентификации с пространствами и сторонами квадратных фигур.В настоящее время проблемы обычно усложняются решением пары одновременных уравнений структуры x + y = p, xy = p.

    Средства, данные вавилонскими писцами для решения вышеупомянутой проблемы квадратной формы, вплоть до x и y , были следующими:

    1. 2-4ac}}{2a}

    , где a = 1, b = -p и c = q.

    Что такое Калькулятор квадратных уравнений

    Калькулятор квадратных уравнений — это калькулятор, который решает алгебраические уравнения второй степени, такие как ax + bx + c = 0 для x , где a ≠ 0 При этом CalconCalculator находит как действительные, так и комплексные корни этих уравнений. Он также может использовать другие методы, полезные для решения квадратных уравнений.

    Как решить квадратную формулу в калькуляторе?

    Прежде всего, нужно сказать, что x представляет неизвестное.А a , b , c представляют известные числа, которые вы вводите в наш калькулятор. Где a не равно 0 . Если a = 0 , то уравнение линейно , а не квадратично .

    Все, что вам нужно сделать, это ввести известные числа в калькулятор ( a , b , c ), и пусть калькулятор сделает всю работу за вас. Примеры квадратных формулИмейте в виду, что не все квадратные уравнения будут в этом стиле. Первая константа не должна быть равна нулю.

    Примеры стандартной формы квадратного уравнения (ax² + bx + c = 0) включают:

    • 5x² + 11x – 32 = 0
    • 3x² – 3x – 1 = 0 15 = 0
    • 22x² -16x – 3 = 0
    • x² -x – 2 = 0
    • 6x² – 5x – 9 = 0
    • 3x² + 3x + 2 = 0
    • -x²1 + 1 06

    Примеры неполных квадратных уравнений

    По мере того, как вы будете развивать свои алгебраические навыки, вы поймете, что не все квадратные уравнения имеют стандартную форму.См. несколько примеров нескольких различных экземпляров нестандартных квадратных уравнений.

    Отсутствует линейный коэффициент

    Иногда квадратное уравнение не имеет линейного коэффициента или bx части уравнения. Примеры включают в себя:

    • 4x² — 34 = 0
    • x² — 16 = 0
    • 9x² + 46 = 0
    • -6x² — 4 = 0
    • 4x² + 91 = 0
    • -x² — 6 = 0
    • 3x² – 46 = 0
    • 6x² + 114 = 0

    Отсутствие постоянного члена

    В квадратных уравнениях также может отсутствовать постоянный член, или c . Например:

    • 3x² — 7x = 0
    • 2x² + 8x = 0
    • -x² — 3x = 0
    • 4x² + 2x = 0
    • -5x² — 5x = 0
    • -8x² + x = 0
    • -12x² + 14x = 0
    • 13x² – 21x = 0

    Для чего используется квадратичная формула?

    Квадратные уравнения используются как можно чаще в повседневной жизни при расчете площадей, определении прибыльных продуктов или формулировании скорости объекта.

    Приведем несколько примеров применения этого уравнения в повседневной жизни.

    Вычисление площади помещения

    Людям часто необходимо вычислить площадь дома, коробки или земельного участка. Примером может служить прямоугольная коробка, одна сторона которой должна быть в два раза больше другой.

    Расчет скорости

    Квадратное уравнение также используется для расчета скорости. Байдарки, например, используют квадратное уравнение, чтобы предположить скорость при движении вдоль реки или вниз по реке.


    Квадратичная факторизация


    Член x – r является фактором многочлена ax 2 + bx + c тогда и только тогда, когда r является корнем квадратного уравнения ax + 1 bx + 900 c = 0.2

    Воспользуйтесь нашим калькулятором линейных уравнений!

    Метки

    Алгебра — факторинг полиномов

    Показать мобильное уведомление Показать все примечания Скрыть все примечания

    Похоже, вы используете устройство с «узким» экраном ( i.е. вы, вероятно, на мобильном телефоне). Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.

    Раздел 1-5: факторинг полиномов

    Из всех тем, затронутых в этой главе, факторинг полиномов, вероятно, является самой важной темой.В последующих главах есть много разделов, где первым шагом будет разложение полинома на множители. Итак, если вы не можете разложить полином на множители, вы не сможете даже начать задачу, не говоря уже о том, чтобы закончить ее.

    Давайте начнем с того, что немного поговорим о том, что такое факторинг. Факторинг — это процесс, с помощью которого мы определяем, на что мы умножили, чтобы получить данное количество. Мы делаем это все время с цифрами. Например, вот несколько способов разложить на множители 12.

    \[\begin{align*}12 & = \left( 2 \right)\left( 6 \right) & \hspace{0.5in} 12 & = \left( 3 \right)\left( 4 \right) & \hspace{0.25in} 12 & = \left( 2 \right)\left( 2 \right)\left( 3 \right) \hspace{0,25 дюйма}\\ 12 & = \left( {\frac{1}{2}} \right)\left( {24} \right) & \hspace{0,5in}12 & = \left({ — 2} \right)\left( { — 6} \right)& \hspace{0. 5in}12& = \left( { — 2} \right)\left( 2 \right)\left( { — 3} \ вправо)\конец{выравнивание*}\]

    Существует множество других возможных способов размножения 12, но они представляют многие из них.

    Обычный метод разложения чисел на состоит в том, чтобы полностью разложить число на положительные простые множители. Простое число — это число, единственными положительными делителями которого являются 1 и само себя. Например, 2, 3, 5 и 7 — все это примеры простых чисел. Примерами чисел, которые не являются простыми, являются 4, 6 и 12, чтобы выбрать несколько.

    Если мы полностью разложим число на положительные простые множители, будет только один способ сделать это. Это причина для факторизации вещей таким образом.Для нашего примера выше с 12 полная факторизация равна

    . \[12 = \влево( 2 \вправо)\влево( 2 \вправо)\влево( 3 \вправо)\]

    Разложение полиномов на множители выполняется почти таким же образом. Определяем все слагаемые, которые были перемножены для получения данного многочлена. Затем мы пытаемся факторизовать каждое из условий, которые мы нашли на первом шаге. Это продолжается до тех пор, пока мы просто не можем больше учитывать. Когда мы больше не можем разлагать на множители, мы говорим, что полином полностью разложен на множители.2} + 4} \вправо)\влево( {х + 2} \вправо)\влево( {х — 2} \вправо)\]

    Цель этого раздела — ознакомиться со многими методами факторизации многочленов.

    Наибольший общий делитель

    Первым методом разложения полиномов на множители будет разложение на множители наибольшего общего делителя . При факторинге в целом это также будет первое, что мы должны попробовать, поскольку это часто упрощает проблему.

    Чтобы использовать этот метод, все, что мы делаем, это смотрим на все термины и определяем, есть ли фактор, общий для всех терминов.Если есть, мы вынесем его из полинома. Также обратите внимание, что в этом случае мы действительно используем распределительный закон только в обратном порядке. Помните, что распределительный закон гласит, что

    \[а\влево( {b + c} \вправо) = ab + ac\]

    Вычленяя наибольший общий множитель, мы делаем это в обратном порядке. Мы замечаем, что в каждом члене есть \(a\), поэтому мы «разлагаем» его, используя дистрибутив в обратном порядке, следующим образом:

    \[ab + ac = a\left( {b + c} \right)\]

    Давайте рассмотрим несколько примеров.5} — 3x + 1} \справа)\]

    Обратите внимание на «+1», где 3\(x\) изначально было в последнем члене, так как последний член был членом, который мы вынесли на множители, нам нужно было напомнить себе, что изначально там был член. Для этого нам нужен «+1» и обратите внимание, что это «+1» вместо «-1», потому что термин изначально был положительным термином. Если бы изначально это был отрицательный термин, нам пришлось бы использовать «-1».

    Одна из наиболее распространенных ошибок при решении задач факторинга — забыть об этой «1». 2} + 6\) Показать решение

    В этом тоже есть «-» перед третьим членом, как мы видели в предыдущей части. Однако на этот раз перед четвертым членом стоит «+», в отличие от предыдущей части. Мы по-прежнему будем учитывать «-» при группировании, чтобы убедиться, что мы не потеряем его из виду. Когда мы выносим за скобки «-», обратите внимание, что нам нужно заменить «+» в четвертом члене на «-». Опять же, всегда можно проверить, правильно ли это было сделано, перемножив «-» обратно через скобку.3} — 2} \справа)\]

    Факторинг по группировке может быть хорош, но не так часто работает. Обратите внимание, что, как мы видели в последних двух частях этого примера, если перед третьим термином стоит «-», мы часто также будем учитывать его из третьего и четвертого терминов при их группировке.

    Факторинг квадратичных многочленов

    Во-первых, отметим, что квадратичный — это еще один термин для многочлена второй степени. Итак, мы знаем, что наибольший показатель степени квадратичного полинома будет равен 2. {2}\), и единственный способ получить это — умножить \(x\) на \(x\). Следовательно, первый член в каждом множителе должен быть \(x\). Чтобы закончить это, нам просто нужно определить два числа, которые должны идти в пустых местах.

    Мы можем значительно сузить круг возможностей. После умножения двух множителей эти два числа нужно будет умножить, чтобы получить -15. Другими словами, эти два числа должны иметь коэффициент -15. Вот все возможные способы размножить -15, используя только целые числа.

    \[\left( { — 1} \right)\left( {15} \right)\hspace{0.25in}\left( 1 \right)\left( {- 15} \right)\hspace{0.25in} \влево( { — 3} \вправо)\влево( 5 \вправо)\hspace{0.25in}\влево( 3 \вправо)\влево( { — 5} \вправо)\]

    Теперь мы можем просто подставлять их одну за другой и перемножать, пока не получим правильную пару. Тем не менее, есть еще один трюк, который мы можем использовать здесь, чтобы помочь нам. Правильная пара чисел должна складываться, чтобы получить коэффициент при члене \(x\). 2}\) — это умножение 3\(x\) и \(x\) это должны быть первые два члена. Однако найти числа для двух пробелов будет не так просто, как в предыдущих примерах. Нам нужно будет начать со всеми коэффициентами -8.

    \[\left( { — 1} \right)\left( 8 \right)\hspace{0.5in}\left( 1 \right)\left( {- 8} \right)\hspace{0.25in}\left ( { — 2} \вправо)\влево( 4 \вправо)\hspace{0.25in}\влево( 2 \вправо)\влево( { — 4} \вправо)\]

    На данный момент единственный вариант — выбрать пару, вставить их и посмотреть, что произойдет, когда мы умножим члены.2} — 10х — 8\]

    Что ж, первый и последний термины правильные, но они должны быть правильными, поскольку мы выбрали числа, чтобы убедиться, что они работают правильно. Однако, поскольку средний член неверен, это не правильное разложение полинома на множители.

    Однако это не значит, что мы ошиблись. В предыдущих частях этого примера не имело значения, какая заготовка получила какой номер. 2} + 2x — 8\]

    Итак, мы поняли.2} — 17x + 6 = \left( {5x + \underline {\,\,\,\,} } \right)\left( {x + \underline {\,\,\,\,} } \right )\]

    Далее нам понадобятся все делители числа 6. Вот они.

    \[\влево( 1 \вправо)\влево( 6 \вправо)\hspace{0.5in}\влево( { — 1} \вправо)\влево( { — 6} \вправо)\hspace{0.25in}\влево ( 2 \вправо)\влево( 3 \вправо)\hspace{0,5 дюйма}\влево( { — 2} \вправо)\влево( { — 3} \вправо)\]

    Не забывайте о негативных факторах. Они часто те, которые мы хотим. На самом деле, заметив, что коэффициент при \(x\) отрицательный, мы можем быть уверены, что нам понадобится одна из двух пар отрицательных множителей, поскольку это будет единственный способ получить отрицательный коэффициент.2} + 10x — 6 & = \left( {2x + \underline {\,\,\,\,} } \right)\left( {2x + \underline {\,\,\,\,} } \ вправо)\конец{выравнивание*}\]

    Для заполнения пробелов нам понадобятся все коэффициенты -6. 2} + 10x — 6 = \left( {2x — 1} \right)\left( {2x + 6} \right)\]

    Также обратите внимание, что на этапе проб и ошибок нам нужно убедиться, что каждая пара подключена к обеим возможным формам и в обоих возможных порядках, чтобы правильно определить, является ли это правильной парой факторов или нет.2}\]

    Это просто неверно для подавляющего большинства сумм квадратов, поэтому будьте осторожны, чтобы не совершить эту очень распространенную ошибку. Есть редкие случаи, когда это можно сделать, но здесь мы не увидим ни одного из этих особых случаев.

    Факторизация многочленов со степенью больше 2

    Как правило, для этого не существует единого метода. Однако кое-что мы можем сделать, поэтому давайте рассмотрим пару примеров.

    Пример 5 Фактор каждого из следующих.2} + 5} \справа)\]

    Обратите внимание, что это преобразование сначала в \(u\) может быть иногда полезным, однако, как только вы привыкнете к этому, это обычно делается в наших головах.

    Здесь мы не решали много задач и не рассмотрели все возможности. Тем не менее, мы рассмотрели некоторые из наиболее распространенных методов, с которыми нам придется столкнуться в других главах этой работы.

    Как найти коэффициенты квадратного уравнения.Квадратные уравнения

    Известно, что это частный вариант равенства ax 2 + bx + c = o, где a, b и c — действительные коэффициенты при неизвестном x, и где a ≠ o, а b и c будут нулями — одновременно или по отдельности. Например, c = o, b o или наоборот. Мы почти вспомнили определение квадратного уравнения.

    Трехчлен второй степени равен нулю. Его первый коэффициент a ≠ o, b и c могут принимать любые значения. Значение переменной x тогда будет тогда, когда при подстановке оно превратит его в истинное числовое равенство.Остановимся на действительных корнях, хотя решениями уравнения могут быть и Полным обычно называют уравнение, в котором ни один из коэффициентов не равен o, а ≠ o, в ≠ o, при ≠ o.
    Давайте решим пример. 2x 2 -9x-5 = о, находим
    D = 81 + 40 = 121,
    D положительно, значит есть корни, x 1 = (9 + √121): 4 = 5, а второй x 2 = (9-√121): 4 = -o, 5. Проверка поможет убедиться в их правильности.

    Вот пошаговое решение квадратного уравнения

    С помощью дискриминанта можно решить любое уравнение, в левой части которого известен квадрат трехчлена при а ≠ о.В нашем примере. 2x 2 -9x-5 = 0 (ax 2 + bx + c = o)

    Рассмотрим, что представляют собой неполные уравнения второй степени

    1. ax 2 + in = o. Свободный член, коэффициент c при x 0, здесь равен нулю, in ≠ o.
      Как решить такое неполное квадратное уравнение? Переместите x из круглых скобок. Помните, когда произведение двух множителей равно нулю.
      x (ax + b) = o, это может быть, когда x = o или когда ax + b = o.
      Решив 2-ю, имеем x=-v/a.
      В итоге имеем корни x 1 = 0, по расчетам x 2 = -b/a.
    2. Теперь коэффициент при x равен o, а c не равен (≠) o.
      х 2 + с = о. Перенося с в правую часть равенства, получаем x 2 = -с. Это уравнение имеет действительные корни только тогда, когда -c является положительным числом (тогда cx 1 равно √ (-c), соответственно x 2 — -√ (-c). В противном случае уравнение вообще не имеет корней.
    3. последний вариант: b = c = o, то есть ax 2 = o. Естественно, такое простое уравнение имеет один корень, x = o.

    Особые случаи

    Мы рассмотрели, как решить неполное квадратное уравнение, а теперь возьмем любые типы.

    • В полном квадратном уравнении второй коэффициент при x равен четному числу.
      Пусть к = о, 5б. У нас есть формулы для вычисления дискриминанта и корней.
      D / 4 = k 2 — ac, корни вычисляются как x 1,2 = (-k ± √ (D / 4)) / a для D ›o.
      х = -k/a при D = o.
      В точке D ‹o нет корней.
    • Даны квадратные уравнения, когда коэффициент при x в квадрате равен 1, их принято записывать x 2 + px + q = o.К ним применимы все приведенные выше формулы, но расчеты несколько проще.
      Пример, x 2 -4x-9 = 0. Вычислить D: 2 2 +9, D = 13.
      x 1 = 2 + √13, x 2 = 2-√13.
    • Кроме того, его легко применить к данным. В нем говорится, что сумма корней уравнения равна -p, второй коэффициент с минусом (имеется в виду противоположный знак), а произведение этих корней будет равно q, свободному члену. Проверьте, как легко было бы устно определить корни этого уравнения.Для неприведенных (для всех коэффициентов, не равных нулю) эта теорема применима следующим образом: сумма x 1 + x 2 равна -v/a, произведение x 1 x 2 равно c/a.

    Сумма точки пересечения c и первого коэффициента a равна коэффициенту b. В этой ситуации уравнение имеет хотя бы один корень (доказать легко), первый обязательно равен -1, а второй -с/а, если он существует. Как решить неполное квадратное уравнение, можете проверить сами.Проще простого. Коэффициенты могут находиться в некоторых соотношениях между собой

    • х 2 + х = о, 7х 2 -7 = о.
    • Сумма всех коэффициентов равна o.
      Корнями такого уравнения являются 1 и с/а. Например, 2x 2 -15x + 13 = о.
      х 1 = 1, х 2 = 13/2.

    Существует ряд других способов решения различных уравнений второй степени. Вот, например, способ извлечения полного квадрата из заданного многочлена. Графических способов несколько. Когда вы будете часто иметь дело с такими примерами, вы научитесь «щелкать» их, как семена, потому что все методы приходят в голову автоматически.

    Надеюсь, изучив эту статью, вы научитесь находить корни полного квадратного уравнения.

    С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используйте другие методы, которые вы найдете в статье Решение неполных квадратных уравнений.

    Какие квадратные уравнения называются полными? Это уравнений вида ax 2 + b x + c = 0 , где коэффициенты a, b и c не равны нулю.Итак, чтобы решить полное квадратное уравнение, нужно вычислить дискриминант D.

    Д = б 2 — 4ас.

    В зависимости от того, какое значение имеет дискриминант, запишем ответ.

    Если дискриминант отрицательный (D

    Если дискриминант равен нулю, то x = (-b) / 2a. Когда дискриминант является положительным числом (D > 0),

    , то x 1 = (-b — √D) / 2a и x 2 = (-b + √D) / 2a.

    Например. Решите уравнение x 2 — 4x + 4 = 0.

    Д = 4 2 — 4 4 = 0

    х = (- (-4)) / 2 = 2

    Ответ: 2.

    Решение уравнения 2 x 2 + х + 3 = 0.

    Д = 1 2 — 4 2 3 = — 23

    Ответ: нет корней .

    Решение уравнения 2 x 2 + 5х — 7 = 0 .

    D = 5 2 — 4 · 2 · (–7) = 81

    x 1 = (-5 — √81) / (2 2) = (-5 — 9) / 4 = — 3,5

    х 2 = (-5 + √81) / (2 · 2) = (-5 + 9) / 4 = 1

    Ответ: — 3.5; 1 .

    Итак, приведем решение полных квадратных уравнений по схеме на рисунке 1.

    Эти формулы можно использовать для решения любого полного квадратного уравнения. Просто нужно следить за тем, чтобы уравнение было записано в виде стандартного полинома

    а x 2 +bx+c, иначе можно ошибиться. Например, записывая уравнение x + 3 + 2x 2 = 0, вы можете ошибочно решить, что

    а = 1, б = 3 и с = 2.Затем

    D = 3 2 — 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. И это неправда. (См. решение примера 2 выше).

    Следовательно, если уравнение не записывается в виде полинома стандартного вида, то сначала полное квадратное уравнение должно быть записано в виде полинома стандартного вида (на первом месте должен быть моном с наибольшим показателем, то есть а x 2 , то с меньшим бх а потом свободный член с.

    При решении редуцированного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором члене можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении со вторым членом коэффициент четный (b = 2k), то уравнение можно решить по формулам, приведенным на схеме на рисунке 2.

    Полное квадратное уравнение называется приведенным, если коэффициент при х 2 равно единице, и уравнение принимает форму x 2 + px + q = 0 … Такое уравнение можно дать для решения, либо оно получается делением всех коэффициентов уравнения на коэффициент a стоящий при х 2 .

    На рис. 3 показана схема решения сокращенного квадратного уравнения
    . Рассмотрим пример применения формул, рассмотренных в этой статье.

    Пример. Решите уравнение

    3 x 2 + 6х — 6 = 0.

    Решим это уравнение по формулам, показанным на схеме на рисунке 1.

    D = 6 2 — 4 3 (- 6) = 36 + 72 = 108

    √D = √108 = √ (363) = 6√3

    x 1 = (-6 — 6√3) / (2 3) = (6 (-1- √ (3))) / 6 = –1 — √3

    x 2 = (-6 + 6√3) / (2 · 3) = (6 (-1+ √ (3))) / 6 = –1 + √3

    Ответ: -1 — √3; –1 + √3

    Можно заметить, что коэффициент при x в этом уравнении является четным числом, то есть b = 6 или b = 2k, откуда k = 3. Затем попробуем решить уравнение по формулам, приведенным в схеме на рисунке D 1 = 3 2 — 3 · (- 6 ) = 9 + 18 = 27

    √ (D 1) = √ 27 = √ (9 3) = 3 √ 3 ​​

    x 1 = (-3 — 3√3) / 3 = (3 (-1 — √ (3))) / 3 = — 1 — √3

    x 2 = (-3 + 3√3) / 3 = (3 (-1 + √ (3))) / 3 = — 1 + √3

    Ответ: -1 — √3; –1 + √3 … Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2x — 2 = 0. Решим это уравнение по формулам приведенного квадратичные уравнения
    Рис. 3.

    D 2 = 2 2 — 4 (- 2) = 4 + 8 = 12

    √ (Д 2) = √ 12 = √ (4 3) = 2 √ 3

    x 1 = (-2 — 2√3) / 2 = (2 (-1 — √ (3))) / 2 = — 1 — √3

    x 2 = (-2 + 2√3) / 2 = (2 (-1+ √ (3))) / 2 = — 1 + √3

    Ответ: -1 — √3; –1 + √3.

    Как видите, при решении этого уравнения по разным формулам мы получили одинаковый ответ. Поэтому, хорошо усвоив формулы, изображенные на схеме на рисунке 1, вы всегда сможете решить любое полное квадратное уравнение.

    сайта, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Квадратные уравнения часто возникают при решении различных задач по физике и математике. В этой статье мы рассмотрим, как решать эти равенства. универсальным способом «через дискриминант». Также в статье приведены примеры использования полученных знаний.

    О каких уравнениях идет речь?

    На рисунке ниже показана формула, в которой x — неизвестная переменная, а латинские символы a, b, c — известные числа.

    Каждый из этих символов называется коэффициентом. Как видите, число «а» стоит перед квадратом переменной х. Это максимальная степень представленного выражения, поэтому оно и называется квадратным уравнением. Часто используется и другое его название: уравнение второго порядка. Само значение a является квадратным коэффициентом (обозначает переменную в квадрате), b является линейным коэффициентом (он стоит рядом с переменной, возведенной в первую степень), и, наконец, число c является свободным членом.

    Обратите внимание, что форма уравнения, показанного на рисунке выше, является обычным классическим квадратным выражением.Помимо него существуют и другие уравнения второго порядка, в которых коэффициенты b, c могут быть равны нулю.

    Когда ставится задача решить рассматриваемое равенство, это означает, что необходимо найти такие значения переменной x, которые бы ему удовлетворяли. Здесь первое, что нужно запомнить, это следующее: поскольку максимальная степень x равна 2, этот тип выражения не может иметь более 2 решений. Это означает, что если при решении уравнения были найдены 2 значения х, удовлетворяющие ему, то можно быть уверенным, что третьего числа нет, подставив которое вместо х, равенство также будет верным.Решения уравнения в математике называются корнями.

    Методы решения уравнений второго порядка

    Решение уравнений этого типа требует знания некоторой теории о них. В школьном курсе алгебры рассматриваются 4 разных метода решения. Перечислим их:

    • с помощью факторизации;
    • по формуле полного квадрата;
    • путем применения графика соответствующей квадратичной функции;
    • с помощью дискриминантного уравнения.

    Преимущество первого метода заключается в его простоте, однако его нельзя применить ко всем уравнениям. Второй способ универсальный, но несколько громоздкий. Третий способ отличается наглядностью, но не всегда удобен и применим. И, наконец, использование дискриминантного уравнения является универсальным и достаточно простым способом нахождения корней абсолютно любого уравнения второго порядка. Поэтому в статье мы рассмотрим только его.

    Формула для получения корней уравнения

    Обратимся к общему виду квадратного уравнения.Запишем его: a * x² + b * x + c = 0. Прежде чем использовать метод его решения «через дискриминант», равенство всегда следует привести к письменной форме. То есть он должен состоять из трех членов (или меньше, если b или c равно 0).

    Например, если есть выражение: х²-9 * х + 8 = -5 * х + 7 * х², то необходимо сначала переместить все его члены в одну сторону равенства и добавить члены, содержащие переменную х в тех же полномочиях.

    В этом случае эта операция приведет к следующему выражению: -6 * x²-4 * x + 8 = 0, что эквивалентно уравнению 6 * x² + 4 * x-8 = 0 (здесь мы умножили левые а правые части равенства на -1).


    В приведенном выше примере a = 6, b = 4, c = -8. Заметим, что все члены рассматриваемого равенства всегда суммируются между собой, поэтому, если стоит знак «-», это означает, что соответствующий коэффициент отрицательный, как и число с в данном случае.


    Разобрав этот момент, перейдем теперь к самой формуле, позволяющей получить корни квадратного уравнения. Он имеет форму, показанную на фото ниже.


    Как видно из этого выражения, оно позволяет получить два корня (следует обратить внимание на знак «±»).Для этого достаточно подставить в него коэффициенты b, c и a.

    Дискриминантное понятие

    В предыдущем пункте была приведена формула, позволяющая быстро решить любое уравнение второго порядка. В нем подкоренное выражение называется дискриминантом, то есть D = b²-4 * a * c.

    Почему эта часть формулы выделена, и у нее даже есть собственное название? Дело в том, что дискриминант связывает все три коэффициента уравнения в единое выражение.Последний факт означает, что оно полностью несет информацию о корнях, которую можно выразить в следующем списке:

    1. D>0: равенство имеет 2 разных решения, оба из которых являются действительными числами.
    2. D = 0: уравнение имеет только один корень и является действительным числом.

    Задача определения дискриминанта


    Приведем простой пример, как найти дискриминант. Пусть задано следующее равенство: 2*x² — 4+5*x-9*x²=3*x-5*x²+7.

    Приведем к стандартному виду, получим: (2 * x²-9 * x² + 5 * x²) + (5 * x-3 * x) + (- 4-7) = 0, откуда приходим к равенство: -2 * x² + 2 * x- 11 = 0. Здесь a = -2, b = 2, c = -11.

    Теперь можно использовать названную формулу для дискриминанта: D = 2² — 4 * (- 2) * (- 11) = -84. Полученное число и есть ответ на задание. Так как дискриминант в примере меньше нуля, то можно сказать, что это квадратное уравнение не имеет действительных корней. Только комплексные числа будут его решением.

    Пример неравенства через дискриминант

    Решим задачи несколько другого типа: дано равенство -3*x²-6*x+c=0. Необходимо найти такие значения c, при которых D > 0.

    В данном случае известны только 2 из 3 коэффициентов, поэтому вычислить точное значение дискриминанта не получится, но известно, что он положительный. Последний факт используем при составлении неравенства: D=(-6)²-4*(-3)*c>0=>36+12*c>0.Решение полученного неравенства приводит к результату: с>-3.

    Проверим полученный номер. Для этого вычислите D для 2 случаев: c = -2 и c = -4. Число -2 удовлетворяет полученному результату (-2 > -3), соответствующий дискриминант будет иметь значение: D = 12 > 0. В свою очередь число -4 не удовлетворяет неравенству (-4 Таким образом, любые числа c больше -3 будут удовлетворять условию

    Пример решения уравнения

    Поставим задачу, которая состоит не только в нахождении дискриминанта, но и в решении уравнения. Нужно найти корни равенства -2 * x² + 7-9 * x = 0.

    В данном примере дискриминант равен следующему значению: D = 81-4 * (- 2) * 7 = 137. Тогда корни уравнения определяются следующим образом: x = (9 ± √137) / (- 4). это точные значения корней, если вычислить приблизительный корень, то получатся числа: х = -5,176 и х = 0,676.

    Геометрическая задача

    Мы будем решать задачу, которая потребует не только умения вычислять дискриминант, но и применения навыков абстрактного мышления и умения составлять квадратные уравнения.

    У Боба было одеяло размером 5 х 4 метра. Мальчик хотел сшить непрерывную полосу красивой ткани. Какой толщины будет эта полоса, если известно, что у Боба 10 м² ткани.


    Пусть полоса имеет толщину хм, тогда площадь ткани вдоль длинных боковых одеял будет (5+2*х)*х, а так как длинных сторон 2, то имеем: 2*х *(5+2*х). По короткой стороне площадь сшиваемой ткани будет 4*х, так как этих сторон 2, то получаем значение 8*х.Обратите внимание, что 2 * x было добавлено к длинной стороне, так как длина одеяла увеличилась на это число. Общая площадь ткани, пришитой к одеялу, составляет 10 м². Следовательно, получаем равенство: 2 * x * (5 + 2 * x) + 8 * x = 10 => 4 * x² + 18 * x-10 = 0.

    Для данного примера дискриминант: D = 18² -4 * 4 * (- 10) = 484. Его корень равен 22. По формуле находим искомые корни: x = (-18 ± 22) / (2 * 4) = (- 5; 0,5). Очевидно, что из двух корней по постановке задачи подходит только число 0,5.2 + b * x + c = 0, где x — переменная, a, b, c — константы; а0. Задача состоит в том, чтобы найти корни уравнения.

    Геометрический смысл квадратного уравнения

    График функции, представленной квадратным уравнением, представляет собой параболу. Решениями (корнями) квадратного уравнения являются точки пересечения параболы с осью абсцисс (х). Отсюда следует, что возможны три случая:
    1) парабола не имеет точек пересечения с осью абсцисс.Это означает, что он находится в верхней плоскости ветвями вверх или в нижней плоскости ветвями вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

    2) парабола имеет одну точку пересечения с осью Ох. Такая точка называется вершиной параболы, и квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

    3) Последний случай на практике более интересен — есть две точки пересечения параболы с осью абсцисс.Это означает, что существует два действительных корня уравнения.

    На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о расположении параболы.

    1) Если коэффициент а больше нуля, то парабола направлена ​​вверх, если отрицательно, то ветви параболы направлены вниз.

    2) Если коэффициент b больше нуля, то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение, то в правой.2 в обе части и проводим преобразование

    Отсюда находим

    Формула дискриминанта и корней квадратного уравнения

    Дискриминантом называется значение подкоренного выражения Если оно положительное, то уравнение имеет два действительных корня, вычисляемых по формуле Когда дискриминант равен нулю, квадратное уравнение имеет одно решение (два совпадающих корня), которое легко получить из приведенной формулы при D = 0. Когда дискриминант отрицателен, уравнение не имеет действительных корней. Однако решения квадратного уравнения в комплексной плоскости находятся, и их значение вычисляется по формуле

    Теорема Виета

    Рассмотрим два корня квадратного уравнения и на их основе построим квадратное уравнение. Теорема Виета легко следует из обозначений: если мы имеем квадратное уравнение вида, то сумма его корней равна коэффициенту p, взятому от противоположного знака, а произведение корней уравнения равно свободному члену q .Формальная запись вышеизложенного будет иметь вид Если в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применить теорему Виета.

    Расписание квадратного уравнения на факторы

    Пусть поставлена ​​задача: вывести квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее подставляем найденные корни в формулу разложения квадратного уравнения. Это решит проблему.

    Квадратные уравнения

    Задача 1.2-26x + 120 = 0.

    Решение: Запишем коэффициенты и подставим их в дискриминантную формулу

    Корень этого значения равен 14, его легко найти с помощью калькулятора, или запомнить при частом использовании , однако для удобства в конце статьи я приведу вам список квадратов чисел, которые часто можно встретить в таких задачах.
    Подставляем найденное значение в формулу корня

    и получаем

    Задача 2. Решаем уравнение

    2x 2 + x-3 = 0.

    Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант

    По известным формулам находим корни квадратного уравнения

    Задача 3. Решить уравнение

    9x 2 -12x + 4 = 0.

    Решение: У нас есть полное квадратное уравнение. Определить дискриминант

    Получился случай, когда корни совпадают. Находим значения корней по формуле

    Задача 4.2 + x-6 = 0.

    Решение: В случаях, когда при x малые коэффициенты, целесообразно применить теорему Виета. По его условию получаем два уравнения

    Из второго условия получаем, что произведение должно быть равно -6. Это означает, что один из корней отрицательный. Имеем следующую возможную пару решений (-3; 2), (3; -2). С учетом первого условия отбрасываем вторую пару решений.
    Корни уравнения равны

    Задача 5.Найдите длины сторон прямоугольника, если его периметр равен 18 см, а площадь 77 см 2 .

    Решение: Половина периметра прямоугольника равна сумме прилежащих сторон. Обозначим х — большую сторону, тогда 18-х — меньшую сторону. Площадь прямоугольника равна произведению этих длин:
    х (18-х) = 77;
    или
    х 2 -18х + 77 = 0.
    Найти дискриминант уравнения

    Вычислить корни уравнения

    Если х = 11, то 18-е = 7, наоборот, тоже верно (если х = 7, то 21-х = 9).

    Задача 6. Разложите квадратные уравнения 10x 2 -11x + 3 = 0 на множители.

    Решение: Вычисляем корни уравнения, для этого находим дискриминант

    Подставляем найденное значение в формулу корня и вычисляем

    Применяем формулу разложения квадратного уравнения в корнях

    Раскрывая скобки , получаем тождество.

    Квадратное уравнение с параметром

    Пример 1. При каких значениях параметра а уравнение (а-3) х 2 + (3-а) х-1/4 = 0 имеет один корень?

    Решение: Прямая подстановка значения a = 3 показывает, что оно не имеет решения.Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2. Выпишем дискриминант

    упростим его и приравняем к нулю

    Получили квадратное уравнение относительно параметра а, решение уравнения которое легко получить по теореме Виета. Сумма корней равна 7, а их произведение равно 12. Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Так как решение а = 3 мы уже отвергли в начале расчетов, то единственно правильным будет — а = 4. 2 + (2a + 6) x-3a-9 = 0 имеет более одного корня?

    Решение: Рассмотрим сначала особые точки, ими будут значения a = 0 и a = -3. Когда a = 0, уравнение упростится до вида 6x-9 = 0; x = 3/2 и будет один корень. При а = -3 получаем тождество 0 = 0.
    Вычисляем дискриминант

    и находим значения а, при которых он положителен

    Из первого условия получаем а > 3. Для второго, находим дискриминант и корни уравнения


    Определим интервалы, на которых функция принимает положительные значения.Подставляя точку a = 0, получаем 3>0 . Итак, вне интервала (-3; 1/3) функция отрицательна. Не забудьте про точку a = 0, которую следует исключить, так как исходное уравнение имеет в ней один корень.
    В результате получаем два интервала, удовлетворяющих условию задачи

    Подобных задач на практике будет много, попробуйте сами разобраться в задачах и не забудьте учесть взаимоисключающие условия. Хорошо выучите формулы решения квадратных уравнений, они часто нужны при расчетах в различных задачах и науках.

    Еще проще… Для этого поместите z за скобки. Получится: z (аz + b) = 0. Множители можно записать: z = 0 и аz + b = 0, так как оба могут давать ноль. В обозначении az + b = 0 вторую сдвинем вправо с другим знаком. Отсюда получаем z1 = 0 и z2 = -b/a. Это корни оригинала.

    При наличии неполного уравнения вида аз² + с = 0, в этом случае находятся простым переносом свободного члена в правую часть уравнения.Также измените его знак при этом. Результат будет az² = -с. Экспресс z² = -c/a. Возьмите корень и запишите два решения — положительный и отрицательный квадратный корень.

    примечание

    Если в уравнении есть дробные коэффициенты, умножьте все уравнение на соответствующий коэффициент, чтобы избавиться от дробей.

    Знания о том, как решать квадратные уравнения, необходимы как школьникам, так и студентам, иногда могут помочь и взрослому в обычной жизни.2 — 4 * а * в. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корней будет два, если D = 0, то останется только один корень, точнее можно сказать, что D в этом случае имеет два эквивалентных корня. Подставьте известные коэффициенты a, b, c в формулу и рассчитайте значение.

    После того, как вы нашли дискриминант, для нахождения x используйте формулы: x (1) = (- b + sqrt (D)) / 2 * a; x (2) = (- b-sqrt (D)) / 2 * a, где sqrt — это функция, означающая извлечение квадратного корня из заданного числа.Вычислив эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.

    Если D меньше нуля, то оно все еще имеет корни. В школе этот раздел практически не изучается. Студенты вузов должны знать, что в корне появляется отрицательное число. От него избавляются выделением мнимой части, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с тем же положительным числом… Например, если D = sqrt (-20), то после преобразования D = sqrt (20) * i. После этого преобразования решение уравнения сводится к такому же нахождению корней, как описано выше.

    Теорема Виета заключается в выборе значений x (1) и x (2). Используются два одинаковых уравнения: x(1) + x(2) = -b; х (1) * х (2) = с. И очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, что в уравнении. На первый взгляд кажется, что посчитать х(1) и х(2) очень просто, но при решении вы столкнетесь с тем, что числа придется подбирать.

    Элементы для решения квадратных уравнений

    По правилам математики некоторые можно разложить на множители: (a + x(1)) * (bx(2)) = 0, если вам удалось преобразовать это квадратное уравнение в это образом, используя формулы математики, то не стесняйтесь записывать ответ. х(1) и х(2) будут равны соседним коэффициентам в скобках, но с обратным знаком.

    Также не забывайте о неполных квадратных уравнениях. Возможно, вам не хватает некоторых членов, если это так, то все его коэффициенты просто равны нулю.2 или x, то коэффициенты a и b равны 1.

    .

Добавить комментарий

Ваш адрес email не будет опубликован.

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск