Решение неравенства примеры – Решение неравенств · Калькулятор Онлайн · с подробным решением

Числовые неравенства и их свойства

С неравенствами мы познакомились  в школе, где применяем числовые неравенства. В данной статье рассмотрим свойства числовых неравенств, не которых строятся принципы работы с ними.

Свойства неравенств аналогичны свойствам числовых неравенств. Будут рассмотрены свойства, его обоснования, приведем примеры.

Числовые неравенства: определение, примеры

При введении понятия неравенства имеем, что их определение производится по виду записи.  Имеются алгебраические выражения, которые имеют знаки ≠, <, >, ≤ , ≥. Дадим определение.

Определение 1

Числовым неравенством называют неравенство, в записи которого обе стороны имеют числа и числовые выражения.

Числовые неравенства рассматриваем еще в школе после изучения натуральных чисел. Такие операции сравнения изучаются поэтапно. Первоначальные имею вид 1<5, 5+7>3. После чего правила дополняются, а неравенства усложняются, тогда получаем неравенства вида 523>5,1(2), ln 0.73-172<0.

Свойства числовых неравенств

Чтобы правильно работать с неравенствами, необходимо использовать свойства числовых неравенств. Они идут из понятия неравенства. Такое понятие задается при помощи утверждения, которое обозначается как «больше» или «меньше».

Определение 2
  • число a больше b, когда  разность a-b – положительное число;
  • число a меньше b, когда разность a-b – отрицательное число;
  • число a равно b, когда разность a-bравняется нулю.

Определение используется при решении неравенств с отношениями «меньше или равно», «больше или равно». Получаем, что

Определение 3
  • a больше или равно b, когда a-b является неотрицательным числом;
  • a меньше или равно b, когда a-b является неположительным числом.

Определения будут использованы при доказательствах свойств числовых неравенств.

Основные свойства

Рассмотрим 3 основные неравенства. Использование знаков < и > характерно при свойствах:

Определение 4
  • антирефлексивности, которое говорит о том, что любое число a из неравенств a<a и a>a считается неверным. Известно, что для любого a имеет место быть равенство a−a=0, отсюда получаем, что а=а. Значит,

zaochnik.com

Равносильные неравенства, преобразование неравенств

В процессе решения неравенств зачастую происходит переход от заданного неравенства к неравенствам иного вида, имеющим то же решение, но определяемое проще. Иными словами, в результате преобразований заданное неравенство возможно заменить равносильным ему, облегчающим поиск решения. Данная статья посвящена способам равносильных преобразований. Сформулируем определение, рассмотрим основные виды преобразований.

Равносильные неравенства: определение, примеры

Определение 1

Равносильные неравенства – неравенства, имеющие одни и те же решения. В частном случае, неравенства, не имеющие решений, тоже называются равносильными.

Иными словами, если неравенства равносильны и имеют решения, то любое решение первого будет являться и решением второго. Ни одно из равносильных неравенств не имеет решений, не являющихся решениями других, равносильных ему неравенств.

Приведем пример:

Пример 1

Даны три равносильных неравенства: x > 2, 2·x:2 > 2 и x>3-1. В самом деле, множества решений этих неравенств одинаковые, решение каждого их них – числовой промежуток (2, +∞).

Неравенства х6≥-2 и |х+7|< 0 являются равносильными, поскольку оба не имеют решений.

Неравенства х>3 и х≥3 – не равносильные: х=3 служит решением второго из этих равенств, но не служит решением первого.

Отметим, что указанное определение относится к неравенствам как с одной переменной, так и с двумя, тремя и более.

Равносильные преобразования неравенств

Возможно совершить некоторые действия с правой и левой частью неравенств, что даст возможность получать новые неравенства, имеющие решения, как и у исходного.

Определение 2

Равносильное преобразование неравенства – это замена исходного неравенства равносильным ему, т.е. таким, которое имеет то же множество решений. Сами действия-преобразования, приводящие к равносильному неравенству, тоже называют равносильными преобразованиями.

Равносильные преобразования дают возможность находить решения неравенств, преобразуя заданное неравенство в равносильное ему, но более простое и удобное для решения.

Рассмотрим основные виды равносильных преобразований: по сути без них не обходится решение ни одного неравенства. Отметим также, что равносильные преобразования неравенств очень похожи на равносильные преобразования уравнений. Схожи и принципы доказательства, только, конечно, в данном случае доказательства будут строиться на основе свойств числовых неравенств.

Итак, перечислим основные виды равносильных преобразований неравенств:

  1. Замена выражений в обоих частях неравенства тождественно равными выражениями на об

zaochnik.com

Решение квадратных неравенств графически

Графический метод является одним из основных методов решения квадратных неравенств. В статье мы приведем алгоритм применения графического метода, а затем рассмотрим частные случаи на примерах.

Суть графического метода

Метод применим для решения любых неравенств, не только квадратных. Суть его вот в чем: правую и левую части неравенства рассматривают как две отдельные функции y=f(x) и y=g(x), их графики строят в прямоугольной системе координат и смотрят, какой из графиков располагается выше другого, и на каких промежутках. Оцениваются промежутки следующим образом:

Определение 1
  • решениями неравенства f(x)>g(x) являются интервалы, где график функции f выше графика функции g;
  • решениями неравенства f(x)≥g(x) являются интервалы, где график функции f не ниже графика функции g;
  • решениями неравенства f(x)<g(x) являются интервалы, где график функции f ниже графика функции g;
  • решениями неравенства f(x)≤g(x) являются интервалы, где график функции f не выше графика функции g;
  • абсциссы точек пересечения графиков функций f и g являются решениями уравнения f(x)=g(x).

Рассмотрим приведенный выше алгоритм на примере. Для этого возьмем квадратное неравенство a·x2+b·x+c<0 (≤, >, ≥) и выведем из него две функции. Левая часть неравенства будет отвечать  y=a·x2+b·x+c (при этом f(x)=a·x2+b·x+c), а правая y=0 (при этом g(x)=0).

Графиком первой функции является парабола, второй прямая линия, которая совпадает с осью абсцисс Ох. Проанализируем положение параболы относительно оси Ох. Для этого выполним схематический рисунок.

Решение с двумя корнями у квадратного трехчлена

Решение с двумя корнями у квадратного трехчлена

Ветви параболы направлены вверх. Она пересекает ось Ох в точках x1 и x2. Коэффициент а в данном случае положительный, так как именно он отвечает за направление

zaochnik.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *