Все про треугольник: Треугольники, виды и свойства / math4school.ru

Содержание

Треугольник, все про треугольники

Определение треугольника

В любом треугольнике три угла и три стороны.

Против большего угла треугольника лежит большая сторона.

Виды треугольников

Треугольники бывают

Треугольник называется

Основные линии треугольника

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектрисой угла треугольника называется луч, исходящий из вершины треугольника и делящий его пополам.

Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону (или ее продолжение).

Средняя линия треугольника – это отрезок, соединяющий середины двух сторон треугольника и параллельный третьей стороне.

В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.

Два треугольника называются равными, если у них равны соответствующие стороны и соответствующие углы.

Признаки равенства треугольников

I признак (по двум сторонам и углу между ними). Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

II признак (по стороне и прилежащим углам). Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

III признак (по трем сторонам). Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Подробнее про признаки равенства треугольников читайте по ссылке.

Признаки подобия треугольников

Треугольники называются подобными, если их стороны пропорциональны.

I признак. Если два угла одного треугольника раны двум углам другого треугольника, то такие треугольники подобны.

II признак. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то такие треугольники подобны.

III признак. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Подробнее про признаки подобия треугольников читайте по ссылке.

Теоремы треугольников

Для любого треугольника справедливы следующие теоремы.

Подробнее про теорему косинусов читайте по ссылке.

Подробнее про теорему синусов читайте по ссылке.

Примеры решения задач

Основные факты о треугольниках, теория в ЕГЭ по математике

\[{\Large{\text{Основные сведения}}}\]

Определения

Угол – это геометрическая фигура, состоящая из точки и двух лучей, выходящих из этой точки. Градусная мера угла может принимать значения от \(0^\circ\) до \(180^\circ\) включительно.

\circ\).

Вертикальные углы равны: \(\alpha=\gamma\).


 

Определения

Треугольник – это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой (называемых вершинами треугольника), и отрезков, соединяющих эти точки (называемых сторонами треугольника). Треугольник со своей внутренностью будем сокращенно называть также треугольником.

Угол (внутренний) треугольника – угол, образованный вершиной треугольника и двумя его сторонами.


 

Теоремы: признаки равенства треугольников

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

 

2. Если сторона и два прилежащих угла одного треугольника соответственно равны стороне и двум прилежащим углам другого треугольника, то такие треугольники равны.

 

3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны. \circ\).

 

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

 

Замечание

Если в треугольнике один угол тупой, то высоты, опущенные из вершин острых углов, упадут не на сторону, а на продолжение стороны (рис. 1).

 

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).


 

\[{\Large{\text{Параллельные прямые}}}\]

Определение

Две различные прямые на плоскости называются параллельными, если они не пересекаются.

 

Замечание

Заметим, что на плоскости существует три вида взаимного расположения прямых: совпадают, пересекаются и параллельны.

 

Аксиома параллельных прямых

Через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. \circ\), то \(\angle 4 = \angle 1 + \angle 2\), что и требовалось доказать.  

\[{\Large{\text{Равнобедренный треугольник}}}\]

Определения

Треугольник называется равнобедренным, если две его стороны равны.
Эти стороны называются боковыми сторонами треугольника, а третья сторона — основанием.

 

Треугольник называется равносторонним, если все его стороны равны.
Равносторонний треугольник, очевидно, является и равнобедренным.

 

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

 

Доказательство

Пусть \(ABC\) – равнобедренный треугольник, \(AB = BC\), \(BD\) – биссектриса (проведённая к основанию).

Рассмотрим треугольники \(ABD\) и \(BCD\): \(AB = BC\), \(\angle ABD = \angle CBD\), \(BD\) – общая. Таким образом, \(\triangle ABD = \triangle BCD\) по двум сторонам и углу между ними.

Из равенства этих треугольников следует, что \(AD = DC\), следовательно, \(BD\) – медиана. \circ = \angle CDB\), то есть \(BD\) – высота.

 

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

 

Теорема

В равнобедренном треугольнике углы при основании равны.

 

Доказательство

Проведем биссектрису \(BD\) (см. рисунок из предыдущей теоремы). Тогда \(\triangle ABD=\triangle CBD\) по первому признаку, следовательно, \(\angle A=\angle C\).

 

Теоремы: признаки равнобедренного треугольника

1. Если в треугольнике два угла равны, то треугольник равнобедренный.

 

2. Если в треугольнике высота является медианой или биссектрисой, то треугольник равнобедренный.  

Теорема о соотношении между сторонами и углами треугольника

В треугольнике против большей стороны лежит больший угол. \circ\).


 

Треугольники — геометрия и искусство

Треугольник — это простейшая фигура: три стороны и три вершины. Именно в силу своей простоты треугольник явился основой многих измерений. Землемеры при своих вычислениях площадей земельных участков и астрономы при нахождении расстояний до планет и звезд используют свойства треугольников. Так возникла наука тригонометрия — наука об измерении треугольников, о выражении сторон через его углы.


Через площадь треугольника выражается площадь любого многоугольника: достаточно разбить этот многоугольник на треугольники, вычислить их площади и сложить результаты. Правда, верную формулу для площади треугольника удалось найти не сразу. В одном египетском папирусе 4000-летней давности говорится, что площадь равнобедренного треугольника равна произведению половины основания на боковую сторону (а не на высоту).

Через 2000 лет в Древней Греции изучение свойств треугольника ведется очень активно. Пифагор открывает свою теорему. Герон Александрийский находит формулу, выражающую площадь треугольника через его стороны; становится известным, что биссектрисы, как меридианы и высоты, пересекаются в одной точке.

Особенно активно свойства треугольника исследовались в XV-XVI веках. Вот одна из красивейших теорем того времени, принадлежащая Леонарду Эйлеру: «Середины сторон треугольника, основания его высот и середины отрезков высот от вершины до точки их пересечения, лежат, на одной окружности». Эта окружность получила название «окружности девяти точек». Ее центр оказался в се-редине отрезка, соединяющего точку пересечения высот с центром описанной окружности.

Император Франции Наполеон свободное время посвящал занятиям математикой. Ему приписывает такую красивую, с теорему: «Если на  сторонах треугольника во внешнюю сторону построить равносторонние треугольники, то их центры будут вершинами равностороннего треугольника». Этот треугольник называется внешним треугольником Наполеона. » Аналогично строится и внутренний треугольник Наполеона.

Огромное количество работ по геометрии треугольника, проведенное в XY-XIX веках, создало впечатление, что о треугольнике уже известно все.

Тем удивительнее было открытие, сделанное американским математиком Франком Морли. Он доказал, что если в треугольнике провести через вершины лучи, делящие углы на три равные части, то точки пересечения смежных трисектрис углов  являются вершинами равностороннего треугольника (1899).


Энц. «Я познаю мир. Математика», 2006

Треугольники. Основные понятия — урок. Единый государственный экзамен, Математика 2021.

Медиана, биссектриса и высота треугольника

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.

Если у треугольника две стороны равны, то такой треугольник называют равнобедренным.

Равные стороны называют боковыми, а третью сторону — основанием.

 

 

\(AB = BC\) — боковые стороны, \(AC\) — основание.

Если у треугольника все три стороны равны, то такой треугольник является равносторонним.

Равнобедренный треугольник имеет некоторые свойства, которые не имеют треугольники с разными сторонами.

1. В равнобедренном треугольнике углы при основании равны.

2. В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

3. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.

4. В равнобедренном треугольнике высота, проведённая к основанию, является биссектрисой и медианой.

Сумма углов треугольника равна \(180°\).

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна \(90°\).

 

Следствие 2.  В равнобедренном прямоугольном треугольнике каждый острый угол равен.

 

Следствие 3.  В равностороннем треугольнике каждый угол равен.

 

Следствие 4.  В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

 

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Остроугольный, прямоугольный и тупоугольный треугольники

Как гласит четвёртое следствие из теоремы о сумме углов треугольника, можно выделить три вида треугольников в зависимости от углов.

 

 

У треугольника \(KLM\) все углы острые.

 

 

У треугольника \(KMN\) угол \(K = 90°\).

У прямоугольного треугольника сторона, лежащая против прямого угла, называется гипотенузой, а две остальные стороны — катетами.

На рисунке \(MN\) — гипотенуза, \(MK\) и \(KN\) — катеты.

 

 

У треугольника \(KLM\) один угол тупой.

Урок 31. повторение. треугольник. равенство треугольников — Геометрия — 7 класс

Геометрия

7 класс

Урок № 31

Повторение. Треугольник. Равенство треугольников

Перечень вопросов, рассматриваемых в теме:

  • Треугольник.
  • Признаки равенства треугольников.
  • Прямоугольный треугольник и его свойства.
  • Алгоритмы решения задач.

Тезаурус:

Треугольник – это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

Сумма углов треугольника равна 180°.

Признаки равенства треугольников.

1 признак. Если две стороны и угол между ними одного
треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

2 признак. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

3 признак. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

Основная литература:

1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л.С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л.С., Бутузов В.Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В.Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М.А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения

Треугольник

– это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.

В любом треугольнике:

  1. Против большей стороны лежит больший угол.
  2. Против равных сторон лежат равные углы.
  3. Сумма углов треугольника равна 180 °

Равенство треугольников.

Два треугольника называются равными, если их можно совместить наложением.

На рисунке изображены равные треугольники ABC и А1В1С1. Каждый из этих треугольников можно наложить на другой так, что они полностью совместятся, т. е. попарно совместятся их вершины, стороны и углы.

Первый признак равенства треугольников:

По двум сторонам и угол между ними.

Второй признак равенства треугольников:

По стороне и двум прилежащим к ней углам.

Третий признак равенства треугольников:

По трём сторонам.

Признаки равенства прямоугольных треугольников.

Свойства прямоугольных треугольников.

    1. Сумма острых углов равна 90°.
    2. Против угла 30° лежит катет, равный половине гипотенузы.

Разбор решения заданий тренировочного модуля.

Решение задач по теме: «Прямоугольный треугольник».

Задача 1.

Дано: ∠C = 44°.Найдите: ∠ABD.

Помним, что сумма острых углов равна 90°. Равные углы отмечены на рисунке. ∠ABD = 44°.

Ответ: ∠ABD = 44°.

Задача 2.

Дано: AB = 6. Найдите: AC.

Указания к решению: помним, что против угла 30° лежит катет, равный половине гипотенузы. На рисунке найдите три треугольника, в каждом из которых, есть угол 30°.

∆ABH, ∆BHC, ∆ABC.

В треугольнике ABC против угла С = 30°, лежит катет AB = ½AC. Значит, AC = 12.

Ответ: AC = 12.

Задача 3. В ∆АВС: ∠А = 30°, ∠В = 80°. Биссектрисы углов А и С пересекаются в точке О. Найти величину ∠АОВ.

Решение:

Сумма углов А и В равна 110°. Сумма их половинок равна 55°. Тогда: ∠АОВ = 180° – 55° = 125°.

Ответ: ∠АОВ = 125°.

Задача 4.

Может ли существовать треугольник со сторонами: 14 см, 17 см, 10 см?

Должно выполняться неравенство треугольника. Проверяем большую сторону: 17 < 14 +10 верно.

Ответ: существует.

Прямоугольный треугольник

Треугольник в геометрии представляет одну из основных фигур. Из предыдущих уроков вы знаете, что треугольник – это многоугольная фигура, которая имеет три угла и три стороны.

Треугольник называют прямоугольным, если у него есть прямой угол, который равен 90 градусов.
Прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. Гипотенуза является самой большой стороной этого треугольника.

  • По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы).
  • Сумма двух острых углов прямоугольного треугольника равна прямому углу.
  • Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника.
  • Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
  • Медиана прямоугольного треугольника, проведенная из вершины прямоуго угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Свойства и особенности прямоугольных треугольников

I – е свойство. В прямоугольном треугольнике сумма его острых углов равна 90°. Против большей стороны треугольника лежит больший угол, а против большего угла лежит большая сторона. В прямоугольном треугольнике наибольшим углом, является прямоугольный угол. Если же в треугольнике самый большой угол имеет более 90°, то такой треугольник перестает быть прямоугольным, так как сумма всех углов превысить 180 градусов. Со всего этого следует, что гипотенуза является наибольшей стороной треугольника.

II – е свойство. Катет прямоугольного треугольника, который лежит против угла в 30 градусов, равен половине гипотенузе.

III – е свойство. Если же в прямоугольном треугольнике катет равняется половине гипотенузы, то и угол, который лежит напротив данного катета будет равен 30 градусам.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!