1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
Решите уравнение sin(x)^(2)-sin(x)=0 (синус от (х) в степени (2) минус синус от (х) равно 0)
Дано уравнение$$\sin^{2}{\left (x \right )} — \sin{\left (x \right )} = 0$$
преобразуем
$$\left(\sin{\left (x \right )} — 1\right) \sin{\left (x \right )} = 0$$
$$\sin^{2}{\left (x \right )} — \sin{\left (x \right )} = 0$$
Сделаем замену
$$w = \sin{\left (x \right )}$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = \frac{\sqrt{D} — b}{2 a}$$
$$w_{2} = \frac{- \sqrt{D} — b}{2 a}$$
где D = b^2 — 4*a*c — это дискриминант.
Т.к.
$$a = 1$$
$$b = -1$$
$$c = 0$$
, то
D = b^2 - 4 * a * c =
(-1)^2 - 4 * (1) * (0) = 1
Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b - sqrt(D)) / (2*a)
или
$$w_{1} = 1$$
$$w_{2} = 0$$
делаем обратную замену
$$\sin{\left (x \right )} = w$$
Дано уравнение
$$\sin{\left (x \right )} = w$$
— это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$
$$x = 2 \pi n — \operatorname{asin}{\left (w \right )} + \pi$$
Или
$$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$
$$x = 2 \pi n — \operatorname{asin}{\left (w \right )} + \pi$$
, где n — любое целое число
подставляем w:
$$x_{1} = 2 \pi n + \operatorname{asin}{\left (w_{1} \right )}$$
$$x_{1} = 2 \pi n + \operatorname{asin}{\left (1 \right )}$$
$$x_{1} = 2 \pi n + \frac{\pi}{2}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left (w_{2} \right )}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left (0 \right )}$$
$$x_{2} = 2 \pi n$$
$$x_{3} = 2 \pi n — \operatorname{asin}{\left (w_{1} \right )} + \pi$$
$$x_{3} = 2 \pi n — \operatorname{asin}{\left (1 \right )} + \pi$$
$$x_{3} = 2 \pi n + \frac{\pi}{2}$$
$$x_{4} = 2 \pi n — \operatorname{asin}{\left (w_{2} \right )} + \pi$$
$$x_{4} = 2 \pi n — \operatorname{asin}{\left (0 \right )} + \pi$$
$$x_{4} = 2 \pi n + \pi$$
www.kontrolnaya-rabota.ru
Решите уравнение sin(3*x)/sin(x)=0 (синус от (3 умножить на х) делить на синус от (х) равно 0)
Дано уравнение$$\frac{\sin{\left (3 x \right )}}{\sin{\left (x \right )}} = 0$$
преобразуем
$$- 4 \sin^{2}{\left (x \right )} + 3 = 0$$
$$\frac{1}{\sin{\left (x \right )}} \left(3 \left(- \sin^{2}{\left (x \right )} + 1\right) \sin{\left (x \right )} — \sin^{3}{\left (x \right )}\right) = 0$$
Сделаем замену
$$w = \sin{\left (x \right )}$$
Раскроем выражение в уравнении
$$\frac{1}{w} \left(- w^{3} + 3 w \left(- w^{2} + 1\right)\right) = 0$$
Получаем квадратное уравнение
$$- 4 w^{2} + 3 = 0$$
Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = \frac{\sqrt{D} — b}{2 a}$$
$$w_{2} = \frac{- \sqrt{D} — b}{2 a}$$
где D = b^2 — 4*a*c — это дискриминант.
Т.к.
$$a = -4$$
$$b = 0$$
$$c = 3$$
, то
D = b^2 - 4 * a * c =
(0)^2 - 4 * (-4) * (3) = 48
Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b - sqrt(D)) / (2*a)
или
$$w_{1} = — \frac{\sqrt{3}}{2}$$
$$w_{2} = \frac{\sqrt{3}}{2}$$
делаем обратную замену
$$\sin{\left (x \right )} = w$$
Дано уравнение
$$\sin{\left (x \right )} = w$$
— это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$
$$x = 2 \pi n — \operatorname{asin}{\left (w \right )} + \pi$$
Или
$$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$
$$x = 2 \pi n — \operatorname{asin}{\left (w \right )} + \pi$$
, где n — любое целое число
подставляем w:
$$x_{1} = 2 \pi n + \operatorname{asin}{\left (w_{1} \right )}$$
$$x_{1} = 2 \pi n + \operatorname{asin}{\left (- \frac{\sqrt{3}}{2} \right )}$$
$$x_{1} = 2 \pi n — \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left (w_{2} \right )}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left (\frac{\sqrt{3}}{2} \right )}$$
$$x_{2} = 2 \pi n + \frac{\pi}{3}$$
$$x_{3} = 2 \pi n — \operatorname{asin}{\left (w_{1} \right )} + \pi$$
$$x_{3} = 2 \pi n — \operatorname{asin}{\left (- \frac{\sqrt{3}}{2} \right )} + \pi$$
$$x_{3} = 2 \pi n + \frac{4 \pi}{3}$$
$$x_{4} = 2 \pi n — \operatorname{asin}{\left (w_{2} \right )} + \pi$$
$$x_{4} = 2 \pi n — \operatorname{asin}{\left (\frac{\sqrt{3}}{2} \right )} + \pi$$
$$x_{4} = 2 \pi n + \frac{2 \pi}{3}$$
www.kontrolnaya-rabota.ru
Решите неравенство sin(x)+1/2>=0 (синус от (х) плюс 1 делить на 2 больше или равно 0)
Дано неравенство:$$\sin{\left (x \right )} + \frac{1}{2} \geq 0$$
Чтобы решить это нер-во — надо сначала решить соотвествующее ур-ние:
$$\sin{\left (x \right )} + \frac{1}{2} = 0$$
Решаем:
Дано уравнение
$$\sin{\left (x \right )} + \frac{1}{2} = 0$$
— это простейшее тригонометрическое ур-ние
Перенесём 1/2 в правую часть ур-ния
с изменением знака при 1/2
Получим:
$$\sin{\left (x \right )} = — \frac{1}{2}$$
Это ур-ние преобразуется в
$$x = 2 \pi n + \operatorname{asin}{\left (- \frac{1}{2} \right )}$$
$$x = 2 \pi n — \operatorname{asin}{\left (- \frac{1}{2} \right )} + \pi$$
Или
$$x = 2 \pi n — \frac{\pi}{6}$$
$$x = 2 \pi n + \frac{7 \pi}{6}$$
, где n — любое целое число
$$x_{1} = 2 \pi n — \frac{\pi}{6}$$
$$x_{2} = 2 \pi n + \frac{7 \pi}{6}$$
$$x_{1} = 2 \pi n — \frac{\pi}{6}$$
$$x_{2} = 2 \pi n + \frac{7 \pi}{6}$$
Данные корни
$$x_{1} = 2 \pi n — \frac{\pi}{6}$$
$$x_{2} = 2 \pi n + \frac{7 \pi}{6}$$
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
$$x_{0} \leq x_{1}$$
Возьмём например точку
$$x_{0} = x_{1} — \frac{1}{10}$$
=
pi 1 - -- + 2*pi*n - -- 6 10
=
$$2 \pi n — \frac{\pi}{6} — \frac{1}{10}$$
подставляем в выражение
$$\sin{\left (x \right )} + \frac{1}{2} \geq 0$$
/ pi 1 \ 1 sin|- -- + 2*pi*n - --| + - >= 0 \ 6 10/ 2
1 /1 pi \ - - sin|-- + -- - 2*pi*n| >= 0 2 \10 6 /
но
1 /1 pi \ - - sin|-- + -- - 2*pi*n|
Тогда
$$x \leq 2 \pi n - \frac{\pi}{6}$$
не выполняется
значит одно из решений нашего неравенства будет при:
$$x \geq 2 \pi n - \frac{\pi}{6} \wedge x \leq 2 \pi n + \frac{7 \pi}{6}$$_____ / \ -------•-------•------- x1 x2
www.kontrolnaya-rabota.ru