Закон на Ампер – Уикипедия
Серия статии на тема Класическа електродинамика |
Електричество Магнетизъм Електромагнетизъм Електродинамика Известни учени |
Законът на Ампер (открит от Андре Мари Ампер) показва зависимостта на интегралното магнитно поле около затворен контур, създавано от електрическия ток, преминаващ през контура. Законът е магнитен аналог на закона на Гаус и е едно от четирите уравнения на Максуел, образуващи основата на класическия електромагнетизъм.
В оригиналната си форма законът на Ампер определя магнитното поле H→{\displaystyle {\vec {H}}}, причинено от ток с плътност J→{\displaystyle {\vec {J}}}:
- ∮CH→⋅dl→=∫∫SJ→⋅dS→=Ienc{\displaystyle \oint _{C}{\vec {H}}\cdot \mathrm {d} {\vec {l}}=\int \!\!\!\!\int _{S}{\vec {J}}\cdot \mathrm {d} {\vec {S}}=I_{\mathrm {enc} }}
където
- ∮C{\displaystyle \oint _{C}} е линейният интеграл по затворения контур (затворената крива) C,
- H→{\displaystyle {\vec {H}}} е магнитното поле в ампери на метър [А/m],
- dl→{\displaystyle \mathrm {d} {\vec {l}}} е безкрайно малък векторен елемент от контура C,
- J→{\displaystyle {\vec {J}}} е плътността на тока (в ампери на квадратен метър) през повърхността S, обхваната от контура C,
- dS→ {\displaystyle \mathrm {d} {\vec {S}}\!\ } е диференциален векторен елемент, площ с посока нормална към площта S и с безкрайно малка големина,
- Ienc {\displaystyle I_{\mathrm {enc} }\!\ } е токът, обхванат от затворената крива C, или токът, който прониква през площта S.
Уравнението има следния запис в диференциална форма
- ∇→×H→=J→{\displaystyle {\vec {\nabla }}\times {\vec {H}}={\vec {J}}}
където
- ∇→× {\displaystyle {\vec {\nabla }}\times \!\ } е диференциален оператор за ротация.
Интензитетът на магнитното поле H→{\displaystyle {\vec {H}}} се свързва с магнитната индукция B→{\displaystyle {\vec {B}}} (измерва се в тесла [T]) посредством уравнението:
- B→ = μH→{\displaystyle {\vec {B}}\ =\ \mu {\vec {H}}}
където μ {\displaystyle \mu \!\ } е магнитната проницаемост на средата (измерва се в хенри на метър [H/m]).
Закон Ампера.
В 21 веке, казалось бы, открыты все законы природы. Магнетизм, электричество, молекулярный и атомный мир являют собой открытую книгу. При этом многие законы, открытые сто с лишним лет назад, не теряют актуальности и по сей день, являясь основой работы многих привычных нам предметов. В первую очередь, речь идет об электричестве. Имя Андре Ампера, французского физика-изобретателя не только дало название физическому закону, но и широко известно физикам и школьникам по всему миру благодаря описанному им явлению.
В 1820 году, основываясь на описанном Эрстедом взаимодействии магнитной стрелки и электрического тока, текущего по проводу, Ампер совершил важнейшее открытие, получившее название Закон Ампера. Формулировка его вкратце звучит следующим образом:
пропускание электрического тока в одном направлении через двух проводников, расположенных параллельно друг другу, ведет к их взаимоотталкиванию. Пропускание его в разных направлениях при прочих равных вызывает взаимное притяжение двух проводников.
Помимо этих заключений, видимых невооруженных глазом, Закон Ампера включает в себя ряд понятий, открытых тем же исследователем в то же время.
Сделав вывод о поведении двух проводников при пропускании через них тока в разных направлениях, французский ученый стал исследовать силы, обеспечивающие их таковое поведение. Логика его рассуждений была проста: электрический ток, пропущенный через проводник, создает магнитное поле. Образно его можно представить в качестве концентрических кругов, обрамляющих сечение проводника. Другой проводник, при условии, что он параллелен первому и расстояние между ними невелико, попадает в область воздействия магнитного поля, в результате чего образуется сила, воздействующая на атомы проводника и приводящая их в движение. Закон Ампера также позволяет объяснить возникшие наблюдения:
- Магнитное поле является результатом протекания любого электрического тока;
- Магнитное поле оказывает воздействие на движущиеся электрические заряды.
Основываясь на проделанном эксперименте и полученных результатах, Андре Ампер связал силы и явления, воздействующие на проводники в момент проведения через них электрического тока, поэтому Закон Ампера может быть представлен формулой:
F = IBl sin a.
Где F — сила Ампера, т.е. сила, воздействующая на проводник с током, находящийся в магнитном поле;
I — сила тока;
l— длина проводника;
B— модуль вектора магнитной индукции;
sin a — синус угла, образовавшегося между вектором магнитной индукции и проводником.
Сила Ампера — векторная величина, т.е. имеющая направление. Определить его можно с помощью так называемого «Правила левой руки»:
- четыре пальца левой руки направлены в сторону направления протекания электрического тока, вектор магнитной индукции (B) при этом входит в ладонь перпендикулярно. Тогда направление силы тока будет указывать отогнутый в плоскости ладони большой палец.
В современной науке применение Закона Ампера, в основном, приходится на производство электротехники. В частности, речь идет о громкоговорителях и динамиках. Принцип работы громкоговорителя, например, заключается в преобразовании электрической энергии в акустическую. Катушка — основа любого динамика или громкоговорителя — пропускает через себя переменный ток, частота которого соответствует частоте микрофона или динамика. Как гласит Закон Ампера, катушка начинает колебаться под действием тока, колебания передаются параллельно оси громкоговорителя диафрагме устройства. В результате излучаются звуковые волны, которые мы и слышим.
Кроме того, что создал Закон Ампера, изобретатель известен тем, что оставил свое имя в физике на века, поскольку оно было присвоено единице измерения силы тока.
Закон Ампера Википедия
Зако́н Ампе́ра — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила оказывается линейно зависимой как от тока, так и от магнитной индукции B{\displaystyle B}. Выражение для силы dF→{\displaystyle d{\vec {F}}}, с которой магнитное поле действует на элемент объёма dV{\displaystyle dV} проводника с током плотности j→{\displaystyle {\vec {j}}}, находящегося в магнитном поле с индукцией B→{\displaystyle {\vec {B}}}, в Международной системе единиц (СИ) имеет вид:
- dF→=j→×B→dV.{\displaystyle d{\vec {F}}={\vec {j}}\times {\vec {B}}dV.}
Если ток течёт по тонкому проводнику, то j→dV=Idl→{\displaystyle {\vec {j}}dV=Id{\vec {l}}}, где dl→{\displaystyle d{\vec {l}}} — «элемент длины» проводника — вектор, по модулю равный dl{\displaystyle dl} и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:
Направление силы dF→{\displaystyle d{\vec {F}}} определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.
Модуль силы Ампера можно найти по формуле:
- dF=IBdlsinα,{\displaystyle dF=IBdl\sin \alpha ,}
где α{\displaystyle \alpha } — угол между вектором магнитной индукции и направлением, вдоль которого течёт ток.
Сила F{\displaystyle F} максимальна, когда проводник с током расположен перпендикулярно линиям магнитной индукции (α=90∘,sinα=1{\displaystyle \alpha =90^{\circ },\sin \alpha =1}):
- F=BLI{\displaystyle F=BLI}, где L{\displaystyle L} — длина проводника.
Два параллельных проводника
Два бесконечных параллельных проводника в вакуумеНаиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r{\displaystyle r} друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}. Требуется найти силу, действующую на единицу длины проводника.
В соответствии с законом Био — Савара — Лапласа бесконечный проводник с током I1{\displaystyle I_{1}} в точке на расстоянии r{\displaystyle r} создаёт магнитное поле с индукцией
- B1(r)=μ04π2I1r,{\displaystyle B_{1}(r)={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}}{r}},}
где μ0{\displaystyle \mu _{0}} — магнитная постоянная.
Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:
- dF→1−2=I2dl→×B→1(r).{\displaystyle d{\vec {F}}_{1-2}=I_{2}d{\vec {l}}\times {\vec {B}}_{1}(r).}
По правилу буравчика, dF→1−2{\displaystyle d{\vec {F}}_{1-2}} направлена в сторону первого проводника (аналогично и для dF→2−1{\displaystyle d{\vec {F}}_{2-1}}, а значит, проводники притягиваются).
Модуль данной силы (r{\displaystyle r} — расстояние между проводниками):
- dF1−2=μ04π2I1I2rdl.{\displaystyle dF_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}dl.}
Интегрируем по участку проводника длины L{\displaystyle L} (пределы интегрирования по l{\displaystyle l} от 0 до L{\displaystyle L}):
- F1−2=μ04π2I1I2r⋅L.{\displaystyle F_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}\cdot L.}
Если L{\displaystyle L} — единичная длина, то это выражение задаёт искомую силу взаимодействия.
Полученная формула используется в СИ для установления численного значения магнитной постоянной μ0{\displaystyle \mu _{0}}. Действительно, ампер, являющийся одной из основных единиц СИ, определяется в ней как «сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7ньютона»[1].
Таким образом, из полученной формулы и определения ампера следует, что магнитная постоянная μ0{\displaystyle \mu _{0}} равна 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Н/А² или, что то же самое, 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Гн/ м точно.
Проявления
- Электродинамическая деформация шин (токопроводов) трёхфазного переменного тока на подстанциях при воздействии токов короткого замыкания.
- Раздвигание токопроводов рельсотронов при выстреле.
Применение
Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера. Принцип работы электромеханических машин (движение части обмотки ротора относительно части обмотки статора) в основан на использовании закона Ампера, и самый широко распространённый и используемый чуть ли не во всех технических конструкциях агрегат — это электродвигатель, либо, что конструктивно почти то же самое — генератор. Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение. Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др).
Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеют движущиеся узлы, основаны на эксплуатации закона Ампера.
Также, он находит применение во многих других видах электротехники, например, в динамическое головке (динамике): в динамике (громкоговорителе) для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит, на него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.
Также:
История
В 1820 году Ханс Кристиан Эрстед открыл, что провод, по которому идёт ток, создает магнитное поле и заставляет отклоняться стрелку компаса. Он заметил, что магнитное поле перпендикулярно току, а не параллельно ему, как можно было бы ожидать. Ампер, вдохновлённый демонстрацией опыта Эрстеда, обнаружил, что два параллельных проводника, по которым течёт ток, притягиваются или отталкиваются в зависимости от того, в одну ли или разные стороны по ним идёт ток. Таким образом ток не только производит магнитное поле, но магнитное поле действует на ток. Уже через неделю после объявления Эрстедом о своём опыте, Ампер предложил объяснение: проводник действует на магнит, потому что в магните течёт ток по множеству маленьких замкнутых траекторий[2][3].
Сила Ампера и третий закон Ньютона
Пусть есть два тонких проводника с токами I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}} , заданные кривыми C1{\displaystyle C_{1}} и C2{\displaystyle C_{2}}. Сами кривые могут быть заданы радиус-векторами r1{\displaystyle \mathbf {r} _{1}} и r2{\displaystyle \mathbf {r} _{2}}. Найдем силу, действующую непосредственно на токовый элемент одного провода со стороны токового элемента другого провода. По закону Био — Савара — Лапласа токовый элемент I1dr1{\displaystyle I_{1}\mathrm {d} \mathbf {r} _{1}}, находящийся в точке r1{\displaystyle \mathbf {r} _{1}}, создает в точке r2{\displaystyle \mathbf {r} _{2}} элементарное магнитное поле dB1(r2)=μ04πI1[dr1,r2−r1]|r2−r1|3{\displaystyle \mathrm {d} \mathbf {B} _{1}(\mathbf {r} _{2})={\mu _{0} \over 4\pi }{\frac {I_{1}[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}. По закону Ампера сила, действующая со стороны поля dB1(r2){\displaystyle \mathrm {d} \mathbf {B} _{1}(\mathbf {r} _{2})} на токовый элемент I2dr2{\displaystyle I_{2}\mathrm {d} \mathbf {r} _{2}}, находящийся в точке r2{\displaystyle \mathbf {r} _{2}}, равна
- d2F12=I2dr2×dB1(r2)=μ0I1I24π[dr2,[dr1,r2−r1]]|r2−r1|3.{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{12}=I_{2}\mathrm {d} \mathbf {r} _{2}\times \mathrm {d} \mathbf {B} _{1}(\mathbf {r} _{2})={\mu _{0}I_{1}I_{2} \over 4\pi }{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Токовый элемент I2dr2{\displaystyle I_{2}\mathrm {d} \mathbf {r} _{2}}, находящийся в точке r2{\displaystyle \mathbf {r} _{2}}, создает в точке r1{\displaystyle \mathbf {r} _{1}} элементарное магнитное поле
- dB2(r1)=μ04πI2[dr2,r1−r2]|r2−r1|3{\displaystyle \mathrm {d} \mathbf {B} _{2}(\mathbf {r} _{1})={\mu _{0} \over 4\pi }{\frac {I_{2}[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{1}-\mathbf {r} _{2}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}.
Сила Ампера, действующая со стороны поля dB2(r1){\displaystyle \mathrm {d} \mathbf {B} _{2}(\mathbf {r} _{1})} на токовый элемент I1dr1{\displaystyle I_{1}\mathrm {d} \mathbf {r} _{1}}, находящийся в точке r1{\displaystyle \mathbf {r} _{1}}, равна
- d2F21=I1dr1×dB2(r1)=μ0I1I24π[dr1,[dr2,r1−r2]]|r2−r1|3.{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{21}=I_{1}\mathrm {d} \mathbf {r} _{1}\times \mathrm {d} \mathbf {B} _{2}(\mathbf {r} _{1})={\mu _{0}I_{1}I_{2} \over 4\pi }{\frac {[\mathrm {d} \mathbf {r} _{1},[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{1}-\mathbf {r} _{2}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
В общем случае для произвольных r1{\displaystyle \mathbf {r} _{1}} и r2{\displaystyle \mathbf {r} _{2}} силы d2F12{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{12}} и d2F21{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{21}} даже не коллинеарны, а значит, не подчиняются третьему закону Ньютона: d2F12+d2F21≠0{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{12}+\mathrm {d} ^{2}\mathbf {F} _{21}\neq 0}. Однако ничего страшного в этом нет. Физиками доказано, что постоянный ток может течь только по замкнутому контуру. Поэтому третий закон Ньютона должен действовать только для сил, с которыми взаимодействуют два замкнутых проводника с током. Убедимся, что для двух таких проводников третий закон Ньютона выполняется.
Пусть кривые C1{\displaystyle C_{1}} и C2{\displaystyle C_{2}} являются замкнутыми. Тогда ток I1{\displaystyle I_{1}} создает в точке r2{\displaystyle \mathbf {r} _{2}} магнитное поле
- B1(r2)=μ0I14π∮C1[dr1,r2−r1]|r2−r1|3,{\displaystyle \mathbf {B} _{1}(\mathbf {r} _{2})={\mu _{0}I_{1} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}},}
где интегрирование по C1{\displaystyle C_{1}} производится в направлении течения тока I1{\displaystyle I_{1}}. Сила Ампера, действующая со стороны поля B1(r2){\displaystyle \mathbf {B} _{1}(\mathbf {r} _{2})} на контур C2{\displaystyle C_{2}} с током I2{\displaystyle I_{2}}, равна
- F12=∮C2(I2dr2×B1(r2))=∮C2(I2dr2×μ0I14π∮C1[dr1,r2−r1]|r2−r1|3)=μ0I1I24π∮C2∮C1[dr2,[dr1,r2−r1]]|r2−r1|3,{\displaystyle \mathbf {F} _{12}=\oint \limits _{\mathbb {C} _{2}}(I_{2}\mathrm {d} \mathbf {r} _{2}\times \mathbf {B} _{1}(\mathbf {r} _{2}))=\oint \limits _{\mathbb {C} _{2}}(I_{2}\mathrm {d} \mathbf {r} _{2}\times {\mu _{0}I_{1} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}})={\mu _{0}I_{1}I_{2} \over 4\pi }\oint \limits _{\mathbb {C} _{2}}\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}},}
где интегрирование по C2{\displaystyle C_{2}} производится в направлении течения тока I2{\displaystyle I_{2}}. Что характерно, порядок интегрирования значения не имеет.
Аналогично сила Ампера, действующая со стороны поля B2(r1){\displaystyle \mathbf {B} _{2}(\mathbf {r} _{1})}, создаваемого током I2{\displaystyle I_{2}}, на контур C1{\displaystyle C_{1}} с током I1{\displaystyle I_{1}}, равна
- F21=∮C1(I1dr1×B2(r1))=μ0I1I24π∮C1∮C2[dr1,[dr2,r1−r2]]|r2−r1|3=∮C1∮C2d2F21.{\displaystyle \mathbf {F} _{21}=\oint \limits _{\mathbb {C} _{1}}(I_{1}\mathrm {d} \mathbf {r} _{1}\times \mathbf {B} _{2}(\mathbf {r} _{1}))={\mu _{0}I_{1}I_{2} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {[\mathrm {d} \mathbf {r} _{1},[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{1}-\mathbf {r} _{2}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}\mathrm {d} ^{2}\mathbf {F} _{21}.}
Равенство F12+F21=0{\displaystyle \mathbf {F} _{12}+\mathbf {F} _{21}=0} эквивалентно равенству ∮C2∮C1[dr2,[dr1,r2−r1]]|r2−r1|3=∮C1∮C2[dr1,[dr2,r2−r1]]|r2−r1|3{\displaystyle \oint \limits _{\mathbb {C} _{2}}\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {[\mathrm {d} \mathbf {r} _{1},[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}.
Чтобы доказать это последнее равенство, заметим, что выражение для силы Ампера очень похоже на выражение для циркуляции магнитного поля по замкнутому контуру, в котором внешнее скалярное произведение заменили векторным произведением. Тогда понятно, в каком направлении нужно двигаться.
Пользуясь тождеством Лагранжа, двойное векторное произведение в левой части доказываемого равенства можно записать так:
- [dr2,[dr1,r2−r1]]=dr1(dr2,r2−r1)−(r2−r1)(dr2,dr1).{\displaystyle [\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]=\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})-(\mathbf {r} _{2}-\mathbf {r} _{1})(\mathrm {d} \mathbf {r} _{2},\mathrm {d} \mathbf {r} _{1}).}
Тогда левая часть доказываемого равенства примет вид:
- ∮C2∮C1[dr2,[dr1,r2−r1]]|r2−r1|3=∮C1∮C2dr1(dr2,r2−r1)|r2−r1|3−∮C1∮C2(r2−r1)(dr2,dr1)|r2−r1|3.{\displaystyle \oint \limits _{\mathbb {C} _{2}}\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}-\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{2}-\mathbf {r} _{1})(\mathrm {d} \mathbf {r} _{2},\mathrm {d} \mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Рассмотрим отдельно интеграл ∮C1∮C2dr1(dr2,r2−r1)|r2−r1|3{\displaystyle \oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}, который можно переписать в следующем виде:
- ∮C1∮C2dr1(dr2,r2−r1)|r2−r1|3=∮C1dr1∮C2(r2−r1,d(r2−r1))|r2−r1|3.{\displaystyle \oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\mathrm {d} \mathbf {r} _{1}\oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{2}-\mathbf {r} _{1},\mathrm {d} (\mathbf {r} _{2}-\mathbf {r} _{1}))}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Сделав замену переменной во внутреннем интеграле на r=r2−r1{\displaystyle \mathbf {r} =\mathbf {r} _{2}-\mathbf {r} _{1}}, где вектор r{\displaystyle \mathbf {r} } изменяется по замкнутому контуру C2′{\displaystyle C_{2}’}, обнаружим, что внутренний интеграл является циркуляцией градиентного поля по замкнутому контуру. А значит, он равен нулю:
- ∮C2(r2−r1,d(r2−r1))|r2−r1|3=∮C2′(r,dr)|r|3=−∮C2′(grad(1|r|
Закон Ампера — Википедия
Материал из Википедии — свободной энциклопедии
Зако́н Ампе́ра — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Выражение для силы dF→{\displaystyle d{\vec {F}}}, с которой магнитное поле действует на элемент объёма dV{\displaystyle dV} проводника с током плотности j→{\displaystyle {\vec {j}}}, находящегося в магнитном поле с индукцией B→{\displaystyle {\vec {B}}}, в Международной системе единиц (СИ) имеет вид:
- dF→=j→×B→dV{\displaystyle d{\vec {F}}={\vec {j}}\times {\vec {B}}dV}.
Если ток течёт по тонкому проводнику, то j→dV=Idl→{\displaystyle {\vec {j}}dV=Id{\vec {l}}}, где dl→{\displaystyle d{\vec {l}}} — «элемент длины» проводника — вектор, по модулю равный dl{\displaystyle dl} и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:
Направление силы dF→{\displaystyle d{\vec {F}}} определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.
Модуль силы Ампера можно найти по формуле:
- dF=IBdlsinα,{\displaystyle dF=IBdl\sin \alpha ,}
где α{\displaystyle \alpha } — угол между вектором магнитной индукции и направлением, вдоль которого течёт ток.
Сила dF{\displaystyle dF} максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции (α=90∘,sinα=1{\displaystyle \alpha =90^{\circ },\sin \alpha =1}):
- dFmax=IBdl.{\displaystyle dF_{max}=IBdl.}
Два параллельных проводника
Два бесконечных параллельных проводника в вакуумеНаиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r{\displaystyle r} друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}. Требуется найти силу, действующую на единицу длины проводника.
В соответствии с законом Био — Савара — Лапласа бесконечный проводник с током I1{\displaystyle I_{1}} в точке на расстоянии r{\displaystyle r} создаёт магнитное поле с индукцией
- B1(r)=μ04π2I1r,{\displaystyle B_{1}(r)={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}}{r}},}
где μ0{\displaystyle \mu _{0}} — магнитная постоянная.
Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:
- dF→1−2=I2dl→×B→1(r).{\displaystyle d{\vec {F}}_{1-2}=I_{2}d{\vec {l}}\times {\vec {B}}_{1}(r).}
По правилу буравчика, dF→1−2{\displaystyle d{\vec {F}}_{1-2}} направлена в сторону первого проводника (аналогично и для dF→2−1{\displaystyle d{\vec {F}}_{2-1}}, а значит, проводники притягиваются).
Модуль данной силы (r{\displaystyle r} — расстояние между проводниками):
- dF1−2=μ04π2I1I2rdl.{\displaystyle dF_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}dl.}
Интегрируем, учитывая только проводник единичной длины (пределы l{\displaystyle l} от 0 до 1):
- F1−2=μ04π2I1I2r.{\displaystyle F_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}.}
Полученная формула
закон Ампера — с русского на все языки
ЗАКОН АМПЕРА — закон (см.), определяющий силу F, с которой магнитное поле, характеризуемое вектором магнитной (см.) В, действует на элементарный отрезок ΔL проводника с током /. В скалярном виде З. А. выглядит так: где а угол между направлениями векторов ΔL и В … Большая политехническая энциклопедия
закон Ампера — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN Ampere s law … Справочник технического переводчика
Закон Ампера — Классическая электродинамика … Википедия
закон Ампера — Ampero dėsnis statusas T sritis Standartizacija ir metrologija apibrėžtis Dviejų srovės elementų sąveikos dėsnis. atitikmenys: angl. Ampère’s law vok. Amperesches Gesetz, n rus. закон Ампера, m pranc. formule d’Ampère, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas
закон Ампера — Ampero dėsnis statusas T sritis fizika atitikmenys: angl. Ampère’s law vok. Amperesches Gesetz, n rus. закон Ампера, m pranc. formule d’Ampère, f … Fizikos terminų žodynas
Закон Био — Савара — Лапласа — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм … Википедия
Закон Видемана — Франца — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм … Википедия
Закон Кулона — О законе сухого трения см. Закон Амонтона Кулона Классическая электродинамика … Википедия
Закон электромагнитной индукции Фарадея — Классическая электродинамика … Википедия
Закон Био — Классическая электродинамика … Википедия
Закон Ома — Классическая электродинамика … Википедия