2Y 2 y 2: Attention Required! | Cloudflare – Attention Required! | Cloudflare

Mathway | Популярные задачи

1 Найти производную — d/dx квадратный корень x
2 Найти производную — d/dx натуральный логарифм x
3 Вычислить интеграл натурального логарифма x по x
4 Найти производную — d/dx e^x
5 Вычислить интеграл e^(2x) относительно x
6 Найти производную — d/dx 1/x
7 Найти производную — d/dx x^2
8 Вычислить интеграл e^(-x) относительно x
9 Найти производную — d/dx 1/(x^2)
10 Найти производную — d/dx sin(x)^2
11 Найти производную — d/dx sec(x)
12 Вычислить интеграл e^x относительно x
13 Вычислить интеграл x^2 относительно x
14 Вычислить интеграл квадратного корня x по x
15 Вычислить натуральный логарифм 1
16 Вычислить e^0
17 Вычислить sin(0)
18 Найти производную — d/dx cos(x)^2
19 Вычислить интеграл 1/x относительно x
20 Вычислить cos(0)
21 Вычислить интеграл sin(x)^2 относительно x
22 Найти производную — d/dx x^3
23 Найти производную — d/dx sec(x)^2
24 Найти производную — d/dx 1/(x^2)
25 Вычислить интеграл arcsin(x) относительно x
26 Вычислить интеграл cos(x)^2 относительно x
27 Вычислить интеграл sec(x)^2 относительно x
28 Найти производную — d/dx e^(x^2)
29 Вычислить интеграл в пределах от 0 до 1 кубического корня 1+7x по x
30 Найти производную — d/dx sin(2x)
31 Вычислить интеграл натурального логарифма x по x
32 Найти производную — d/dx tan(x)^2
33 Вычислить интеграл e^(2x) относительно x
34 Вычислить интеграл 1/(x^2) относительно x
35 Найти производную — d/dx 2^x
36 График натуральный логарифм a
37 Вычислить e^1
38 Вычислить интеграл 1/(x^2) относительно x
39 Вычислить натуральный логарифм 0
40 Найти производную — d/dx cos(2x)
41 Найти производную — d/dx xe^x
42 Вычислить интеграл 1/x относительно x
43 Вычислить интеграл 2x относительно x
44 Найти производную — d/dx ( натуральный логарифм x)^2
45 Найти производную — d/dx натуральный логарифм (x)^2
46 Найти производную — d/dx 3x^2
47 Вычислить натуральный логарифм 2
48 Вычислить интеграл xe^(2x) относительно x
49 Найти производную — d/dx 2e^x
50 Найти производную — d/dx натуральный логарифм 2x
51 Найти производную — d/dx -sin(x)
52 Вычислить tan(0)
53 Найти производную — d/dx 4x^2-x+5
54 Найти производную — d/dx y=16 корень четвертой степени 4x^4+4
55 Найти производную — d/dx 2x^2
56 Вычислить интеграл e^(3x) относительно x
57 Вычислить интеграл cos(2x) относительно x
58 Вычислить интеграл cos(x)^2 относительно x
59 Найти производную — d/dx 1/( квадратный корень x)
60 Вычислить интеграл e^(x^2) относительно x
61 Вычислить sec(0)
62 Вычислить e^infinity
63 Вычислить 2^4
64 Найти производную — d/dx x/2
65 Вычислить 4^3
66 Найти производную — d/dx -cos(x)
67 Найти производную — d/dx sin(3x)
68 Вычислить натуральный логарифм 1/e
69 Вычислить интеграл x^2 относительно x
70 Упростить 1/( кубический корень от x^4)
71 Найти производную — d/dx 1/(x^3)
72 Вычислить интеграл e^x относительно x
73 Вычислить интеграл tan(x)^2 относительно x
74 Вычислить интеграл 1 относительно x
75 Найти производную — d/dx x^x
76 Найти производную — d/dx x натуральный логарифм x
77 Вычислить интеграл sin(x)^2 относительно x
78 Найти производную — d/dx x^4
79 Вычислить предел (3x-5)/(x-3), если x стремится к 3
80 Вычислить интеграл от x^2 натуральный логарифм x по x
81 Найти производную — d/dx f(x) = square root of x
82 Найти производную — d/dx x^2sin(x)
83 Вычислить интеграл sin(2x) относительно x
84 Найти производную — d/dx 3e^x
85 Вычислить интеграл xe^x относительно x
86 Найти производную — d/dx y=x^2
87 Найти производную — d/dx квадратный корень x^2+1
88 Найти производную — d/dx sin(x^2)
89 Вычислить интеграл e^(-2x) относительно x
90 Вычислить интеграл натурального логарифма квадратного корня x по x
91 Вычислить 2^5
92 Найти производную — d/dx e^2
93 Найти производную — d/dx x^2+1
94 Вычислить интеграл sin(x) относительно x
95 Вычислить 2^3
96 Найти производную — d/dx arcsin(x)
97 Вычислить предел (sin(x))/x, если x стремится к 0
98 Вычислить e^2
99 Вычислить интеграл e^(-x) относительно x
100 Вычислить интеграл 1/x относительно x

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение cos((5pi)/12)
3 Найти точное значение arctan(-1)
4 Найти точное значение sin(75)
5 Найти точное значение arcsin(-1)
6 Найти точное значение sin(60 град. )
7 Найти точное значение sin(pi/3)
8 Найти точное значение arctan(- квадратный корень 3)
9 Найти точное значение cos(pi/3)
10 Найти точное значение sin(0)
11 Найти точное значение cos(pi/12)
12 Найти точное значение sin(30 град. )
13 Найти точное значение cos(60 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение sin((2pi)/3)
16 Найти точное значение arcsin(1)
17 Найти точное значение sin(pi/2)
18 График f(x)=x^2
19 Найти точное значение sin(45 град. )
20 Найти точное значение sin(15)
21 Упростить квадратный корень x^2
22 Найти точное значение arccos(-1)
23 Найти точное значение tan(60 град. )
24 Найти точное значение cos(45 град. )
25 Вычислить логарифм по основанию 2 от 8
26 Упростить квадратный корень x^3
27 Найти точное значение arcsin(-1/2)
28 Найти точное значение cos(45)
29 Найти точное значение tan(30 град. )
30 Найти точное значение tan(30)
31 Найти точное значение arcsin(1)
32 Найти точное значение arctan( квадратный корень 3)
33 Найти точное значение sin(45)
34 Найти точное значение cos(0)
35 Найти точное значение tan(45 град. )
36 Найти точное значение arctan(0)
37 Преобразовать из радианов в градусы pi/3
38 График y=x^2
39 Вычислить натуральный логарифм 1
40 Вычислить логарифм по основанию 3 от 81
41 Найти точное значение cos(15)
42 Вычислить логарифм по основанию 5 от 125
43 Упростить кубический корень из квадратного корня 64x^6
44 Вычислить логарифм по основанию 3 от 81
45 Вычислить логарифм по основанию 2 от 8
46 Найти точное значение arcsin(-( квадратный корень 2)/2)
47 Найти точное значение cos(75)
48 Найти точное значение sin((3pi)/4)
49 Упростить (1/( квадратный корень x+h)-1/( квадратный корень x))/h
50 Упростить кубический корень x^3
51 Найти точное значение sin((5pi)/12)
52 Найти точное значение arcsin(-1/2)
53 Найти точное значение sin(30)
54 Найти точное значение sin(105)
55 Найти точное значение tan((3pi)/4)
56 Упростить квадратный корень s квадратный корень s^7
57 Упростить корень четвертой степени x^4y^2z^2
58 Найти точное значение sin(60)
59 Найти точное значение arccos(-( квадратный корень 2)/2)
60 Найти точное значение tan(0)
61 Найти точное значение sin((3pi)/2)
62 Вычислить логарифм по основанию 4 от 64
63 Упростить корень шестой степени 64a^6b^7
64 Вычислить квадратный корень 2
65 Найти точное значение arccos(1)
66 Найти точное значение arcsin(( квадратный корень 3)/2)
67 График f(x)=2^x
68 Найти точное значение sin((3pi)/4)
69 Преобразовать из радианов в градусы (3pi)/4
70 Вычислить логарифм по основанию 5 от 25
71 Найти точное значение tan(pi/2)
72 Найти точное значение cos((7pi)/12)
73 Упростить 1/( кубический корень от x^4)
74 Найти точное значение sin((5pi)/6)
75 Преобразовать из градусов в радианы 150
76 Найти точное значение tan(pi/2)
77 Множитель x^3-8
78 Упростить корень пятой степени 1/(x^3)
79 Упростить корень пятой степени 1/(x^3)
80 Найти точное значение sin(135)
81 Преобразовать из градусов в радианы 30
82 Преобразовать из градусов в радианы 60
83 Найти точное значение sin(120)
84 Найти точное значение tan((2pi)/3)
85 Вычислить -2^2
86 Найти точное значение tan(15)
87 Найти точное значение tan((7pi)/6)
88 Найти точное значение arcsin(( квадратный корень 3)/2)
89 Найти точное значение sin(pi/2)
90 Преобразовать из радианов в градусы (5pi)/6
91 Упростить кубический корень 8x^7y^9z^3
92 Упростить arccos(( квадратный корень 3)/2)
93 Упростить i^2
94 Вычислить кубический корень 24 кубический корень 18
95 Упростить квадратный корень 4x^2
96 Найти точное значение sin((3pi)/4)
97 Найти точное значение tan((7pi)/6)
98 Найти точное значение tan((3pi)/4)
99 Найти точное значение arccos(-1/2)
100 Упростить корень четвертой степени x^4

Определить вид кривой 2-го порядка онлайн · Как пользоваться Контрольная Работа РУ

Определить вид кривой второго порядка онлайн

Приведём примеры кривых второго порядка, для которых можно определить канонический вид онлайн:

Кривая

Уравнение Канонический вид Тип Измерение
9x^2+12xy+4y^2-24x-16y+3=0 x^2=1 Две параллельные прямые Кривая
x^2-2xy+y^2-10x-6y+25=0 y^2=4*sqrt(2)*x Парабола Линия
5x^2+4xy+y^2-6x-2y+2=0 x^2/(1/sqrt(2*sqrt(2)+3))^2 + y^2/(1/sqrt(-2*sqrt(2)+3))^2=0 Вырожденный эллипс Линия
5*x^2+ 4*x*y+8*y^2+8*x+14*y+5=0 x^2/(3/4)^2+y^2/(1/2)^2=1 Эллипс

Ислледование на определение вида кривой будет выглядеть примерно так:

Имеется два способа: Прямой метод и метод инвариантов:

Дано ур-ние кривой 2-порядка: $$5 x^{2} + 4 x y + 8 x + 8 y^{2} + 14 y + 5 = 0$$ Это уравнение имеет вид: $$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$ где $$a_{11} = 5$$ $$a_{12} = 2$$ $$a_{13} = 4$$ $$a_{22} = 8$$ $$a_{23} = 7$$ $$a_{33} = 5$$ Вычислим определитель $$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$ или, подставляем $$\Delta = \left|\begin{matrix}5 & 2\\2 & 8\end{matrix}\right|$$ $$\Delta = 36$$ Т.к. $$\Delta$$ не равен 0, то находим центр канонической системы координат. Для решаем систему уравнений $$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$ $$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$ подставляем коэффициенты $$5 x_{0} + 2 y_{0} + 4 = 0$$ $$2 x_{0} + 8 y_{0} + 7 = 0$$ тогда $$x_{0} = — \frac{1}{2}$$ $$y_{0} = — \frac{3}{4}$$ Тем самым мы перешли к уравнению в системе координат O’x’y’ $$a’_{33} + a_{11} x’^{2} + 2 a_{12} x’ y’ + a_{22} y’^{2} = 0$$ где $$a’_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$ или $$a’_{33} = 4 x_{0} + 7 y_{0} + 5$$ $$a’_{33} = — \frac{9}{4}$$ тогда ур-ние превратится в $$5 x’^{2} + 4 x’ y’ + 8 y’^{2} — \frac{9}{4} = 0$$ Делаем поворот системы полученной координат на угол φ $$x’ = \tilde x \cos{\left (\phi \right )} — \tilde y \sin{\left (\phi \right )}$$ $$y’ = \tilde x \sin{\left (\phi \right )} + \tilde y \cos{\left (\phi \right )}$$ φ — определяется из формулы $$\cot{\left (2 \phi \right )} = \frac{a_{11} — a_{22}}{2 a_{12}}$$ подставляем коэффициенты $$\cot{\left (2 \phi \right )} = — \frac{3}{4}$$ тогда $$\phi = — \frac{1}{2} \operatorname{acot}{\left (\frac{3}{4} \right )}$$ $$\sin{\left (2 \phi \right )} = — \frac{4}{5}$$ $$\cos{\left (2 \phi \right )} = \frac{3}{5}$$ $$\cos{\left (\phi \right )} = \sqrt{\frac{1}{2} \cos{\left (2 \phi \right )} + \frac{1}{2}}$$ $$\sin{\left (\phi \right )} = \sqrt{- \cos^{2}{\left (\phi \right )} + 1}$$ $$\cos{\left (\phi \right )} = \frac{2 \sqrt{5}}{5}$$ $$\sin{\left (\phi \right )} = — \frac{\sqrt{5}}{5}$$ подставляем коэффициенты $$x’ = \frac{2 \sqrt{5}}{5} \tilde x + \frac{\tilde y}{5} \sqrt{5}$$ $$y’ = — \frac{\tilde x}{5} \sqrt{5} + \frac{2 \sqrt{5}}{5} \tilde y$$ тогда ур-ние превратится из $$5 x’^{2} + 4 x’ y’ + 8 y’^{2} — \frac{9}{4} = 0$$ в $$8 \left(- \frac{\tilde x}{5} \sqrt{5} + \frac{2 \sqrt{5}}{5} \tilde y\right)^{2} + 4 \left(- \frac{\tilde x}{5} \sqrt{5} + \frac{2 \sqrt{5}}{5} \tilde y\right) \left(\frac{2 \sqrt{5}}{5} \tilde x + \frac{\tilde y}{5} \sqrt{5}\right) + 5 \left(\frac{2 \sqrt{5}}{5} \tilde x + \frac{\tilde y}{5} \sqrt{5}\right)^{2} — \frac{9}{4} = 0$$ упрощаем $$4 \tilde x^{2} + 9 \tilde y^{2} — \frac{9}{4} = 0$$ Данное уравнение является эллипсом $$\frac{\tilde x^{2}}{\left(\frac{3}{4}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{1}{2}\right)^{2}} = 1$$ — приведено к каноническому виду.
Центр канонической системы координат в точке O:


(-1/2, -3/4)

Базис канонической системы координат $$\vec e_1 = \left ( \frac{2 \sqrt{5}}{5}, \quad — \frac{\sqrt{5}}{5}\right )$$ $$\vec e_2 = \left ( \frac{\sqrt{5}}{5}, \quad \frac{2 \sqrt{5}}{5}\right )$$

Метод инвариантов

Дано ур-ние линии 2-порядка: $$5 x^{2} + 4 x y + 8 x + 8 y^{2} + 14 y + 5 = 0$$ Это уравнение имеет вид: $$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$ где $$a_{11} = 5$$ $$a_{12} = 2$$ $$a_{13} = 4$$ $$a_{22} = 8$$ $$a_{23} = 7$$ $$a_{33} = 5$$ Инвариантами данного уравнения при преобразовании координат являются определители: $$I_{1} = a_{11} + a_{22}$$


     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$ $$I{\left (\lambda \right )} = \left|\begin{matrix}a_{11} — \lambda & a_{12}\\a_{12} & a_{22} — \lambda\end{matrix}\right|$$


     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

подставляем коэффициенты $$I_{1} = 13$$


     |5  2|
I2 = |    |
     |2  8|

$$I_{3} = \left|\begin{matrix}5 & 2 & 4\\2 & 8 & 7\\4 & 7 & 5\end{matrix}\right|$$ $$I{\left (\lambda \right )} = \left|\begin{matrix}- \lambda + 5 & 2\\2 & — \lambda + 8\end{matrix}\right|$$


     |5  4|   |8  7|
K2 = |    | + |    |
     |4  5|   |7  5|

$$I_{1} = 13$$ $$I_{2} = 36$$ $$I_{3} = -81$$ $$I{\left (\lambda \right )} = \lambda^{2} — 13 \lambda + 36$$ $$K_{2} = 0$$ Т.к. $$I_{2} > 0 \wedge I_{1} I_{3} < 0$$ то по признаку типов линий:
данное уравнение имеет тип : эллипс.
Составляем характеристическое уравнение для нашей линии: $$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$ или $$\lambda^{2} — 13 \lambda + 36 = 0$$ $$\lambda_{1} = 9$$ $$\lambda_{2} = 4$$ тогда канонический вид уравнения будет $$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$ или $$9 \tilde x^{2} + 4 \tilde y^{2} — \frac{9}{4} = 0$$ $$\frac{\tilde x^{2}}{\left(\frac{1}{2}\right)^{2}} + \frac{\tilde y^{2}}{\left(\frac{3}{4}\right)^{2}} = 1$$ — приведено к каноническому виду.

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы
pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение cos((5pi)/12)
3 Найти точное значение arctan(-1)
4 Найти точное значение sin(75)
5 Найти точное значение arcsin(-1)
6 Найти точное значение sin(60 град. )
7 Найти точное значение sin(pi/3)
8 Найти точное значение arctan(- квадратный корень 3)
9 Найти точное значение cos(pi/3)
10 Найти точное значение sin(0)
11 Найти точное значение cos(pi/12)
12 Найти точное значение sin(30 град. )
13 Найти точное значение cos(60 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение sin((2pi)/3)
16 Найти точное значение arcsin(1)
17 Найти точное значение sin(pi/2)
18 График f(x)=x^2
19 Найти точное значение sin(45 град. )
20 Найти точное значение sin(15)
21 Упростить квадратный корень x^2
22 Найти точное значение arccos(-1)
23 Найти точное значение tan(60 град. )
24 Найти точное значение cos(45 град. )
25 Вычислить логарифм по основанию 2 от 8
26 Упростить квадратный корень x^3
27 Найти точное значение arcsin(-1/2)
28 Найти точное значение cos(45)
29 Найти точное значение tan(30 град. )
30 Найти точное значение tan(30)
31 Найти точное значение arcsin(1)
32 Найти точное значение arctan( квадратный корень 3)
33 Найти точное значение sin(45)
34 Найти точное значение cos(0)
35 Найти точное значение tan(45 град. )
36 Найти точное значение arctan(0)
37 Преобразовать из радианов в градусы pi/3
38 График y=x^2
39 Вычислить натуральный логарифм 1
40 Вычислить логарифм по основанию 3 от 81
41 Найти точное значение cos(15)
42 Вычислить логарифм по основанию 5 от 125
43 Упростить кубический корень из квадратного корня 64x^6
44 Вычислить логарифм по основанию 3 от 81
45 Вычислить логарифм по основанию 2 от 8
46 Найти точное значение arcsin(-( квадратный корень 2)/2)
47 Найти точное значение cos(75)
48 Найти точное значение sin((3pi)/4)
49 Упростить (1/( квадратный корень x+h)-1/( квадратный корень x))/h
50 Упростить кубический корень x^3
51 Найти точное значение sin((5pi)/12)
52 Найти точное значение arcsin(-1/2)
53 Найти точное значение sin(30)
54 Найти точное значение sin(105)
55 Найти точное значение tan((3pi)/4)
56 Упростить квадратный корень s квадратный корень s^7
57 Упростить корень четвертой степени x^4y^2z^2
58 Найти точное значение sin(60)
59 Найти точное значение arccos(-( квадратный корень 2)/2)
60 Найти точное значение tan(0)
61 Найти точное значение sin((3pi)/2)
62 Вычислить логарифм по основанию 4 от 64
63 Упростить корень шестой степени 64a^6b^7
64 Вычислить квадратный корень 2
65 Найти точное значение arccos(1)
66 Найти точное значение arcsin(( квадратный корень 3)/2)
67 График f(x)=2^x
68 Найти точное значение sin((3pi)/4)
69 Преобразовать из радианов в градусы (3pi)/4
70 Вычислить логарифм по основанию 5 от 25
71 Найти точное значение tan(pi/2)
72 Найти точное значение cos((7pi)/12)
73 Упростить 1/( кубический корень от x^4)
74 Найти точное значение sin((5pi)/6)
75 Преобразовать из градусов в радианы 150
76 Найти точное значение tan(pi/2)
77 Множитель x^3-8
78 Упростить корень пятой степени 1/(x^3)
79 Упростить корень пятой степени 1/(x^3)
80 Найти точное значение sin(135)
81 Преобразовать из градусов в радианы 30
82 Преобразовать из градусов в радианы 60
83 Найти точное значение sin(120)
84 Найти точное значение tan((2pi)/3)
85 Вычислить -2^2
86 Найти точное значение tan(15)
87 Найти точное значение tan((7pi)/6)
88 Найти точное значение arcsin(( квадратный корень 3)/2)
89 Найти точное значение sin(pi/2)
90 Преобразовать из радианов в градусы (5pi)/6
91 Упростить кубический корень 8x^7y^9z^3
92 Упростить arccos(( квадратный корень 3)/2)
93 Упростить i^2
94 Вычислить кубический корень 24 кубический корень 18
95 Упростить квадратный корень 4x^2
96 Найти точное значение sin((3pi)/4)
97 Найти точное значение tan((7pi)/6)
98 Найти точное значение tan((3pi)/4)
99 Найти точное значение arccos(-1/2)
100 Упростить корень четвертой степени x^4

Определить вид поверхности 2-го порядка онлайн · Как пользоваться Контрольная Работа РУ

Определить вид поверхности второго порядка онлайн

Приведём примеры поверхностей второго порядка, для которых можно определить канонический вид онлайн:

 

Уравнение Канонический вид Тип Измерение
2*x^2+4*y^2+z^2-4*x*y-4*y-2*z+5=0 z^2/(2/sqrt(2)/sqrt(3-sqrt(5)))^2+x^2/(2/sqrt(2)/sqrt(3+sqrt(5)))^2+y^2/(2/sqrt(2))^2=-1 Мнимый эллипсоид Поверхность
x^2+y^2-z^2-2*x-2*y+2*z+2=0 x^2/1^2+y^2-z^2=-1 Двухсторонний гиперболоид Поверхность
x^2+y^2-6*x+6*y-4*z+18=0 x^2/2+y^2-2*z=0 или x^2/2+y^2+2*z=0 Эллиптический параболоид Поверхность
x^2+4*y^2+9*z^2+4*x*y+12*y*z+6*x*z-4*x-8*y-12*z+3=0 x^2/=1/14 Две параллельные плоскости Поверхность

Ислледование на определение вида будет выглядеть примерно так:

Дано ур-ние поверхности 2-порядка: $$x^{2} — 2 x + y^{2} — 2 y — z^{2} + 2 z + 2 = 0$$ Это уравнение имеет вид: $$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$ где $$a_{11} = 1$$ $$a_{12} = 0$$ $$a_{13} = 0$$ $$a_{14} = -1$$ $$a_{22} = 1$$ $$a_{23} = 0$$ $$a_{24} = -1$$ $$a_{33} = -1$$ $$a_{34} = 1$$ $$a_{44} = 2$$ Инвариантами данного уравнения при преобразовании координат являются определители: $$I_{1} = a_{11} + a_{22} + a_{33}$$


     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$ $$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$ $$I{\left (\lambda \right )} = \left|\begin{matrix}a_{11} — \lambda & a_{12} & a_{13}\\a_{12} & a_{22} — \lambda & a_{23}\\a_{13} & a_{23} & a_{33} — \lambda\end{matrix}\right|$$


     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|


     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

подставляем коэффициенты $$I_{1} = 1$$


     |1  0|   |1  0 |   |1  0 |
I2 = |    | + |     | + |     |
     |0  1|   |0  -1|   |0  -1|

$$I_{3} = \left|\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & -1\end{matrix}\right|$$ $$I_{4} = \left|\begin{matrix}1 & 0 & 0 & -1\\0 & 1 & 0 & -1\\0 & 0 & -1 & 1\\-1 & -1 & 1 & 2\end{matrix}\right|$$ $$I{\left (\lambda \right )} = \left|\begin{matrix}- \lambda + 1 & 0 & 0\\0 & — \lambda + 1 & 0\\0 & 0 & — \lambda — 1\end{matrix}\right|$$


     |1   -1|   |1   -1|   |-1  1|
K2 = |      | + |      | + |     |
     |-1  2 |   |-1  2 |   |1   2|


     |1   0   -1|   |1   0   -1|   |1   0   -1|
     |          |   |          |   |          |
K3 = |0   1   -1| + |0   -1  1 | + |0   -1  1 |
     |          |   |          |   |          |
     |-1  -1  2 |   |-1  1   2 |   |-1  1   2 |

$$I_{1} = 1$$ $$I_{2} = -1$$ $$I_{3} = -1$$ $$I_{4} = -1$$ $$I{\left (\lambda \right )} = — \lambda^{3} + \lambda^{2} + \lambda — 1$$ $$K_{2} = -1$$ $$K_{3} = -4$$ Т.к. $$I_{3} \neq 0$$ то по признаку типов поверхностей:
надо
Составляем характеристическое уравнение для нашей поверхности: $$- I_{1} \lambda^{2} + I_{2} \lambda — I_{3} + \lambda^{3} = 0$$ или $$\lambda^{3} — \lambda^{2} — \lambda + 1 = 0$$ $$\lambda_{1} = 1$$ $$\lambda_{2} = 1$$ $$\lambda_{3} = -1$$ тогда канонический вид уравнения будет $$\tilde z^{2} \lambda_{3} + \tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{4}}{I_{3}} = 0$$ $$\tilde x^{2} + \tilde y^{2} — \tilde z^{2} + 1 = 0$$ $$- \tilde z^{2} + \frac{\tilde x^{2}}{1^{2}} + \frac{\tilde y^{2}}{1^{2}} = -1$$ это уравнение для типа двусторонний гиперболоид
— приведено к каноническому виду

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *