A вектор b вектор: Векторное произведение векторов. – определение, сложение, умножение, скалярное и векторное произведение

Содержание

определение, сложение, умножение, скалярное и векторное произведение

В статье узнаете что такое вектор, векторные компоненты, единичный вектор, как складывать вектора, умножать вектора на скаляр, скалярное, векторное и смешанное произведение двух векторов.

Сохранение физической величины с вектором обычно означает совершенно иную ситуацию, чем просто сохранение ее скалярной длины. Постоянное значение импульса p (скаляр) может означать совершенно иную ситуацию, чем постоянный вектор p.

Вектор должен иметь три необходимые характеристики: значение (длина), направление, начало и конец.

Любое изменение любого из этих признаков — длины, направления или начало с концом — означает, что создан другой вектор. Два вектора равны тогда и только тогда, когда они имеют равную длину, направление и начало с концом.

Векторные компоненты

Компонентами вектора являются его проекции на оси системы координат.

Компонентами вектора являются его проекции на оси системы координат

Также в трехмерном пространстве векторы A называются векторами, которые являются проекциями этого вектора A на оси системы координат.

Имея вектор A, мы погружаем его в систему координат x, y, z. Векторы, являющиеся проекциями вектора A на оси системы, называются векторными компонентами вектора A. Вектор A является векторной суммой составляющих векторов Ax, Ay и Az .

Результирующий вектор А из проекций

Единичный вектор

Единичный вектор, имеющий то же направление, что и вектор, на который он ссылается, важен, но его длина всегда равна 1.

Длина единичного вектора равна 1

Единичные векторы осей координат. Мы также присваиваем единичные векторы оси системы отсчета. а) относится к правовращающей системе и б) к левосторонней системе.

Единичные векторы на осях координат

Сложение векторов

Сумма вектора обычно не совпадает с суммой скалярных величин:

Сумма векторов метод треугольника

Добавление двух или более векторов друг к другу сводится к добавлению их компонентов, то есть проекций на опорные оси. Результирующий вектор называется случайным вектором. Для двух векторов результирующий вектор является диагональю параллелограмма, построенного на этих векторах. Метод параллелограмма.

Сумма вектора метод параллелограмма

 В случае большего числа векторов результирующий вектор получается путем рисования одного из этих векторов, затем в конце первого вектора мы начинаем второй, в конце второго мы даем начало третьего и так далее. Полученный вектор является вектором, начало которого находится в начале первого из добавленных векторов. и его конец в конце последнего. При изменении порядка сложения результирующий вектор (красный) не меняет длину, направление:

Сумма вектора метод параллелограммаПолучение вектора используя соединения векторов

Это правило добавления векторов также действует в трехмерном пространстве:

Добавление векторов в трехмерном пространстве

Умножение вектора на скаляр

умножение вектора на скаляр

Самым простым умножением, выполняемым на векторах, является умножение вектора на скаляр (число). Такое умножение не меняет направление вектора, но, как правило, меняет его длину и может изменить его конец (когда скаляр является отрицательным числом). Когда вектор A умножается на α-скаляр, мы получаем новый вектор B:

умножение вектора на скаляр

Скалярное произведение и векторное произведение двух векторов являются очень важными направления в физике и геометрии. Существует также смешанное произведение трех векторов.

Скалярное произведение двух векторов

Формально скалярное произведение векторов представляет собой точку, и ее значение определяется зависимостью

Скалярное произведение двух векторов ФОРМУЛЫ

Скалярное произведение описывает способ, которым оба вектора видят друг друга, то есть как долго тень (проекция) отбрасывает каждый из векторов в своего партнера, когда угол между ними равен φ

скалярное произведение векторов АБ с проекциями

B cos φ — длина тени, которую вектор B выбрасывает в вектор A. Аналогично, A cos φ — длина тени, которую вектор A выбрасывает в вектор B.

Когда длина проекции (тени) одного из векторов равна нулю, тогда длина проекции второго вектора равна нулю, то есть A • B = 0. Это означает, что эти векторы не работают в одном и том же направлении вообще. Работа, которую мы выполняем при движении автомобиля, зависит не только от приложенной силы F, но и от угла, который создает направление силы и направление пути.

Так как единичные векторы оси системы отсчета х, у и z, которые обозначают векторы ехеY и еz, перпендикулярны друг к другу, то в виду того, что А • В = АВcosφ и что cos 0 = 1 и cos 90o = 0, мы получаем произведение значений этих единичных векторов:

скалярное произведение векторов АБ с проекциями

Выполнение аналогичного умножения на векторы A и B

скалярное произведение векторов АБ с проекциями

мы получили новое выражение для скалярного произведения двух векторов A и B

скалярное произведение векторов АБ с проекциями

Значение скалярного произведения двух векторов A и B можно записать в виде двух эквивалентных выражений:

скалярное произведение векторов АБ с проекциями

Сравнивая оба выражения, мы находим выражение для угла между векторами A и B:

скалярное произведение векторов АБ с проекциями

Векторное произведение двух векторов

Многие важные величины в науке и технике определяются вектором, который является произведением двух других векторов. В таких случаях произведение этих векторов, называемое векторным произведением , приводит к третьему вектору.

В этом случае задача состоит в том, чтобы определить все три особенности вектора C, являющегося произведением векторного произведения векторов A и B:

  • длина
  • направление
  • начало и конец

Произведение векторов 

A и B , приводящее к третьему вектору C, отмечено диагональным крестом

скалярное произведение векторов АБ с проекциями

Направление

Вектор С такой, что вектор перпендикулярен к плоскости, образованной векторами A и B, которая перпендикулярна как к вектору A и B.

скалярное произведение векторов АБ с проекциями

Длина

вектор С равен значению параллелограмма, построенного на векторах А и В. Числовой C = ABsin φ.

скалярное произведение векторов АБ с проекциями

Начало и конец

Вектор С определяет правое направление движения шнека во время нанесения первого вектора, а именно 

А или B.

Изменение порядка применения векторов означает изменение знака векторного произведения.

скалярное произведение векторов АБ с проекциями

Таким образом, действительное свойство векторного произведения выглядит следующим образом A*B= -B*A

В отличие от скалярного произведения, векторное произведение некоммутативно.

скалярное произведение векторов АБ с проекциями

Мы встретимся с векторным произведением на протяжении всего курса физики. Это также часто встречается в механике, а также в науке об электричестве и магнетизме.

В повседневной жизни векторное произведение находится в виде момента силы во вращательном движении. Мы воздействуем на вращательное движение тем эффективнее, чем больше применяем момент силы.

При откручивании гайки гаечным ключом речь идет не только о силе F, но и о способе ее применения (длина рычага R и угол, который создает рычаг с направлением силы).

Практическое использования момента силы на примере

Все эти зависимости элегантно включены в одно выражение в виде векторного произведения:

Практическое использования момента силы на примере

Хотя составляющие вектора C, который является произведением векторного произведения векторов A и B, уже включены в его длину и направление, но имея данные составляющих векторов A и B, мы можем использовать их для определения компонентов вектора C в форме матрицы:

Векторное произведение двух векторов А и Б

Удобнее всего рассчитать этот определитель, расширив относительно первой строки.

Смешанное произведение трех векторов

Смешанное произведение трех векторов является скалярным значением, равным значению детерминанта

Смешанное произведение трех векторов с матрицей

Геометрическая интерпретация: смешанное произведение численно равно объему V параллелепипеда, растянутому по векторам A, B и C:

Смешанное произведение трех векторов с матрицей

Циклическая корректировка векторов в смешанном произведении не меняет значение этого произведения, то есть:

Смешанное произведение трех векторов с матрицей

Скалярное произведение векторов

Геометрическая интерпретация. Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов умноженного на косинус угла между ними:

a · b = |a| · |b| cos α

Алгебраическая интерпретация. Скалярным произведением двух векторов a и b будет скалярная величина, равная сумме попарного произведения координат векторов a и b.

Формулы скалярного произведения векторов заданных координатами

Формула скалярного произведения векторов для плоских задач

В случае плоской задачи скалярное произведение векторов a = {ax ; ay} и b = {bx ; by} можно найти воспользовавшись следующей формулой:

a · b = ax · bx + ay · by

Формула скалярного произведения векторов для пространственных задач

В случае пространственной задачи скалярное произведение векторов a = {ax ; ay ; az} и b = {bx ; by ; bz} можно найти воспользовавшись следующей формулой:

a · b = ax · bx + ay · by + az · bz

Формула скалярного произведения n -мерных векторов

В случае n-мерного пространства скалярное произведение векторов a = {a1 ; a2 ; ... ; an} и b = {b1 ; b2 ; ... ; bn} можно найти воспользовавшись следующей формулой:

a · b = a1 · b1 + a2 · b2 + ... + an · bn

Примеры задач на вычисление скалярного произведения векторов


Примеры вычисления скалярного произведения векторов для плоских задач

Пример 1. Найти скалярное произведение векторов a = {1; 2} и b = {4; 8}.

Решение: a · b = 1 · 4 + 2 · 8 = 4 + 16 = 20.

Пример 2. Найти скалярное произведение векторов a и b, если их длины |a| = 3, |b| = 6, а угол между векторами равен 60˚.

Решение: a · b = |a| · |b| cos α = 3 · 6 · cos 60˚ = 9.

Пример 3. Найти скалярное произведение векторов p = a + 3b и q = 5a - 3 b, если их длины |a| = 3, |b| = 2, а угол между векторами a и b равен 60˚.

Решение:

p · q = (a + 3b) · (5a - 3b) = 5 a · a - 3 a · b + 15 b · a - 9 b · b =

= 5 |a|2 + 12 a · b - 9 |b|2 = 5 · 32 + 12 · 3 · 2 · cos 60˚ - 9 · 22 = 45 +36 -36 = 45.

Пример 4. Найти скалярное произведение векторов (a + 2i)·(b - 2j),если a = {1; 2} и b = {4; -8}.

Решение: Запишем вектора a и b через ортонормированные базисные вектора i и j:

a = i + 2j
b = 4i - 8j

Тогда используя свойства ортов (i2 = 1, j2 = 1, i·j = 0)

(a + 2i)·(b - 2j) = (i + 2j + 2i)·(4i - 8j - 2j) = (3i + 2j)·(4i - 10j) = 12i2 - 30i·j + 12j·i - 20j2 = 12 - 0 + 0 - 20 = -8


Пример вычисления скалярного произведения векторов для пространственных задач

Пример 5. Найти скалярное произведение векторов a = {1; 2; -5} и b = {4; 8; 1}.

Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 = 4 + 16 - 5 = 15.


Пример вычисления скалярного произведения для n -мерных векторов

Пример 6. Найти скалярное произведение векторов a = {1; 2; -5; 2} и b = {4; 8; 1; -2}.

Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 + 2 · (-2) = 4 + 16 - 5 -4 = 11.

Угол между векторами.

Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.

Примеры задач на вычисление угла между векторами


Примеры вычисления угла между векторами для плоских задачи

Пример 1. Найти угол между векторами a = {3; 4} и b = {4; 3}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

|a| = √32 + 42 = √9 + 16 = √25 = 5
|b| = √42 + 32 = √16 + 9 = √25 = 5

Найдем угол между векторами:

cos α =  a · b  =  24  =  24  = 0.96
|a| · |b| 5 · 5 25
Пример 2. Найти угол между векторами a = {7; 1} и b = {5; 5}.

Решение: Найдем скалярное произведение векторов:

a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

|a| = √72 + 12 = √49 + 1 = √50 = 5√2
|b| = √52 + 52 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α =  a · b  =  40  =  40  =  4  = 0.8
|a| · |b| 5√2 · 5√2 50 5

Примеры вычисления угла между векторами для пространственных задач

Пример 3. Найти угол между векторами a = {3; 4; 0} и b = {4; 4; 2}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

|a| = √32 + 42 + 02 = √9 + 16 = √25 = 5
|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6

Найдем угол между векторами:

cos α =  a · b  =  28  =  14
|a| · |b| 5 · 6 15
Пример 4. Найти угол между векторами a = {1; 0; 3} и b = {5; 5; 0}.

Решение: Найдем скалярное произведение векторов:

a·b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

|a| = √12 + 02 + 32 = √1 + 9 = √10
|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α = a · b|a| · |b| = 5√10 · 5√2 = 12√5 = √510 = 0.1√5

Векторное произведение векторов, формула и примеры

Определение и формула векторного произведения векторов

ОПРЕДЕЛЕНИЕ Векторным произведением двух векторов и называется вектор , перпендикулярный к плоскости этих векторов и направленный так, что наименьший поворот от вектора к вектору происходит против хода часовой стрелки, если смотреть с конца вектора (рис. 1), причем

   

Если векторы и заданы своими координатами: , то их векторное произведение вычисляется по формуле:

   

где – орты координатных осей соответственно.

Если раскрыть этот определитель по первой строке:

   

   

то получаем, что

   

ПРИМЕР
Задание Найти векторное произведение векторов и
Решение Для нахождения векторного произведения составим определитель, в первой строке которого записаны орты координатных осей, а во второй и третьей строках координаты векторов и соответственно:

   

Вычислим этот определитель, разложив его по элементам первой строки:

   

   

Ответ

Свойства векторного произведения векторов

1. Геометрический смысл векторного произведения. Модуль векторного произведения двух векторов и равен площади параллелограмма построенного на этих векторах:

   

ЗАМЕЧАНИЕ Площадь треугольника построенного на векторах и равна половине модуля векторного произведения указанных векторов:

   

2. Векторное произведение двух ненулевых векторов и равно нулю тогда и только тогда, когда эти векторы коллинеарны.

3. .

4. .

5. .

ПРИМЕР
Задание Найти площадь треугольника, образованного векторами и , если известно, что , а угол между этими векторами .
Решение Известно, что площадь треугольника, построенного на двух векторах, равна половине длины вектора, который есть их векторным произведением. Модуль векторного произведения векторов и равен произведению модулей этих векторов на синус угла между ними. То есть имеем:

(кв. ед.).

Ответ (кв. ед.)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *