Алгебра какие бывают функции: Основные элементарные функции: их свойства и графики – Свойства основных функций — урок. Алгебра, 9 класс.

« Основные свойства функции. » – Яндекс.Кью

К основным свойствам функции относятся:

  1. Четность и нечетность функции

Функция называется четной, если
      – область определения функции симметрична относительно нуля
      – для любого х из области определения f(-x) = f(x)

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image003.gif

График четной функции симметричен относительно оси 0y

Функция называется нечетной, если
      – область определения функции симметрична относительно нуля
      – для любого х из области определения f(-x) = –f(x)

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image004.gif

График нечетной функции симметричен относительно начала координат.

2.Периодичность

Функция f(x) называется периодической с периодом !https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image005.gif, если для любого х из области определения f(x) = f(x+Т) = f(x-Т).

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image006.gif

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

  1. Монотонность (возрастание, убывание)

Функция f(x) возрастает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 < x2 выполнено неравенство f(x1)< f(x2).

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image011.gif

Функция f(x) убывает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 < x2 выполнено неравенство f(x1) > f(x2).

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image013.gif

  1. Экстремумы

Точка Хmax называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Хmax , выполнено неравенство f(х)!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image014.gif f(Xmax).

Значение Ymax=f(Xmax) называется максимумом этой функции.

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image015.gif

Хmax – точка максимума
Уmax – максимум

Точка Хmin называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Хmin , выполнено неравенство f(х)!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image016.gif f(Xmin).

Значение Ymin=f(Xmin) называется минимумом этой функции.

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image017.gif

Xmin – точка минимума
Ymin – минимум

Xmin, Хmax – точки экстремума
Ymin, Уmax – экстремумы.

  1. Нули функции

Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.

!https://ykl-shk.azureedge.net//goods/ymk/algebra/work3/theory/5/image018.gif

Х1,Х2,Х3 – нули функции y = f(x).

Классификация элементарных функций

Выделяют множество видов элементарных функций, каждый из которых обладает собственным набором свойств. Так, одни можно дифференцировать на определенном промежутке бесконечное число раз, другие являются непрерывными, ортогональными и др. В этой статье мы расскажем об общепринятой классификации элементарных функций.

Что такое элементарные функции

Начнем с базового определения.

Определение 1

Элементарные функции – это такие функции, которые получаются из основных функций с помощью сложения, вычитания, умножения и деления, а также посредством преобразования сложных функций.

Пример 1

Пример элементарной функции – y=arcsin2xx2-3+1-ln(x).

Таким функции бывают:

  • алгебраическими;
  • трансцендентными.

В свою очередь алгебраические функции можно разделить на иррациональные и рациональные (целые рациональные и дробные рациональные).

Рассмотрим каждый вид функций отдельно.

Понятие алгебраических функций

Определение 2

Алгебраические функции – это функции, которые состоят из цифр и букв, соединяющихся друг с другом при помощи знаков сложения, вычитания, умножения, деления, извлечения корня и возведения в целую степень.

Иными словами, это те функции, которые можно получить из основных функций f(x)=x и f(x)=1 и любых чисел, проведя с ними необходимые алгебраические действия (вычитание, умножение, сложение, деление и др.)

Пример 2

Так, примером алгебраической функции является y=x2-34x.

Выделяют рациональные и иррациональные алгебраические функции.

Определение 3

Рациональные функции – это те, в которых аргумент не находится под знаком корня (радикала). Они в свою очередь делятся на целые рациональные (т.е. многочлены) и дробные рациональные (выражения, составленные из многочленов).

Пример 3

Примером первого вида функций является y=12x4+x-1, второго – y=x-ax3+b.

Важно отметить, что в рациональных функциях могут присутствовать иррацио

Алгебраическая функция — Википедия

Материал из Википедии — свободной энциклопедии

Алгебраическая функция — элементарная функция, которая в окрестности каждой точки области определения может быть неявно задана с помощью алгебраического уравнения.

Формальное определение:

Функция F(x1,x2,…,xn){\displaystyle F(x_{1},x_{2},\ldots ,x_{n})} называется алгебраической в точке A=(a1,a2,…,an){\displaystyle A=(a_{1},a_{2},\ldots ,a_{n})}, если существует окрестность точки A{\displaystyle A}, в которой верно тождество

P(F(x1,x2,…,xn),x1,x2,…,xn)=0.{\displaystyle P(F(x_{1},x_{2},\ldots ,x_{n}),x_{1},x_{2},\ldots ,x_{n})=0.}

где P{\displaystyle P} есть многочлен от n+1{\displaystyle n+1} переменной.

Функция называется алгебраической, если она является алгебраической в каждой точке области определения.

Например, функция действительного переменного F(x)=1−x2{\displaystyle F(x)={\sqrt {1-x^{2}}}} является алгебраической на интервале (−1,1){\displaystyle (-1,1)} в поле действительных чисел, так как она удовлетворяет уравнению

F2+x2=1.{\displaystyle F^{2}+x^{2}=1.}

Существует аналитическое продолжение функции F(x)=1−x2{\displaystyle F(x)={\sqrt {1-x^{2}}}} на комплексную плоскость, с вырезанным отрезком [−1,1]{\displaystyle [-1,1]} или с двумя вырезанными лучами (−∞,−1]{\displaystyle (-\infty ,-1]} и [1,∞){\displaystyle [1,\infty )}. В этой области полученная функция комплексного переменного является алгебраической и аналитической.

Известно, что если функция является алгебраической в точке, то она является и аналитической в данной точке. Обратное неверно. Функции, являющиеся аналитическими, но не являющиеся алгебраическими, называются трансцендентными.

Частными случаями алгебраических функций являются:

Алгебраические и трансцендентные числа[править | править код]

Действительные числа, которые являются корнем какого-то алгебраического уравнения с рациональными коэффициентами, называются алгебраическими. Действительные числа, которые не являются корнем никакого алгебраического уравнения с рациональными коэффициентами, называются трансцендентными.

Все рациональные числа являются алгебраическими. Среди иррациональных чисел есть как алгебраические, так и трансцендентные. Например, 2{\displaystyle {\sqrt {2}}} — алгебраическое иррациональное число, а π{\displaystyle \pi } — трансцендентное иррациональное число.

  • Голубев В. В. Лекции по аналитической теории дифференциальных уравнений. — М.-Л.: ГОСТЕХТЕОРИЗДАТ, 1941. — 400 с.

Алгебраические функции

Какими бывают функции?

Чтобы не заблудиться среди огромного разнообразия функций, очень важно выделить признаки той их части, которая называется алгебраическими функциями.

Прежде всего определимся с элементарными функциями.

Определение

Любая функция $f$ считается элементарной, если она задана одним уравнением $y=f\left(x\right)$, составленным из основных элементарных функций с помощью конечного числа арифметических действий и композиций.

В определении применены следующие понятия:

  1. Арифметические действия

    Это значит, что над двумя данными произвольными функциями $u\left(x\right)$ и $v\left(x\right)$ в данной области определения можно выполнять сложение $u\left(x\right)+v\left(x\right)$, вычитание $u\left(x\right)-v\left(x\right)$, умножение $u\left(x\right)\cdot v\left(x\right)$, а также деление $\frac{u\left(x\right)}{v\left(x\right)} $. При делении предполагается, что для всех $x$ из данной области определения выполняется условие $v\left(x\right)\ne 0$.

  2. Операция композиции

    Операция композиции состоит в следующем. Пусть $y$ является функцией от $u$, то есть $y=f\left(u\right)$. Пусть также в свою очередь, $u$ является функцией независимой переменной $x$, то есть $u=g\left(x\right)$. В этих условиях функция $y=f\left(g\left(x\right)\right)$ называется композицией данных функций $f$ и $g$.

Пример 1

Функция $y=\frac{x\cdot 3^{x} }{\sqrt{2-\cos x} } +\arcsin ^{2} x$ является элементарной. В ней использованы все четыре арифметических действия, основные элементарные функции (постоянная, степенная, показательная, тригонометрическая и обратная тригонометрическая), а также представлены композиции функций в виде $\arcsin ^{2} x$ и $\sqrt{2-\cos x} $.

Все элементарные функции распределяют на алгебраические и трансцендентные (те, которые к алгебраическим не относятся).

Разновидности алгебраических функций

Существует три основных разновидности алгебраических функций.

Целые рациональные функции (многочлены, полиномы)

Это функции вида $y=P\left(x\right)=a_{n} \cdot x^{n} +a_{n-1} \cdot x^{n-1} +\ldots +a_{1} \cdot x+a_{0} $, где $a_{0} ,\; a_{1} ,\; \ldots ,\; a_{n} $ -- постоянные действительные числа, называемые коэффициентами, $n$ -- целое неотрицательное число. Если $a_{n} \ne 0$, то $n$ называют степенью многочлена.

Пример 2

Многочлен второй степени $y=3\cdot x^{2} -x+5$. Многочлен нулевой степени $y=7$.

Дробно-рациональные функции (рациональные дроби)

Это функции вида $y=\frac{P\left(x\right)}{Q\left(x\right)} =\frac{a_{n} \cdot x^{n} +a_{n-1} \cdot x^{n-1} +\ldots +a_{1} \cdot x+a_{0} }{b_{m} \cdot x^{m} +b_{m-1} \cdot x^{m-1} +\ldots +b_{1} \cdot x+b_{0} } $, представляющие собой отношение двух многочленов.

Пример 3

Рациональная дробь $y=\frac{x^{2} +1}{7\cdot x^{3} +4\cdot x-2} $.

Иррациональные функции

В состав таких функций входят рациональные функции с нецелыми рациональными показателями степени при использовании арифметических действий. Внешний признак иррациональной функции -- наличие корней различной степени.

Пример 4

Иррациональная функция $y=3-\sqrt[{5}]{x^{2} } +\sqrt{\frac{x+1}{x^{2} -1} } $.

Свойства рациональных дробей

Дана рациональная дробь $\frac{P\left(x\right)}{Q\left(x\right)} =\frac{a_{n} \cdot x^{n} +a_{n-1} \cdot x^{n-1} +\ldots +a_{1} \cdot x+a_{0} }{b_{m} \cdot x^{m} +b_{m-1} \cdot x^{m-1} +\ldots +b_{1} \cdot x+b_{0} } $, где $P\left(x\right)$ и $Q\left(x\right)$ -- многочлены. Пусть коэффициенты $a_{n} \ne 0$ и $b_{m} \ne 0$. Тогда указанные многочлены имеют степени $n$ и $m$ соответственно. Данная рациональная дробь определена во всех точках числовой оси, за исключением тех точек, в которых знаменатель $Q\left(x\right)=0$.

Рациональную дробь называют правильной, если степень числителя меньше степени знаменателя, то есть $n

Деление рациональных дробей

Если рациональная дробь является неправильной, то посредством деления числителя $P\left(x\right)$ на знаменатель $Q\left(x\right)$ её можно представить в виде$\frac{P\left(x\right)}{Q\left(x\right)} =M\left(x\right)+\frac{R\left(x\right)}{Q\left(x\right)} $ или $P\left(x\right)=M\left(x\right)\cdot Q\left(x\right)+R\left(x\right)$, где $\frac{R\left(x\right)}{Q\left(x\right)} $ -- правильная рациональная дробь, а многочлены $M\left(x\right)$ и $R\left(x\right)$ -- соответственно частное и остаток от деления многочленов. При этом сумма степеней многочленов $M\left(x\right)$ и $Q\left(x\right)$ равна степени многочлена $P\left(x\right)$.

Задача 1

Разделить многочлены $\frac{3\cdot x^{4} -2\cdot x^{3} -x^{2} +7\cdot x-5}{x^{2} -2\cdot x+3} $.

Деление в данном случае возможно, так как степень числителя (четвёртая) больше степени знаменателя (вторая). Деление многочленов выполняем "углом".

Задача 1

Результат деления имеет следующий вид:

\[\frac{3\cdot x^{4} -2\cdot x^{3} -x^{2} +7\cdot x-5}{x^{2} -2\cdot x+3} =3\cdot x^{2} +4\cdot x-2+\frac{-9\cdot x+1}{x^{2} -2\cdot x+3} .\] Здесь $M\left(x\right)=3\cdot x^{2} +4\cdot x-2$ -- частное от деления, $R\left(x\right)=-9\cdot x+1$ -- остаток от деления.

Сокращение рациональных дробей

Рациональная дробь $\frac{P\left(x\right)}{Q\left(x\right)} $, как и числовая, бывает сократимой или несократимой. Предположим, что данная рациональная дробь является сократимой, так как оба многочлена $P\left(x\right)$ и $Q\left(x\right)$ имеют общие множители, содержащие переменную $x$. Произведение всех этих множителей называется наибольшим общим делителем данных многочленов, то есть $P\left(x\right)=N\left(x\right)\cdot P_{1} \left(x\right)$ и $Q\left(x\right)=N\left(x\right)\cdot Q_{1} \left(x\right)$, где многочлен $N\left(x\right)$ -- наибольший общий делитель. В этом случае данная рациональная дробь приобретает вид $\frac{P\left(x\right)}{Q\left(x\right)} =\frac{N\left(x\right)\cdot P_{1} \left(x\right)}{N\left(x\right)\cdot Q_{1} \left(x\right)} =\frac{P_{1} \left(x\right)}{Q_{1} \left(x\right)} $, где рациональная дробь $\frac{P_{1} \left(x\right)}{Q_{1} \left(x\right)} $ является несократимой, а многочлены $P_{1} \left(x\right)$ и $Q_{1} \left(x\right)$ называются взаимно простыми. Если многочлен $N\left(x\right)$ -- какой-то один наибольший общий делитель, то многочлены $C\cdot N\left(x\right)$, где $C$ -- произвольная константа, тоже будут наибольшими общими делителями. Общим делителем взаимно простых многочленов может считаться произвольная константа.

Наибольший общий делитель многочленов $P\left(x\right)$ и $Q\left(x\right)$ можно найти с помощью алгоритма Евклида:

  1. пусть $U\left(x\right)$ и $V\left(x\right)$ -- это новые обозначения многочленов $P\left(x\right)$ и $Q\left(x\right)$, причем $U\left(x\right)$ -- это тот, который имеет большую степень;
  2. делим многочлен $U\left(x\right)$ на многочлен $V\left(x\right)$ и получаем $\frac{U\left(x\right)}{V\left(x\right)} =M\left(x\right)+\frac{P\left(x\right)}{V\left(x\right)} $, где новый многочлен $P\left(x\right)$ представляет собой остаток от деления;
  3. обозначаем многочлен $V\left(x\right)$ как $Q\left(x\right)$ и возвращаемся на шаг 1.

Выполнение данного алгоритма повторяем, пока на шаге 2 не будет достигнуто нулевое значение остатка от деления $P\left(x\right)=0$. Тогда предпоследний, отличный от нуля остаток от деления, будет наибольшим общим делителем данных многочленов $P\left(x\right)$ и $Q\left(x\right)$.

Если полученный по алгоритму Евклида наибольший общий делитель будет иметь вид многочлена $N\left(x\right)$, зависящего от $x$, то данную рациональную дробь $\frac{P\left(x\right)}{Q\left(x\right)} $ можно сократить посредством деления и числителя, и знаменателя на $N\left(x\right)$. Если же наибольший общий делитель будет получен в виде константы, то данную рациональную дробь $\frac{P\left(x\right)}{Q\left(x\right)} $ следует считать несократимой.

Задача 2

Сократить рациональную дробь $\frac{P\left(x\right)}{Q\left(x\right)} =\frac{x^{2} +x-6}{x^{3} +2\cdot x^{2} -4\cdot x-3} $.

Сначала по алгоритму Евклида находим наибольший общий делитель многочленов $P\left(x\right)$ и $Q\left(x\right)$.

Шаг 1. Новые обозначения многочленов $P\left(x\right)$ и $Q\left(x\right)$:

\[U\left(x\right)=x^{3} +2\cdot x^{2} -4\cdot x-3; V\left(x\right)=x^{2} +x-6.\]

Шаг 2. Результат деления многочленов:

$\frac{U\left(x\right)}{V\left(x\right)} =\frac{x^{3} +2\cdot x^{2} -4\cdot x-3}{x^{2} +x-6} =x+1+\frac{x+3}{x^{2} +x-6} $, где новый многочлен $P\left(x\right)=x+3$ представляет собой остаток от деления.

Задача 3

Переобозначаем $Q\left(x\right)=x^{2} +x-6$ и возвращаемся на шаг 1.

Шаг 1. Новые обозначения многочленов $P\left(x\right)$ и $Q\left(x\right)$:

\[U\left(x\right)=x^{2} +x-6; V\left(x\right)=x+3.\]

Шаг 2. Результат деления многочленов: $\frac{U\left(x\right)}{V\left(x\right)} =\frac{x^{2} +x-6}{x+3} =x-2$, где остаток от деления $P\left(x\right)=0$.

Таким образом, наибольший общий делитель -- это предыдущий, отличный от нуля остаток, то есть $N\left(x\right)=x+3$. Этот наибольший общий делитель представляет собой многочлен, зависящий от $x$, следовательно, сокращение данной рациональной дроби возможно:

\[\frac{P\left(x\right)}{Q\left(x\right)} =\frac{x^{2} +x-6}{x^{3} +2\cdot x^{2} -4\cdot x-3} =\frac{x-2}{x^{2} -x-1} .\]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *