Arccos это что – Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства

Содержание

Обратные тригонометрические функции — это… Что такое Обратные тригонометрические функции?

Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

  • аркси́нус (обозначение: arcsin)
  • аркко́синус (обозначение: arccos)
  • аркта́нгенс (обозначение: arctg; в иностранной литературе arctan)
  • арккота́нгенс (обозначение: arcctg; в иностранной литературе arccot или arccotan)
  • арксе́канс (обозначение: arcsec)
  • арккосе́канс (обозначение: arccosec; в иностранной литературе arccsc)

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arc — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Изредка в иностранной литературе пользуются обозначениями типа sin

−1 для арксинуса и т. п.; это считается не совсем корректным, так как возможна путаница с возведением функции в степень −1.

Основное соотношение

Функция arcsin

\operatorname {arctg}\, x + \operatorname {arcctg}\, x = \frac{\pi}{2} График функции .

Арксинусом числа m называется такое значение угла x, для которого

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.

Свойства функции arcsin

Получение функции arcsin

Дана функция На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго возрастает и принимает все значения области значений — . Так как для функции на интервале каждому значению аргумента соответствует единственное значение функции, то на этом отрезке существует обратная функция график которой симметричен графику функции на отрезке относительно прямой

Функция arccos

y=x. График функции .

Арккосинусом числа m называется такое значение угла x, для которого

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго убывающей.

Свойства функции arccos

Получение функции arccos

Дана функция На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому мы рассмотрим отрезок, на котором она строго убывает и принимает все свои значения — На этом отрезке строго монотонно убывает и принимает все свои значения только один раз, а значит, на отрезке существует обратная функция график которой симметричен графику на отрезке относительно прямой

Функция arctg

y=x. График функции .

Арктангенсом числа m называется такое значение угла , для которого

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.

Свойства функции arctg

  • , при x > 0.

Получение функции arctg

Дана функция На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим отрезок, на котором она строго возрастает и принимает все свои значения только один раз — На этом отрезке строго монотонно возрастает и принимает все свои значения только один раз, следовательно, на интервале существует обратная , график которой симметричен графику на отрезке относительно прямой

Функция arcctg

График функции y=arcctg x

Арккотангенсом числа m

называется такое значение угла x, для которого

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго убывающей.

Свойства функции arcctg

Получение функции arcctg

Дана функция . На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие функцией не является. Поэтому рассмотрим отрезок, на котором она строго убывает и принимает все свои значения только один раз — . На этом отрезке строго убывает и принимает все свои значения только один раз, следовательно, на интервале существует обратная функция , график которой симметричен графику на отрезке относительно прямой График симметричен к арктангенсу

Функция arcsec

Функция arccosec

Производные от обратных тригонометрических функций





Интегралы от обратных тригонометрических функций

Неопределённые интегралы

Для действительных и комплексных x:

Для действительных x ≥ 1:

См. также Список интегралов от обратных тригонометрических функций

Интегралы от обратных тригонометрических функций

Неопределённые интегралы

Для действительных и комплексных x:

Для действительных x ≥ 1:

См. также Список интегралов от обратных тригонометрических функций

Использование в геометрии

Обратные тригонометрические функции используются для вычисления углов треугольника, если известны его стороны, например с помощью теоремы косинусов.


В прямоугольном треугольнике, эти функции от отношений сторон сразу дают угол:

α = arcsin (a/c) = arccos (b/c) = arctg (a/b) = arccosec (c/a) = arcsec (c/b) = arcctg (b/a)

Связь с натуральным логарифмом

Для вычисления значений обратных тригонометрических функций от комплексного аргумента удобно использовать формулы, выражающие их через натуральный логарифм:

См. также

Ссылки

dic.academic.ru

Арксинус, арккосинус — свойства, графики, формулы

Арксинус, arcsin

Определение и обозначения

Арксинус ( y = arcsin x )
 – это функция, обратная к синусу ( x = sin y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  –π/2 ≤ y ≤ π/2.
sin(arcsin x) = x     ;
arcsin(sin x) = x     .

Арксинус иногда обозначают так:
.

График функции арксинус

График функции y=arcsin(x)

График функции   y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Определение и обозначения

Арккосинус ( y = arccos x )
 – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  0 ≤ y ≤ π.
cos(arccos x) = x     ;
arccos(cos x) = x     .

Арккосинус иногда обозначают так:
.

График функции арккосинус

График функции y=arccos(x)

График функции   y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x

Свойства — экстремумы, возрастание, убывание

Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.

  y = arcsin x y = arccos x
Область определения и непрерывность – 1 ≤ x ≤ 1 – 1 ≤ x ≤ 1
Область значений  
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы    
Минимумы    
Нули, y = 0 x = 0 x = 1
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2

Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

 x arcsin x arccos x
град. рад. град. рад.
– 1 – 90° 180° π
– 60° 150°
– 45° 135°
– 30° 120°
0 0 90°
30° 60°
45° 45°
60° 30°
1 90° 0

≈ 0,7071067811865476
≈ 0,8660254037844386

Формулы

См. также:  Вывод формул обратных тригонометрических функций

Формулы суммы и разности


     при или

     при и

     при и


     при или

     при и

     при и


     при

     при


     при

     при

Выражения через логарифм, комплексные числа

См. также:  Вывод формул

Выражения через гиперболические функции

Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков:
,
где – многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку   x = sin t. Интегрируем по частям, учитывая что  –π/2 ≤ t ≤ π/2,  cos t ≥ 0:
.

Выразим арккосинус через арксинус:
.

Разложение в ряд

При   |x| < 1   имеет место следующее разложение:
;
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x    
cos(arccos x) = x    .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x     при
arccos(cos x) = x     при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Арксинус, арккосинус, арктангенс и арккотангенс

Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

тригонометрическая окружность

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

связь основных функций и арков

Арксинус

Снимок экрана 2017-12-12 в 23.02.08

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График y = arcsin x имеет вид асимметричной кривой, проходящей через центр координат.

arcsin x

Свойства арксинуса:

  1.  Снимок экрана 2017-12-12 в 23.43.18
  2. Так как f(x) нечетная, то arcsin (- x) = — arcsin x.
  3. Y = 0 при x = 0.
  4. На всей своей протяженности график возрастает.

Если сопоставить графики sin и arcsin, у двух тригонометрических функций можно найти общие закономерности.

сравнение синуса и арксинуса

Арккосинус

Arccos числа а — это значение угла α, косинус которого равен а.

Снимок экрана 2017-12-13 в 0.00.24

 

 

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

арккосинус

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos — [0, π].
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

сравнение косинуса и арккосинуса

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

задание 1

Ответ: рис. 1 – 4, рис.2 — 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Снимок экрана 2017-12-15 в 15.55.15

арктангенс

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = — arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Снимок экрана 2017-12-15 в 15.59.09

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

сравнение тангенса и арктангенса

Арккотангенс

Arcctg числа a — принимает такое значение α из интервала (0; π), что его котангенс равен а.

Снимок экрана 2017-12-15 в 16.01.32

Снимок экрана 2017-12-15 в 16.02.17

арккотангенс

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

сравнение котангенса и арккотангенса

 

Задание 2. Соотнести график и форму записи функции.

задание 2

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg.  Из свойств арктангенса известно, что y=0 при x = 0,

Снимок экрана 2017-12-15 в 16.06.53

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

 

формулы арксинус и арккосинус

Также существуют соотношения для arctg и arcctg:

формулы арктангенс и арккотангенс

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

сума арков

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

Ход вычисления значения арков

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Типовой пример

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро.  Для начала, перенесем arcsin x в правую часть равенства.

решение 1

Если вспомнить формулу  arcsin (sin α) = α, то можно свести поиск ответов к решению системы из двух уравнений:

решенеи 3

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1].  При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = — 1/a. При a = 0, x будет равен 1.

 

 

Похожие статьи

Рекомендуем почитать:

karate-ege.ru

Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки «арк» обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.

Функция арксинус y = arcsin(x).

Изобразим график функции арксинус:

Свойства функции арксинус y = arcsin(x).

  • Областью определения функции арксинус является интервал от минус единицы до единицы включительно: .

  • Область значений функции y = arcsin(x).

  • Функция арксинус — нечетная, так как .

  • Функция y = arcsin(x) возрастает на всей области определения, то есть, при .

  • Функция вогнутая при , выпуклая при .

  • Точка перегиба (0; 0), она же ноль функции.

  • Асимптот нет.

Функция арккосинус y = arccos(x).

График функции арккосинус имеет вид:

Свойства функции арккосинус y = arccos(x).

  • Область определения функции арккосинус: .

  • Область значений функции y = arccos(x).

  • Функция не является ни четной ни нечетной, то есть, она общего вида.

  • Функция арккосинус убывает на всей области определения, то есть, при .

  • Функция вогнутая при , выпуклая при .

  • Точка перегиба .

  • Асимптот нет.

Функция арктангенс y = arctg(x).

График функции арктангенс имеет вид:

Свойства функции арктангенс y = arctg(x).

Функция арккотангенс y = arcctg(x).

Изобразим график функции арккотангенс:

Свойства функции арккотангенс y = arcctg(x).

studfile.net

Обратные тригонометрические функции

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение   y = sin x,   при заданном   ,   имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x   такой корень, то и   x + 2πn   (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны. Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус:   y = sin x.   Если ограничить аргумент x интервалом , то на нем функция   y = sin x   монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом:   x = arcsin y.

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус ( y = arcsin x )
– это функция, обратная к синусу ( x = sin y ), имеющая область определения и множество значений .
Арккосинус ( y = arccos x )
– это функция, обратная к косинусу ( x = cos y ), имеющая область определения и множество значений .
Арктангенс ( y = arctg x )
– это функция, обратная к тангенсу ( x = tg y ), имеющая область определения и множество значений .
Арккотангенс ( y = arcctg x )
– это функция, обратная к котангенсу ( x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой   y = x. См. разделы Синус, косинус, Тангенс, котангенс.

График функции y=arcsin(x)

y = arcsin x

График функции y=arccos(x)
y = arccos x График функции y=arctg(x)
y = arctg x График функции y=arcctg(x)
y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x     при
sin(arcsin x) = x
arccos(cos x) = x     при
cos(arccos x) = x

arctg(tg x) = x     при
tg(arctg x) = x
arcctg(ctg x) = x     при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

См. также:  Вывод формул обратных тригонометрических функций

Формулы суммы и разности


     при или

     при и

     при и


     при или

     при и

     при и


     при

     при


     при

     при


     при

     при

     при


     при

     при

     при

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:

1cov-edu.ru

Арктангенс, арккотангенс — свойства, графики, формулы

Арктангенс, arctg

Определение и обозначения

Арктангенс ( y = arctg x )
 – это функция, обратная к тангенсу ( x = tg y ). Он имеет область определения    и множество значений  .
tg(arctg x) = x     ;
arctg(tg x) = x     .

Арктангенс обозначается так:
.

График функции арктангенс

График функции y=arctg(x)

График функции   y = arctg x

График арктангенса получается из графика тангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, множество значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арктангенса.

Арккотангенс, arcctg

Определение и обозначения

Арккотангенс ( y = arcctg x )
 – это функция, обратная к котангенсу ( x = ctg y ). Он имеет область определения    и множество значений  .
ctg(arcctg x) = x     ;
arcctg(ctg x) = x     .

Арккотангенс обозначается так:
.

График функции арккотангенс

График функции y=arcctg(x)

График функции   y = arcctg x

График арккотангенса получается из графика котангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккотангенса.

Четность

Функция арктангенс является нечетной:
arctg(–x) = arctg(–tg arctg x) = arctg(tg(–arctg x)) = – arctg x

Функция арккотангенс не является четной или нечетной:
arcctg(–x) = arcctg(–ctg arcctg x) = arcctg(ctg(π–arcctg x)) = π – arcctg x ≠ ± arcctg x.

Свойства – экстремумы, возрастание, убывание

Функции арктангенс и арккотангенс непрерывны на своей области определения, то есть для всех x. (см. доказательство непрерывности). Основные свойства арктангенса и арккотангенса представлены в таблице.

  y = arctg x y = arcctg x
Область определения и непрерывность – ∞ < x < + ∞ – ∞ < x < + ∞
Множество значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы, минимумы нет нет
Нули, y = 0 x = 0 нет
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2
π
0

Таблица арктангенсов и арккотангенсов

В данной таблице представлены значения арктангенсов и арккотангенсов, в градусах и радианах, при некоторых значениях аргумента.

 x arctg x arcctg x
град. рад. град. рад.
– ∞ – 90° 180° π
– 60° 150°
– 1 – 45° 135°
– 30° 120°
0 0 90°
30° 60°
1 45° 45°
60° 30°
+ ∞ 90° 0

≈ 0,5773502691896258
≈ 1,7320508075688772

Формулы

См. также:  Вывод формул обратных тригонометрических функций

Формулы суммы и разности


     при

     при

     при


     при

     при

     при

Выражения через логарифм, комплексные числа

См. также:  Вывод формул

,
.

Выражения через гиперболические функции

Производные



См. Вывод производных арктангенса и арккотангенса > > >

Производные высших порядков:
Пусть  . Тогда производную n-го порядка арктангенса можно представить одним из следующих способов:
;
.
Символ означает мнимую часть стоящего следом выражения.

См. Вывод производных высших порядков арктангенса и арккотангенса > > >
Там же даны формулы производных первых пяти порядков.

Аналогично для арккотангенса. Пусть  . Тогда
;
.

Интегралы

Делаем подстановку   x = tg t   и интегрируем по частям:
;
;
;

Выразим арккотангенс через арктангенс:
.

Разложение в степенной ряд

При   |x| ≤ 1   имеет место следующее разложение:
;
.

Обратные функции

Обратными к арктангенсу и арккотангенсу являются тангенс и котангенс, соответственно.

Следующие формулы справедливы на всей области определения:
tg(arctg x) = x    
ctg(arcctg x) = x    .

Следующие формулы справедливы только на множестве значений арктангенса и арккотангенса:
arctg(tg x) = x     при
arcctg(ctg x) = x     при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Арксинус, арккосинус и арктангенс числа

Функции с приставкой arc — это функции, обратные тригонометрическим. Например, для функции $sinα$ обратной функцией является её арксинус, записывается как $arcsinα$, а для функции косинуса обратной будет функция арккосинус, записывается как $arccosα$. Проще говоря, обратные тригонометрическим функции с приставкой $arc$ являются множеством значений углов $α$, от которых берётся какая-либо обычная тригонометрическая функция, также иногда функции с приставкой $arc$ используют как меру длины дуги, ограничивающей угол $α$.

Рисунок 1. Единичная окружность. Автор24 — интернет-биржа студенческих работ

Рассмотрим теперь непосредственно определения для функций арксинус, арккосинус, арктангенс и арккотангенс по отдельности.

Арксинус числа

Определение 1

Арксинус числа $x$ — это множество значений углов, для которых $sinα = x$. Также определение арксинуса можно записать так: $arcsin(x) = α$.

Рассмотрим рисунок 1, на котором изображена окружность с радиусом, равным единице. Как мы помним, $sinα$ — это отношение противолежащей стороны к гипотенузе, численно он равен длине стороны $AC$. Так как арксинус его обратная функция и есть не что иное как угол, от которого берётся синус, свойства арксинуса очень похожи на свойства синуса:

  • Область определения функции арксинуса $D(y)= \ [-1;1\ ]$, для синуса $D(y)=\ [-\frac{π}{2};\frac{π}{2}\ ]$;
  • Область значения для арксинуса $E = \ [-\frac{π}{2};\frac{π}{2}\ ]$, для синуса $E = \ [-1;1\ ]$
  • Функции синуса и арксинуса обе возрастающие;
  • Функции арксинуса и синуса обе нечётные, то есть: $arcsin(-x)= -arcsinx$;
  • Функция $y=arcsin(x)$ равна нулю при $x=0$.

График арксинуса выглядит следующим образом:

Рисунок 2. График арксинуса. Автор24 — интернет-биржа студенческих работ

Арккосинус числа

Определение 2

Арккосинус числа $x$ — это множество значений углов, для которых $cosα = x$, то есть это значение угла.

Свойства арккосинуса в сравнении с косинусом:

  • Область определения функции арккосинуса $D(y)= \ [-1;1\ ]$, для косинуса $D(y)=\ [0; π\ ]$;
  • Область значения для арккосинуса $E = \ [0; π\ ]$, для косинуса $E = \ [-1;1\ ]$;
  • График функции арккосинуса симметричен относительно точки $(0; \frac{ π}{2})$, следовательно, он не является ни чётным, ни нечётным, в отличии от функции косинуса, которая является чётной;
  • График функции арккосинуса $y= arccos(x)$ является убывающим, это происходит на всей его области определения, так же, как и c графиком косинуса.
  • Функция $y=arccos(x)$ равна нулю при $x=1$.

Рисунок 3. График арккосинуса. Автор24 — интернет-биржа студенческих работ

Арктангенс числа

Определение 3

Арктангенс числа $x$ — это множество значений углов, для которых $tgα = x$.

Свойства арктангенса:

  • $D(y)= \ [-\infty;1\ ]$;
  • $E = \ [-\frac{π}{2};\frac{π}{2}\ ]$;
  • Данная функция нечётная;
  • Функция $y= arctgx$ возрастающая на всей области определения;
  • Функция $y= arctgx$ равна нулю при $x=0$.

Рисунок 4. График арктангенса. Автор24 — интернет-биржа студенческих работ

Арккотангенс

Определение 4

Арккотангенс числа $x$ — это множество значений углов, для которых $ctgα = x$.

Свойства функции арккотангенса:

  • $D(y)= \ [-\infty;1\ ]$;
  • $E = \ [0; π\ ]$;
  • Данная функция не является ни чётной, ни нечётной;
  • Функция $y= arcсtgx$ убывает на всей области определения;

Рисунок 5. График арккотангенса. Автор24 — интернет-биржа студенческих работ

Пример 1

Найдите значение следующих выражений: $arcsin(\frac{1}{2}), arccos(-\frac{\sqrt{2}}{2}), arcctg(\frac{\sqrt{3}}{3}), arccos(-\frac{1}{2})$.

Решение:

$arcsin(\frac{1}{2}) = \frac{π}{6}$

$arccos(\frac{\sqrt{2}}{2}) = \frac{π}{4}$

$arcctg(\frac{\sqrt{3}}{3}) = \frac{π}{4}$

Здесь мы имеем арккосинус отрицательного числа $arccos(-\frac{-1}{2})$, для того чтобы его вычислить, необходимо прибегнуть к следующей формуле: $arccos(-α) = π – arccos(α)$

$arccos(-\frac{-1}{2}) = π – arccos(\frac{-1}{2}) = π – \frac{π}{3} = \frac{2π}{3}$

spravochnick.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *