Гомологический ряд — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 октября 2016; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 октября 2016; проверки требуют 8 правок. Рис. 1 — температуры плавления и кипения в гомологическом ряду n-алканов C1…C14 Рис. 2 — температуры плавления и кипения в гомологическом ряду алифатических карбоновых кислот C1…C8Гомологи́ческий ряд (от др.-греч. ὅμοιος «подобный, похожий» + λογος «слово, закон») — ряд химических соединений одного структурного типа (например, алканы или алифатические спирты — спирты жирного ряда), отличающихся друг от друга по составу на определённое число повторяющихся структурных единиц — так называемую
Простейший пример гомологического ряда — алканы (общая формула СnH2n+2): метан CH4, этан C2H6, пропан С3H8 и т. д.; гомологической разностью этого ряда является метиленовое звено —СН2—.
В основе понятия гомологии в органической химии лежит фундаментальное положение о том, что химические и физические свойства вещества определяются структурой его молекул: эти свойства определяются как функциональными группами соединения (гидроксил спиртов, карбоксильная группа карбоновых кислот, арильная группа ароматических соединений и т. п.), так и его углеродным скелетом.
Сам комплекс химических свойств и, соответственно, принадлежность соединения к определённому классу, определяется именно функциональными группами (так, наличие карбоксильной группы определяет проявление соединением кислотных свойств и его принадлежность к классу карбоновых кислот), но на степень проявления химических свойств (например, реакционная способность и константа диссоциации) или физические свойства (температуры кипения и плавления, показатель преломления и т. п.) влияет и углеродный скелет молекулы (см. Рис. 1).
В случае подобия углеродных скелетов соединений, то есть отсутствия изомерии, формулу гомологичных соединений можно записать как X—(СН2)n—Y, соединения с различным числом n метиленовых звеньев являются гомологами и принадлежат к одному классу соединений (например, H—(СН2)n—COOH — алифатические карбоновые кислоты). Таким образом, соединения-гомологи принадлежат к одному классу соединений, и свойства ближайших гомологов наиболее близки.
В гомологических рядах наблюдается закономерное изменение свойств от младших членов ряда к старшим, однако такая закономерность может нарушаться, в первую очередь, в начале ряда, из-за образования водородных связей при наличии функциональных групп, способных к их образованию (см. Рис. 2, температуры плавления).
При исследовании параллелизмов в явлениях наследственной изменчивости Н. И. Вавиловым, по аналогии с гомологическими рядами органических соединений, было введено понятие Гомологические ряды в наследственной изменчивости.
ru.wikipedia.org
Гомология (биология) — Википедия
У этого термина существуют и другие значения, см. Гомология.Гомологичными (др.-греч. ὅμοιος «подобный, похожий» + λογος «слово, закон») в биологии называются сопоставимые части сравниваемых биологических объектов.
В биологии понятие гомологии используется в сравнительной анатомии (см., например, Список гомологичных органов репродуктивной системы человека) с середины XIX века, и — в ревизованном виде — в сравнительных исследованиях генома. В рамках эволюционной биологии гомология интерпретируется как сходство, обусловленное происхождением от общего предка. В некотором смысле противоположным по значению термином, применяемым в тех случаях, когда два сходных органа или гена не имеют общего предшественника, является аналогия.
Кроме того, понятие гомологии используется в родственном, но несколько ином значении, в работах Н. И. Вавилова и более поздних авторов о законе гомологических рядов в наследственной изменчивости.
История понятия[править | править код]
Схема строения черепов варана (A) и крокодила (B). Гомологичные кости обозначены одинаковым цветом. С изменениями из: Gegenbaur, Carl Grundzüge der vergleichenden Anatomie.Понятие гомологии в биологии было введено Ричардом Оуэном в 1840-е гг., не ставившим задачи решения филогенетических проблем[1][2][3]. Он предложил различить аналогичные:
- «…a part or organ in one animal that has the same function as another part or organ in a different animal…»
[часть или орган животного, который имеет ту же самую функцию, что и другая часть или орган у иного животного]
и гомологичные структуры:
- «the same organ in different animals under every variety of form and function…»
[тот же самый орган у различных животных при всех вариациях формы и функции][4]
Примерами аналогичных структур могут служить крылья насекомых и птиц. Примерами гомологичных — крыло птицы и рука человека. С понятием гомологии Оуэн связывал понятие архетипа или плана строения. Путём сопоставления скелетов Оуэн реконструировал архетип позвоночного и архетипы каждого из признанных на тот момент классов позвоночных животных (рыб, рептилий, птиц и млекопитающих). Скелеты конкретных позвоночных он рассматривал как реальные воплощения этих архетипов. По его примеру Томас Хаксли реконструировал архетип (план строения) моллюсков. Поиск планов строения для разных групп животных и растений стал одной из важнейших задач сравнительной анатомии второй половины XIX века.
Со становлением эволюционного учения, начиная с работ Чарльза Дарвина, понятия гомологии и архетипа были переинтерпретированы. Гомологичные органы стали считать органами, унаследованными от общего предка, а архетип стали рассматривать как гипотетического общего предка группы, для которой он реконструирован.[5]
Следует отметить, что ещё до работ Оуэна предпринимались попытки формализовать процедуру сравнения живых существ и выработать общие принципы сравнительной анатомии. Так, Этьен Жоффруа Сент-Илер в своей работе Анатомическая философия развивал теорию аналогов и сформулировал закон коннексий. Отталкиваясь от учения Аристотеля об аналогиях, он пытался придать понятию аналога большую строгость, найти критерии и параметры сравнения, предложив называть так органы, которые занимают сходное положение относительно других органов у сравниваемых организмов. На основе этой теории он, по сути, одним из первых приступил к установлению гомологий. В своих построениях Э. Жоффруа Сент-Илер нередко увлекался (например, он утверждал, что в основе организации членистоногих и позвоночных лежит общий план строения, только у членистоногих внутренности находятся внутри, а не снаружи от позвоночника). Его ученики также развивали идеи о единстве плана строения всех животных, в том числе, моллюсков и позвоночных, что послужило одним из поводов к знаменитой дискуссии между Э. Жоффруа Сент-Илером и Жоржем Кювье (1830).
К предшественникам Оуэна можно отнести и Иоганна Вольфганга Гёте — не только поэта, но и естествоиспытателя, а также ряд анатомов конца XVIII — начала XIX века, занимавшихся сходными проблемами. В частности, Гёте, благодаря сравнительным исследованиям черепа позвоночных, обнаружил в черепе человека части, соответствующие межчелюстной кости (до этого её отсутствие считалось важным отличием человека от животных).
Другой важной темой в ранних исследованиях в области установления гомологий у позвоночных (от Гёте и Жоффруа Сент-Илера до Оуэна) стала позвоночная теория черепа, согласно которой череп позвоночных представляет собой продукт слияния нескольких позвонков. Несмотря на то, что эта теория позднее была окончательно отброшена (это произошло в конце XIX века), она имела значительную эвристическую ценность. Например, современные представления о том, что голова насекомых состоит из нескольких сросшихся между собой сегментов, берут своё начало от работ начала XIX века, выполненных учениками Жоффруа Сент-Илера, которые пытались распространить позвоночную теорию черепа за пределы позвоночных.
Критерии гомологии по Ремане[править | править код]
В середине XX века немецкий зоолог и сравнительный анатом Адольф Ремане сформулировал три критерия гомологии, которые считаются классическими[6].
- Критерий положения. Гомологичными считаются части, занимающие сходное положение относительно других частей тела. Например, при всех различиях формы черепов кита и человека кости, составляющие их, расположены друг относительно друга сходным образом.
- Критерий специального качества. Гомологичными могут считаться только те структуры, которые сходны между собой по тонкому строению (например, жировая ткань, возникающая на месте удаленного глаза, не гомологична глазу, хотя и занимает его место, соответствуя первому критерию).
- Критерий переходных форм.
Другие критерии гомологии[править | править код]
Разными авторами предлагались и другие критерии гомологии, в том числе
- Критерий состава. Гомологичными считаются органы, состоящие из сходных и сходным образом расположенных относительно друг друга частей (пример — расположение костей в конечности позвоночных). Этот критерий в сущности совпадает со вторым критерием Ремане.
- Критерий развития. Гомологичными считаются органы, сходным образом развивающиеся из одинаковых эмбриональных зачатков.
- Генетический критерий. Гомологичными считаются структуры, в основе развития которых лежит одна и та же генетическая программа (система взаимодействующих генов), унаследованная от общих предков.
Родственные и производные понятия[править | править код]
- Гомотипия. Гомотипными называют качественно однородные части, повторяющиеся в пределах одного организма или выявляемые у разных организмов. Гомотипные органы правой и левой сторон билатеральносимметричных организмов или же одинаковые органы разных лучей симметрии у радиально симметричных организмов называются антимерами. Понятие «цикломеры» является устаревшим, но ещё используется для характеристики радиальносимметричных организмов.
- Сериальная (итеративная) гомология или гомодинамия. Сериальными гомологами называют органы, закономерно повторяющиеся вдоль продольной оси тела (например, конечности членистоногих или позвонки и рёбра позвоночных). Такие органы принято называть метамерами.
- Гомономия. Гомономными называют гомологичные парамерные образования, то есть одноименные части одинаковых органов. Например, членики конечностей различных членистоногих или пальцы пятипалой конечности.
- Полная и неполная гомология. Различение полной и неполной гомологии было введено Карлом Гегенбауром для разграничения случаев полного и неполного соответствия системы связей между сравниваемыми органами и их окружением.
- Гомофилия (гомогения), по В. Н. Беклемишеву — сходство, унаследованное от общих предков («истинная» гомология в понимании большинства авторов)
- Гомоплазия, по В. Н. Беклемишеву — сходство, хотя и не унаследованное от общего предка, но возникшее в результате сходной дифференцировки исходных гомологичных структур (результат параллельной эволюции)[7]
Олигомеризация гомологичных (гомодинамных) органов — принцип Догеля — процесс (в ходе эволюции животных) уменьшения количества гомологичных и гомодинамных образований до некоторого определенного числа, связанный с интенсификацией функций системы[8][9][10][11]. Реализуется в эволюции всех основных филогенетических стволов многоклеточных животных, сопровождаясь их прогрессивной морфологической и функциональной дифференцировкой.
Принцип множественной закладки новообразующихся органов Догеля — новые органы возникают (напр., из-за перемены образа жизни — перехода от сидячего образа жизни к подвижному или от водного к наземному) обычно в большом числе, слабо развиты, однородны и часто располагаются без определенного порядка. По мере дифференциации они приобретают определенную локализацию, количественно уменьшаясь до постоянного числа для данной таксономии. Например, сегментация тела в типе кольчатых червей носит множественный и неустановившийся характер. Все сегменты однородны. У членистоногих (произошедших от кольчатых червей) число сегментов в большинстве классов сокращается, становится постоянным, отдельные сегменты тела, объединяемые обычно в группы (голова, грудь, брюшко и т. п.), специализируются на выполнении определенных функций.
Выяснение, сохраняют они множественный характер или уже подверглись олигомеризации те или иные органы, позволяет судить о степени древности их возникновения. По комбинации органов разного возраста иногда можно судить о филогении.
Для эволюции одноклеточных характерна не олигомеризация, а полимеризация, то есть, увеличение, умножение частей клетки (органоидов).
Гомологичные последовательности ДНК[править | править код]
Упрощенная схема эволюции глобинов.
Каждый прямоугольник соответствует глобиновому гену. Узлы эволюционного дерева отмечены римскими цифрами.Все глобины происходят от одного предшественника и, следовательно являются гомологами — ортологами протоглобина. Гемоглобины являются паралогами миоглобинов, так как произошли от гена протоглобина после его дупликации (на эволюционном отрезке между узлами I и II). Паралогами по отношению друг к другу являются, например, и гемоглобины человека: все они возникли в результате дупликаций и последующего накопления мутаций. Гемоглобины человека α1 и α2 являются ортологами α гемоглобинов акулы и курицы, так как происходят от про-α-гемоглобина общего предка, находящегося в узле II. То же верно и для β-гемоглобинов. При этом α-гемоглобины человека можно назвать паралогами, по отношению не только к человеческим, но и акульим, и куриным β-гемоглобинам, поскольку оба эти ряда ортологов восходят в конечном счете к одному протогемоглобину, возникшему на отрезке I—II.
Сравнительный анализ последовательностей нуклеотидов в ДНК и аминокислот в белках потребовал развития традиционного понятия гомологии. При анализе последовательностей принято различать ортологию и паралогию (и, соответственно, ортологи и паралоги).
Гомологичные последовательности называют ортологичными, если к их разделению привел акт видообразования: если ген существует у некоего вида, который дивергирует с образованием двух видов, то копии этого гена у дочерних видов называются ортологами. Гомологичные последовательности называют паралогичными, если к их разделению привело удвоение гена: если в пределах одного организма в результате хромосомной мутации произошло удвоение гена, то его копии называют паралогами.
Ортологи обычно выполняют идентичные или сходные функции. Это не всегда справедливо в отношении паралогов. Ввиду отсутствия давления отбора на одну из копий гена, подвергшегося удвоению, эта копия получает возможность беспрепятственно мутировать далее, что может привести к возникновению новых функций.
Так, например, гены, кодирующие миоглобин и гемоглобин, обычно считаются древними паралогами. Сходным образом, известные гены гемоглобинов (α, β, γ и т. д.) — паралоги друг друга. В то время как каждый из этих генов служит той же самой основной функции транспорта кислорода, их функции уже несколько дивергировали: гемоглобин зародыша (фетальный гемоглобин с субъединичной структурой α2γ2) имеет большее сродство к кислороду, чем гемоглобин взрослого человека (α2β2).
Другой пример: гены инсулина у крыс и мышей. У грызунов имеется пара паралогичных генов, однако вопрос о том, произошла ли дивергенция функций, остается открытым. Паралогичными обычно называют гены, принадлежащие одному и тому же виду, однако это вовсе не необходимо. Например, паралогами можно считать гены гемоглобина человека и миоглобина шимпанзе.
Одним из методов, применяющихся в современной биоинформатике для исследования гомологии белков с известными аминокислотными последовательностями является выравнивание белков, суть которого заключается в нахождении с помощью различных алгоритмов наиболее консервативных остатков в этих последовательностях, которые обычно являются ключевыми для выполнения одной или нескольких функций белка, исследовании доменной структуры данного белка с помощью поиска известных структурных мотивов и доменов в исследуемом белке. Также с помощью различных баз данных можно осуществить поиск гомолога данного белка в различных организмах, построить филогенетическое дерево различных белковых последовательностей и тому подобное.
Необходимо отметить, что иногда употребляемые термины «процент гомологии» и «значительная гомология» являются ошибочными, так как гомология последовательностей является понятием качественным, но не количественным. Гомологичные белки, например, могут сохранять лишь 10 % идентичных аминокислот, а негомологичные — иметь 30 % таковых.[12]
Гомологичные хромосомы[править | править код]
Гомологичными хромосомами в диплоидной клетке называют парные хромосомы, каждая из которых досталась от одного из родителей. За исключением половых хромосом у представителей гетерогаметного пола, последовательности нуклеотидов в каждой из гомологичных хромосом имеют значительное сходство по всей длине. Это означает, что в типичном случае они содержат одни и те же гены в одинаковой последовательности. Половые хромосомы у гетерогаметного пола также имеют гомологичные участки (хотя они занимают лишь часть хромосомы). С точки зрения анализа последовательностей, половые хромосомы следует считать паралогичными.
Гомологические ряды в наследственной изменчивости[править | править код]
В своей работе Закон гомологических рядов в наследственной изменчивости[13]Николай Иванович Вавилов описал явления параллелизма мутаций в близкородственных группах растений. По аналогии с гомологическими рядами органических соединений, он предложил назвать это явление Гомологические ряды в наследственной изменчивости. Описание закономерностей наследственных вариаций позволяло предсказывать и целенаправленно искать ещё не выявленные гомологичные мутации у разных видов культурных растений, что привело к интенсификации селекционной работы.
Следует отметить, что, в отличие от химии, здесь речь идет об эмпирическом обобщении, а не о формальной теории, позволяющей выработать рациональную номенклатуру органических молекул, исходящую из определенного закона построения гомологического ряда.
- ↑ Канаев И. И. Очерки из истории сравнительной анатомии до Дарвина. Развитие проблемы морфологического типа в зоологии. М.-Л.: Изд-во АН СССР, 1963. 299 с.
- ↑ Бляхер Л. Я. Проблемы морфологии животных. Исторические очерки. М.: Наука, 1976. 359 с.
- ↑ Беклемишев В. Н. Методология систематики. М.: KMK Scientific Press Ltd., 1994. 250 с.
- ↑ Owen, Richard. Lectures on Invertebrate Animals. London, 1843
- ↑ Darwin, Ch. On the origin of species by means of natural selection, or the preservation of the favoured races in the struggle for life. London, 1859
- ↑ http://www.bionet.nsc.ru/vogis/pict_pdf/2007/t11_3_4/vogis_11_3_4_04.pdf
- ↑ Любищев А. А. Понятие сравнительной анатомии. (неопр.) (недоступная ссылка). Дата обращения 6 октября 2009. Архивировано 15 июня 2009 года.
- ↑ Догель В. А. 1954. Олигомеризация гомологичных органов как один из главных путей эволюции животных. Л.: Изд-во ЛГУ. 368 с.
- ↑ Боркин Л. Я., Наумов А. Д., Подлипаев С. Ф. 1971. Значение полимеризации и олигомеризации в эволюции систем органов // Вестник Ленинградского университета. № 21. С.7−18.
- ↑ Подлипаев С. А., Наумов А. Д., Боркин Л. Я. 1974. К определению понятий полимеризации и олигомеризации // Журнал общей биологии. Т.35. № 1. С.100−113.
- ↑ Городков К. Б. 1985. Олигомеризация и эволюция систем морфологических структур // Зоологический журнал Т.64. № 3. С.325−335
- ↑ Koonin EV, Galperin MY. «Sequence — Evolution — Function: Computational Approaches in Comparative Genomics.» Boston: Kluwer Academic, 2003.
- ↑ Вавилов Н. И. Закон гомологических рядов в наследственной изменчивости. Саратов, 1920. 16 с.
- Беклемишев В. Н. Методология систематики. М., 1994.
- Бляхер Л. Я. Аналогия и гомология, в сборнике: Идея развития в биологии. М., 1965.
- Дарвин Ч. Происхождение видов путём естественного отбора, Соч., т. 3. М.—Л., 1939.
- Мамкаев Ю. В. Гомология и аналогия как основополагающие понятия морфологии
- Шмальгаузен И. И. Основы сравнительной анатомии позвоночных животных. 2-е изд. М., 1935.
- Haeckel, Е. Generelle Morphologie der Organismen. Bd 1-2. Berlin, 1866.
- Gegenbaur, G. Vergleichende Anatomie der Wirbelthiere… Leipzig, 1898.
- Owen, R. On the archetype and homologies of the vertebrate skeleton. London, 1847.
ru.wikipedia.org
Гомологичные и аналогичные органы | Дистанционные уроки
15-Фев-2013 | комментариев 8 | Лолита Окольнова
В ЕГЭ этот вопрос встречается очень часто, и, видимо, вызывает у многих учащихся трудности … итак,
«Гомологичный» — означает одинаковый.
Гомологичные органы — органы, сходные между собой по происхождению, строению, но выполняющие разные функции. Появление их — результат дивергенции.
Дивергенция означает расхождение. Расхождение может происходить из-за смены условий окружающей среды или из-за эволюционных процессов.
Пример гомологичных органов у растений:
- подземные корни растения,
- воздушные корни растений
Разная среда обитания (разные условия) определяют появление гомологичных органов.
- заросток у простейших растений,
- эндосперм голосемянного растения,
- зародышевый мешок у покрытосемянных растений
Это пример появления гомологичных органов в процессе эволюции (освоении суши).
Гомологичные органы у животных:
- лапы у животных,
- крылья у птиц,
- лапки у крота,
- ласты или плавники у водных представителей.
Кости этих конечностей схожи, но функции различны: лапы — для передвижения по земле, крылья — для полета, лапки крота — чтобы землю рыть, ну а ласты и плавники — естественно, для плавания.
«Аналогичный» — соответственный.
Аналогичные органы — органы и части животных или растений, сходные в известной мере по внешнему виду и выполняющие одинаковую функцию, но различные по строению и происхождению.
Происхождение определяется зародышевыми листками и тканями, образующими эти органы:
- Конечности:
Крылья птиц, как и лапы (ноги) млекопитающих — видоизменённые передние конечности, образованы мезодермой,
крылья насекомых — образования из эктодермы и имеют хитиновый состав - Органы дыхания:
жабры ракообразных и трахеи насекомых — образованы эктодермы — наружного слоя
жаберные щели, внешние жабры, внутренние жабры и плавательный пузырь рыб — образованы из энтодермы,
лёгкие позвоночных — образуются из энтодермы - Наружные покровы:
у насекомых образован хитином,
у рыб чешуя в наружном слое содержит дентин, относящийся к костному веществу
кожа рептилий и птиц очень сходна, т.к. не имеет желез и образует чешую или перья
кожа млекопитающих очень отличается от всех других животных, но вот волосы гомологичны и перьям, и чешуе
Аналогичные органы у животных
Обтекаемая форма тела у водных млекопитающих — китов, дельфинов и у рыб
Например, крылья бабочки и крылья птицы. Внешне схожи, и функция у них одна — приспособление к полету, но и строение, и происхождение различаются очень существенно.
Соответственно, если у неродственных организмов есть аналогичные органы, то это называется конвергенцией.
Аналогичные органы у растений
Колючки на побегах (видоизменения побегов) и колючки — листья у голосемянных.
Чтобы все особенности аналогичных и гомологичных органов были более понятны, сведем их все в таблицу:
Признаки | Гомологичные органы | Аналогичные органы |
---|---|---|
Строение | часто различны по строению | имеют схожее строение |
Происхождение | имеют общий зародышевый источник | происходят из различных зародышевых источников |
Функции | могут быть и разными, и схожими | одинаковые |
Причина появления | приспособление к различным условиям существования | приспособления к похожим условиям существования |
.
.
Еще на эту тему:
Обсуждение: «Гомологичные и аналогичные органы»
(Правила комментирования)distant-lessons.ru
Ответы@Mail.Ru: что такое гомолог?
Изомеры — имеют одинаковый качественный и количественный хим. состав, но разное строение. Гомологи — отличаются на одну или несколько групп Ch3 и имеют сходное химическое строение. Если нормальный декан — это цепочка из 10 атомов углерода, на которые навешаны водороды, то: изомер это, например, 2-метил-нонан — т. е. цепочка из 9 атомов углерода, а ко второму ещё один углерод подвешен. Или три-этил-октан. гомолог — это ещё проще — просто из середины убрать или добавить СН2 — будет нонан или ундекан, соответственно. Надо было на уроках записывать.
<a rel=»nofollow» href=»http://ru.wikipedia.org» target=»_blank»>http://ru.wikipedia.org</a>
Гомологи Соединения, принадлежащие к одному классу, но отличающиеся друг от друга по составу на целое число групп СН2. Совокупность всех гомологов образует гомологический ряд.
Гомологический ряд — ряд химических соединений одного структурного типа (например, алканы или алифатические спирты — спирты жирного ряда) , отличающихся друг от друга по составу на определенное число повторяющихся структурных единиц (чаще всего — метиленовых звеньев (-СН2-) — т. н. «гомологическую разность».
touch.otvet.mail.ru
Гомологи и изомеры. Что это такое и как их строить?
Изомеры — это вещества имеющие одинаковый атомный состав, но порядок соединения атомов между собой различается. Гомологи — это в принципе бесконечный ряд веществ, относящихся к одному и тому же классу, отличающихся друг от друга на некоторое количество атомов углерода и удвоенное количество атомов водорода (в простейшем случае группы -СН2-). Формулы гомологов получаются так, в формуле исходного вещества разрываешь одну ординарную (простую, или сигма) связь и вставляешь туда группу (-СН2-). Например, был этиловый спирт (этанол) СН3-СН2-ОН. В формуле этого вещества (1- три связи С-Н в метильной группе) , (2 — две связи С-Н в метиленовой группе) , (3 — одна О-Н связь в гидроксильной группе) , (4 — одна С-С- связь) , (5 — одна С-О) связь. Разрывая любую из них, и вставляя группу (-СН2-) получаем: 1) СН3-СН2-СН2-ОН — пропиловый спирт (пропанол) , тоже относится к классу спиртов, является гомологом этанола. 2) СН3-СН (СН3)-ОН — тоже получился спирт, но строение его отличается от спирта, полученного в случае 1. Это соединение называется изопропиловый спирт (изопропанол, т. е изомер пропанола, или 1-метилэтанол) . Изопропанол является гомологом по отношению к этанолу. Пропанол и изопропанол являются изомерами по отношению друг к другу. 3) СН3-СН2-О-СН3. Получилось вещество того же состава, что и в предыдущих двух случаях, но оно не относится к классу спиртов, а относится к классу простых эфиров. Называется этилметиловый эфир или метилэтиловый эфир. Это вещество является межклассовым изомером по отношению к пропанолу и изопропанолу, но гомологом этанола не является. 4) СН3-СН2-СН2-ОН, опять получился пропанол. 5) СН3-СН2-СН2-ОН, опять пропанол. Таким образом, у этанола два следующих (высших гомолога) — пропанол и изопропанол. Далее, аналогично из пропанола можно получить три бутанола (нормальный или первичный бутанол СН3-СН2-СН2-СН2-ОН, вторичный бутанол или бутанол-2 СН3-СН2-СН (ОН) -СН3, изобутанол или 2-метилпропанол СН3-СН (СН3)-СН2-ОН) . Из изопропанола можно получить также три бутанола (вторичный бутанол, изобутанол и третичный бутанол СН3-С (СН3)2-ОН) . Все 4 бутанола являются изомерами по отношению друг к другу, кроме того, все 4 бутанола, оба пропанола и этанол являются гомологами по отношению друг к другу. Гомолог, можно получить не только добавляя группу (-СН2), но и исключая из молекулы группу (-СН2). Так из этанола можно получить СН3-ОН — метанол, он тоже является гомологом по отношению к этанолу. Если продолжим так и дальше, то исключив из молекулы метанола группу (-СН2) получим Н-О-Н, т. е. молекулу воды. Вода не относится к классу спиртов, и не считается гомологом метанола. Таким образом, метанол, этанол, два пропанола, четыре бутанола образуют гомологический ряд. Этот ряд можно бесконечно (по крайней мере формально) продолжить — пентанолы, гексанолы и т. д. до бесконечности. При желании можешь потренироваться, и получить все пентанолы (их 8 различных изомеров).
Гомологи — это вещества с разным количеством атомов водорода и углерода. Они отличаются на группу (количество групп) СН2 на главной, прямой, основной линии. Изомеры — это вещества с ОДИНАКОВЫМ количеством атомов водорода и углерода, но отличающиеся по строению (что и видно в структурных формулах) .
Грубо У гомологов могут нарастать хоть до бесконечности неактивные навески в каком то из хвостов изомеры — атомный состав одинаков, а соединение между атомами разное. (обычно в углеводородах, но может быть в любых)
а шо такое атомный состав
как решать химию
Люди, вы вкурсе что сейчас в России крупные мировые компании разыгрывают подарки и деньги за ответы на их вопросы? На www.fond2019.ru можете почитать подробнее. Может ещё успеете пока у них призы не кончились:)
touch.otvet.mail.ru