Как решать уравнения с модулем
Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?
На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.
Но для начала вспомним определение модуля
|a| = a, если a ≥ 0 и |a| = -a, если a < 0
Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.
Теперь перейдем непосредственно к решению уравнений.
1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.
Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:
{±c, если с > 0
Если |x| = c, то x = {0, если с = 0
{нет корней, если с < 0
Примеры:
1) |x| = 5, т.к. 5 > 0, то x = ±5;
2) |x| = -5, т.к. -5 < 0, то уравнение не имеет корней;
3) |x| = 0, то x = 0.
2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b< 0, решений не будет.
Примеры:
1) |x + 2| = 4, т.к. 4 > 0, то
x + 2 = 4 или x + 2 = -4
x = 2 x = -6
2) |x2 – 5| = 11, т.к. 11 > 0, то
x2 – 5 = 11 или x2 – 5 = -11
x2 = 16 x2 = -6
x = ± 4 нет корней
3) |x2 – 5x| = -8 , т.к. -8 < 0, то уравнение не имеет корней.
3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:
f(x) = g(x) или f(x) = -g(x).
Примеры:
1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.
1. О.Д.З. 5x – 10 ≥ 0
5x ≥ 10
x ≥ 2.
2. Решение:
2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)
3x = 9 7x = 11
x = 3 x = 11/7
3. Объединяем О.Д.З. и решение, получаем:
Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.
Ответ: x = 3
2) |x – 1| = 1 – x2.
1. О.Д.З. 1 – x2 ≥ 0. Решим методом интервалов данное неравенство:
(1 – x)(1 + x) ≥ 0
-1 ≤ x ≤ 1
2. Решение:
x – 1 = 1 – x2 или x – 1 = -(1 – x2)
x2 + x – 2 = 0 x2 – x = 0
x = -2 или x = 1 x = 0 или x = 1
3. Объединяем решение и О.Д.З.:
Подходят только корни x = 1 и x = 0.
Ответ: x = 0, x = 1.
4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).
Пример:
1) |x2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:
x2 – 5x + 7 = 2x – 5 или x
x2 – 7x + 12 = 0 x2 – 3x + 2 = 0
x = 3 или x = 4 x = 2 или x = 1
Ответ: x = 1, x = 2, x = 3, x = 4.
5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:
x2 – 6|x| + 5 = 0. По свойству модуля x2 = |x|2, поэтому уравнение можно переписать так:
|x|2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:
t2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:
|x| = 1 или |x| = 5
x = ±1 x = ± 5
Ответ: x = -5, x = -1, x = 1, x = 5.
Рассмотрим еще один пример:
x2 + |x| – 2 = 0. По свойству модуля x2 = |x|2, поэтому
|x|2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:
t2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:
|x| = -2 или |x| = 1
Нет корней x = ± 1
Ответ: x = -1, x = 1.
6. Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.
Примеры:
1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:
3 – |x| = 4 или 3 – |x| = -4.
Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.
Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1 < 0, а во втором x = ±7.
Ответ x = -7, x = 7.
2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:
3 + |x + 1| = 5 или 3 + |x + 1| = -5
|x + 1| = 2 |x + 1| = -8
x + 1 = 2 или x + 1 = -2. Нет корней.
x = 1 x = -3
Ответ: x = -3, x = 1.
Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
blog.tutoronline.ru
Модуль числа — знак, свойства, действия, как найти, примеры графиков
Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.
Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам. Заработай деньги с помощью своих знаний на https://teachs.ru!
Что такое модуль в математике
Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.
Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.
Свойства модуля
Важно помнить о следующих свойствах:
- Правило раскрытия: абсолютная величина любого числа больше или равна нулю:
- Если абсолютные значения содержат выражения противоположных значений, они равны:
- Значение числа не превышает величину его модуля:
- Правило раскрытия при произведении:
- Правило, применимое при делении:
- При возведении в степень:
- Сумма величин:
- Двойной модуль:
Модуль комплексного числа
Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).
Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.
Как решать уравнения с модулем
Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.
Уравнения типа |x| = a
Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.
Равенство с абсолютной величиной не имеет решения, если величина отрицательная.
Если |x| < a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.
Уравнения типа |x| = |y|
Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.
Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).
Далее простая арифметика − нужно решить два равенства относительно x.
Уравнения типа |x| = y
Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.
Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:
Решение неравенств с модулем
Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.
Уравнения вида |x| = a
Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.
Решение.
Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.
После перемещения константы вправо получено: |x| = 2.
Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.
Ответ: 2 и −2.
Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.
Решение.
Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.
Это означает, что –2 – поворотная точка.
Далее определяется знак на интервалах: на промежутке величина будет отрицательной, а на интервале будет положительной.
Разделим интервал на 2 части:
- для x + 2 ≥ 0
Общим ответом для этих двух неравенств является интервал [−1; + ∞).
- для х + 2 < 0
Общим ответом для этих двух неравенств является интервал (−∞; –3].
Окончательное решение – объединение ответов отдельных частей:
x ∈ (–∞; –3] ∪ [–1; + ∞).
Ответ: x ∈ (–∞; –3] ∪ [–1; + ∞).
Уравнения вида |x| = |y|
Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.
Решение:
Ответ: x1 = 3; x2 = − 1.
Пример 2 (алгебра 8 класс). Решить неравенство:
Решение:
Уравнения вида |x| = y
Пример 1 (алгебра 10 класс). Найти x:
Решение:
Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что не лежит в промежутке .
Ответ: x = 0.
Модуль суммы
Модуль разности
Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.
Пример 1.
Пример 2.
Модуль отрицательного числа
Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,
Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.
Модуль нуля
Известно свойство:
Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.
Модуль в квадрате
Модуль в квадрате всегда равен выражению в квадрате:
Примеры графиков с модулем
Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.
Пример 1.
Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.
Решение:
Объяснение: из рисунка видно, что график симметричен относительно оси Y.
Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.
Решение:
Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).
Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.
Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.
Метод интервалов в задачах с модулем
Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.
Для использования метода нужно совершить следующие действия:
- Приравнять каждое выражение к нулю.
- Найти значения переменных.
- Нанести на числовую прямую точки, полученные в пункте 2.
- Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
- Решить неравенства с полученными знаками.
Пример 1. Решить методом интервалов.
Решение:
Результатом будет сумма всех подходящих интервалов.
Модуль в модуле
Среди примеров часто встречаются уравнения, где нужно найти корни равенств такого вида: ||ax – b| – c| = kx + m.
Лучше всего понять принцип на примере.
Пример 1. Решить
Решение:
Первым делом нужно раскрыть внутренний модуль. Для этого рассматривается два варианта:
В первом случае выражение положительное, а во втором отрицательное. Исходя из этого, получаем:
Нужно упростить два уравнения:
Далее каждое из равенств разделяется еще на два:
Получено четыре результата:
Заключение
Самое важное, что нужно знать: модуль не может быть отрицательным.
Поэтому, если представлено выражение, похожее на |2 – 4x| = –7 стоит помнить, что равенство неверно даже без поисков ответов.
В качестве итогов, напомним все свойства, которые помогут в решении задач:
- когда положительное число находится внутри модуля, достаточно просто избавиться от него;
- если есть выражение, нужно его упростить, прежде чем найти абсолютное значение;
- если равенство содержит две переменные, нужно решать его с помощью системы уравнений и за основу брать методы решения выражений с абсолютными величинами.
Решать равенства и неравенства можно разными способами, но лучше всего использовать графический способ или метод интервалов.
1001student.ru
Модуль числа
Модулем неотрицательного действительного числа a называют само это число:
|а| = а
Модулем отрицательного действительного числа х называют противоположное число:
|а| = — а
Короче это записывают так:
Модулем числа а называют расстояние (в единичных отрезках) от начала координат до точки А(а).
Модуль числа 5 равен 5, так как точка В(5) удалена от начала отсчета на 5 единичных отрезков. Пишут: |5| = 5
Расстояние точки М(-6) от начала отсчета О равно 6 единичным отрезкам. Число 6 называют модулем числа -6. Пишут: |-6| = 6Модуль числа не может быть отрицательным. Для положительного числа и нуля он равен самому числу, а для отрицательного – противоположному числу. Противоположные числа имеют равные модули:
|-а| = |а|
Модуль числа 0 равен 0, так как точка с координатой 0 совпадает с началом отсчета 0, т.е. удалена от нее на 0 единичных отрезков:
|0| = 0
На практике используют различные свойства модулей:
|а| ? 0
|а·b| = |а| · |b|
|а|n = аn , n є Z, a ? 0, n > 0
|а| = | — а|
|а + b| ? |а| + |b|
|а·q| = q·|а| , где q — положительное число
|а|2 = а2
Значение |a — b| равно расстоянию на числовой прямой между точками, изображающими числа a и b.
Пример 1.
, т.к.
, т.к.
Пример 2.
Упростить выражение , если a
Решение.
Так как по условию а
Ответ:
Пример 3.
Вычислить
Решение.
Имеем
Теперь раскроем знаки модулей.
Воспользуемся тем, что 1 0.
Но тогда |?3 — 2| = -(?3 — 2) = 2- ?3 ,
а |?3 — 1| = ?3 — 1
В итоге получаем
Ответ: 1
Здесь Вы нашли ответ на вопрос : что такое модуль числа , и какие его свойства.
mirurokov.ru
Решение уравнений с модулем
Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа, и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.
Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.
Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5.
Число -5 имеет знак «-» и абсолютное значение 5.
Абсолютные значения чисел 5 и -5 равны 5.
Абсолютное значение числа х называется модулем числа и обозначается |x|.
Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.
Это же касается любых выражений, которые стоят под знаком модуля.
Правило раскрытия модуля выглядит так:
|f(x)|= f(x), если f(x) ≥ 0, и
|f(x)|= — f(x), если f(x) < 0
Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.
Чтобы решить уравнение , содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля.
Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках.
Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.
А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.
Рассмотрим простой пример.
Решим уравнение:
|x-3|=-x2+4x-3
1. Раскроем модуль.
|x-3|=x-3, если x-3≥0, т.е. если х≥3
|x-3|=-(x-3)=3-x, если x-3<0, т.е. если х<3
2. Мы получили два числовых промежутка: х≥3 и х<3.
Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:
А) При х≥3 |x-3|=x-3, и наше уранение имеет вид:
x-3=-x2+4x-3
Внимание! Это уравнение существует только на промежутке х≥3!
Раскроем скобки, приведем подобные члены:
x2 -3х=0
и решим это уравнение.
Это уравнение имеет корни:
х1=0, х2=3
Внимание! поскольку уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.
Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:
3-x=-x2+4x-3
Внимание! Это уравнение существует только на промежутке х<3!
Раскроем скобки, приведем подобные члены. Получим уравнение:
x2-5х+6=0
х1=2, х2=3
Внимание! поскольку уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2.
Итак: из первого промежутка мы берем только корень х=3, из второго — корень х=2.
Ответ: х=3, х=2
ege-ok.ru
Что такое модуль числа в математике
Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля — символ, которым это понятие обозначается при написании.…
Вконтакте
Google+
Мой мир
Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль — это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.
Графически абсолютное значение а обозначается как |a|.
Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.
Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.
Это интересно: умножение на 0 — правило для любого числа.
Геометрическое значение
Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.
- Для примера можно взять координатную прямую и на ней нанести 2 произвольные точки. Допустим, одна из точек (А) будет иметь числовое значение 5, а вторая (В) — 6.
- Если рассмотреть полученный чертёж, можно увидеть, что точка, А находится на расстоянии 5 единиц от нуля (начала координат). Точка В находится от нуля на 6 единиц. Таким образом, модулем точки, А будет число 5, а модулем точки В — число 6.
- В этом случае графическое обозначение выражения будет следующим: | 5 | = 5.
- Иными словами, если взять любое произвольное число и обозначить его на координатной прямой в виде точки А, то расстояние от нуля до этой точки и будет модулем числа А.
Графически это можно выразить следующим образом: |a| = OA.
Это интересно: признак перпендикулярности прямой и плоскости, теория и практика.
Свойства абсолютной величины
Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:
- Модулем любой цифры является величина неотрицательная. Таким образом, абсолютным значением положительной величины будет выступать она сама. Графически эта закономерность выражается следующим образом: |a| = a, если a> 0.
- Модули противоположных величин равны друг другу Это объясняется тем фактом, что на координатной прямой противоположные числа хотя и располагаются в разных точках, но находятся на одинаковом расстоянии от начальной точки отсчёта. Графически это выражается как: |а| = |-а|.
- Третьим свойством является то, что абсолютным значением нуля равняется сам нуль. Это условие считается верным в том случае, когда действительное число является нулем. Поскольку нулю соответствует начало отсчета в системе координат, то модулем числа ноль является сам ноль по определению. Графически: |0| = 0|.
- Еще одним важным свойством является то, что абсолютное значение произведений двух любых действительных чисел равняется произведению двух этих величин. Это условие необходимо рассмотреть более подробно. Иначе говоря, абсолютным значением произведения величин, А и В будет АВ в случае если оба этих значения положительные или же оба отрицательные, или -АВ при условии, что одно из этих чисел будет отрицательным. В записи эта закономерность будет выглядеть следующим образом: |А*В| = |А| * |В|.
- Абсолютная величина суммы любых двух действительных чисел меньше или равна сумме их модулей.
- Абсолютная величина разности двух произвольных величин меньше или равна разности двух абсолютных величин.
- Если в математическом выражении имеется постоянный положительный множитель, его можно выносить за знак | |.
- Такое же правило распространяется и на показатель степени выражения.
Это интересно: что такое разность в математике?
Особенности решения уравнений с модулем
Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.
|А + 5| = А + 5, если, А больше или равняется нулю.
5-А, если, А значение меньше нуля.
В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.
Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.
Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.
Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.
obrazovanie.guru
Простейшие уравнения с модулем. Тест
Определение. Геометрический смысл
Модуль (или абсолютная величина) числа (обозначается как )— неотрицательное число, определение которого зависит от типа числа
А именно:
Мы будем называть данное правило правилом раскрытия модуля.
Например, так как , попадаем в первую строку (ситуацию).
так как попадаем во вторую ситуацию.
С геометрической точки зрения, – есть расстояние между числом и началом координат.
Решением уравнения, например, являются числа и , потому что расстояние от точки координатной прямой до нуля равно , и расстояние от точки до нуля также равно 6.
|| с геометрической точки зрения означает расстояние между точками и .
Полезные примеры
1) Раскрыть модуль:
Так как больше, чем , то , а значит согласно правилу раскрытия модуля.
2) Раскрыть модуль:
Так как больше нуля при всех значениях , то согласно правилу раскрытия модуля.
3) Раскрыть модуль:
Так как , то , а значит, согласно правилу раскрытия модуля.
Решение уравнений
1) Решить уравнение .
Модуль – всегда неотрицательная величина, поэтому уравнение решений не имеет.
Ответ: { }
2) Решить уравнение: .
Модуль раскрывается таким образом в случае, когда .
Ответ:
3) Решить уравнение:
Согласно геометрическому смыслу модуля левая и правая части равенства представляют из себя одно и то же.
Ответ:
4) Решить уравнение:
Раскрываем модуль согласно правилу раскрытия модуля:
а)
Имеем: ,
Откуда .
Поскольку мы находимся в ситуации , то подходит только корень .
б)
Имеем: ,
Откуда или .
Поскольку мы находимся в ситуации , то ни один корень из найденных в пункте (б) нам не подходит.
Ответ: .
Коротко можно было бы решение оформить так:
5) Решить уравнение:
Раскрываем модуль согласно правилу раскрытия модуля:
a) Первый случай:
Что равносильно .
б) Второй случай:
Что равносильно
Ответ:
6) Решить уравнение:
Можно было бы действовать согласно правилу раскрытия модуля, но проще будет в данном случае рассуждать так:
Внутри модуля может «скрываться» как так и .
Поэтому или
или
Из первого уравнения или , а второе уравнение корней не имеет.
Ответ:
7) Решить уравнение:
Раскрываем модуль согласно правилу раскрытия модуля:
а) Первый случай:
Рассмотрим отдельно первую строку системы:
Рассмотрим уравнение из системы:
или
Разложим на множители левую часть уравнения способом группировки, предварительно разбив среднее слагаемое на два:
Откуда (трехчлен в скобках корней не имеет).
Данный корень удовлетворяет первой строке системы, он пойдет в ответ.
б) Второй случай:
Решение неравенства системы:
Корень удовлетворяет решению неравенства системы.
Собираем решения.
Ответ:
Также, смотрите «Модуль. Простейшие неравенства с модулем» здесь.
Вы можете пройти тест по теме «Модуль. Раскрытие модуля. Простешие уравнения с модулем»
egemaximum.ru
Как решать уравнения с модулем? никак не могу понять.. . объясните, пожалуйста.
пример какой-нибудь нужно
Раскрываешь подмодульное выражение со знаком плюс и со знаком минус.
Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем? На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, как решать уравнение с модулем_1ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров. Но для начала вспомним определение модуля. Итак, модулем числа a называется само это число, если a неотрицательно и -a, если число a меньше нуля. Записать это можно так: |a| = a, если a ≥ 0 и |a| = -a, если a < 0 Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее ккак решать уравнения с модулемоордината. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное. Теперь перейдем непосредственно к решению уравнений. 1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля. Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы: {±c, если с > 0 Если |x| = c, то x = {0, если с = 0 {нет корней, если с < 0 Примеры: 1) |x| = 5, т. к. 5 > 0, то x = ±5; 2) |x| = -5, т. к. -5 < 0, то уравнение не имеет корней; 3) |x| = 0, то x = 0. 2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b< 0, решений не будет. Примеры: 1) |x + 2| = 4, т. к. 4 > 0, то x + 2 = 4 или x + 2 = -4 x = 2 x = -6 2) |x2 – 5| = 11, т. к. 11 > 0, то x2 – 5 = 11 или x2 – 5 = -11 x2 = 16 x2 = -6 x = ± 4 нет корней 3) |x2 – 5x| = -8, т. к. -8 < 0, то уравнение не имеет корней. 3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т. е. g(x) ≥ 0. Тогда будем иметь: f(x) = g(x) или f(x) = -g(x). Примеры: 1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений. 1. О. Д. З. 5x – 10 ≥ 0 5x ≥ 10 x ≥ 2. 2. Решение: 2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10) 3x = 9 7x = 11 x = 3 x = 11/7 3. Объединяем О. Д. З. и решение, получаем: Корень x = 11/7 не подходит по О. Д. З., он меньше 2, а x = 3 этому условию удовлетворяет. Ответ: x = 3 2) |x – 1| = 1 – x2. 1. О. Д. З. 1 – x2 ≥ 0. Решим методом интервалов данное неравенство: (1 – x)(1 + x) ≥ 0 -1 ≤ x ≤ 1 2. Решение: x – 1 = 1 – x2 или x – 1 = -(1 – x2) x2 + x – 2 = 0 x2 – x = 0 x = -2 или x = 1 x = 0 или x = 1 3. Объединяем решение и О. Д. З.: Подхо
Попробуй решить здесь: <a rel=»nofollow» href=»http://solutioneq.com/» target=»_blank»>http://solutioneq.com/</a>
touch.otvet.mail.ru