Что называют градусом в геометрии: Attention Required! | Cloudflare – Градус (геометрия) — это… Что такое Градус (геометрия)?

Градус (геометрия) - это... Что такое Градус (геометрия)?

У этого термина существуют и другие значения, см. Градус.

Градус, минута, секунда — общепринятые единицы измерения плоских углов. Также эти величины используются в картографии для определения координат произвольной точки земной поверхности.

Градус

Градус (от лат. gradus — деление шкалы, шаг, ступень) обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.

Деление окружности на 360° придумали аккадцы (вавилоняне).

Минуты и секунды

По аналогии с делением часа как интервала времени градус делят на 60 минут (от лат. minutus — маленький, мелкий; обозначается знаком ′), а минуту — на 60 секунд (от лат. secunda divisio — второе деление; обозначается знаком ″). Корни такого деления лежат в Древнем Вавилоне, где использовалась шестидесятеричная система счисления.

  • 1′ = ≈ 2,9088821·10−4 радиан.
  • 1″ = ≈ 4,8481368·10−6 радиан.

Угловая секунда

\frac{1^\circ}{3600}

Углова́я секу́нда (англ. arcsecond, arc second, as, second of arc; синонимы: дуговая секунда, секунда дуги[1]) — внесистемная астрономическая единица измерения малых углов, тождественная секунде плоского угла[2].

Использование

Угловая секунда (обозначается ″) используется в астрономии при измерении плоских углов в градусных мерах. При измерении углов в часовых мерах (в частности, для определения прямого восхождения) используется единица измерения «секунда» (обозначается с). Соотношение между этими величинами определяется формулой 1c = 15″.[3]

Иногда угловую секунду (и производные от неё дольные единицы) ошибочно называют арксекундой[1][4], что является простой транслитерацией с англ. arcsecond.

Дольные единицы

По аналогии с международной системой единиц (СИ), наряду с угловой секундой применяются и её дольные единицы измерения: миллисекунды (англ. milliarcseconds, mas), микросекунды (англ. microarcseconds, µas) и пикосекунды (англ. picoarcseconds, pas). Они не входят в СИ (СИ рекомендует миллирадианы и микрорадианы), но допускаются к применению[2]. Однако, согласно ГОСТ 8.417-2002, наименование и обозначения единиц плоского угла (градус, минута, секунда) не допускается применять с приставками[5], в связи с чем такие дольные величины должны приводиться либо к единицам СИ (миллирадианам и т. п.), либо к угловым секундам, либо обозначаться исходными единицами (mas, µas и pas соответственно).

Связь различных угловых единиц измерения
единица величина обозначение аббревиатура радиан (прибл.)
градус 1/360 окружности ° deg 17,4532925 mrad
минута 1/60 градуса arcmin, amin, , MOA 290,8882087 µrad
секунда 1/60 минуты arcsec 4,8481368 µrad
миллисекунда 1/1000 секунды   mas
4,8481368 nrad
микросекунда 1 × 10−6 секунды   μas 4,8481368 prad

Дольные единицы могут использоваться для обозначения собственного движения звёзд и галактик, годичного параллакса и углового диаметра звёзд[6].

Для наблюдения астрономических объектов под такими сверхмалыми углами астрономы прибегают к методу интерферометрии, при котором сигналы, принимаемые несколькими разнесёнными радиотелескопами, комбинируются в процессе апертурного синтеза. Так, используя методику интерферометрии со сверхдлинной базой, астрономы получили возможность измерить собственное движение галактики Треугольника.[источник не указан 168 дней]

В видимом свете существенно труднее достичь миллисекундного разрешения. Тем не менее, спутник Hipparcos справился с этой задачей в процессе астрометрических измерений, по результатам которых были составлены наиболее точные (по состоянию на 1997 год) каталоги звёзд Tycho (TYC) и Hipparcos (HIP)[7][8].

Примечания

Литература

См. также

Что такое градус 🚩 градусом называют 🚩 Естественные науки


Шкалы градусов при измерении температуры в разных странах и сегодня имеют разные деления и нулевую точку, а в прежние времена и вовсе существовало больше десятка вариантов определения градуса. Сегодня двумя основными единицами измерения температуры являются градусы по шкалам Цельсия и Фаренгейта. Первая из них входит в международную систему СИ, а вторая используется в основном в США. В шкале Цельсия диапазон температур от точки таяния льда до точки кипения воды разбит на сто делений, каждое из которых и соответствует одному градусу - 1°C. За нулевую отметку здесь принята точка плавления льда. По шкале Фаренгейта 100°F сопоставлена температура тела человека, поэтому лед здесь тает при температуре +32°F.

В геометрии градусом называют одну 360 долю полного оборота. Это значит, что поворот в прямо противоположном направлении соответствует 180°, а прямой угол равен 90°. В отличие от температуры для более точных измерений здесь градусы делятся не на десятые доли, а на шестидесятые. Градусное измерение углов позаимствовано у древних вавилонян, которые использовали шестидесятеричную систему, поэтому одна шестидесятая доля в геометрии и картографии называется угловой минутой, шестидесятая доля которой, в свою очередь, является одной угловой секундой.

Градусное определение содержания спирта в алкогольных напитках используется в нашей стране только благодаря традиции - официально эта единица измерения уже давно отменена. В этой области применения один градус совпадает с одним процентом и определяет объем спирта в емкости с алкогольным напитком. Например, крепость кефира равна 0,2°, что означает наличие в каждом литре 2 см³ спирта.

В масонстве градусом определяется степень духовного развития члена ложи, уровень его знаний и посвященности в дела. В классическом варианте таких ступеней три - первому градусу соответствует звание ученика, второму - подмастерья, третьему - мастера.

Существует также градусные единицы измерения вязкости (градус Энглера) и плотности (градус Боме) жидкостей, но они применяются редко и являются внесистемными единицами.

Градус (геометрия) — Википедия. Что такое Градус (геометрия)

Гра́дус, мину́та, секу́нда — общепринятые единицы измерения плоских углов. Также эти величины используются в картографии для определения координат произвольной точки земной поверхности, а также для определения азимута.

Градус

Градус (от лат. gradus — деление шкалы, шаг, ступень) обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.

Причина выбора градуса как единицы измерения углов неизвестна. Одна из теорий предполагает, что это связано с тем, что 360 - приблизительное количество дней в году[1]. Некоторые древние календари, такие как древнеперсидский, использовали год в 360 дней.

Другая теория гласит, что аккадцы (вавилоняне) поделили окружность, используя угол равностороннего треугольника как базу и поделив результат на 60, следуя своей шестидесятеричной системе счисления[2][3].

Если построить окружность радиусом 57 см, то 1 градус будет примерно соответствовать 1 см длины дуги данной окружности.

Градус в альтернативных единицах измерения:

1∘=2π360∘=π180∘{\displaystyle 1^{\circ }={\frac {2\pi }{\displaystyle {360^{\circ }}}}={\frac {\pi }{\displaystyle {180^{\circ }}}}} радиан =1∘p∘≈1∘57,295779513∘{\displaystyle ={\frac {1^{\circ }}{\displaystyle {p^{\circ }}}}\approx {\frac {1^{\circ }}{\displaystyle {57{,}295779513^{\circ }}}}}[4]≈0,0174532925{\displaystyle \approx 0,0174532925} (радиан в 1°)
1∘=1360{\displaystyle 1^{\circ }={\frac {1}{360}}} оборота=0,002(7) оборота=0,002777777777...
1∘=400360{\displaystyle 1^{\circ }={\frac {400}{360}}} градов=1,(1) градов=1,11111111111... градов

Минуты и секунды

По аналогии с делением часа как интервала времени градус делят на 60 минут (от лат. minutus — маленький, мелкий; обозначается штрихом x′), а минуту — на 60 секунд (от лат. secunda divisio — второе деление; обозначается двумя штрихами y″. Ранее употреблялась величина в 1/60 секунды — терция (третье деление), с обозначением тремя штрихами — z″′. Деление градуса на минуты и секунды ввёл Клавдий Птолемей[5]; корни же такого деления восходят к учёным Древнего Вавилона (где использовалась шестидесятеричная система счисления).

Минуты и секунды в других системах измерения:

1′=2π360∘⋅60′=1′p′≈1′3437,747′{\displaystyle 1'={\frac {2\pi }{\displaystyle {360^{\circ }}\cdot 60'}}={\frac {1'}{p'}}\approx {\frac {1'}{3437{,}747'}}}[4]≈2,90888208⋅10−4 rad{\displaystyle \approx 2{,}90888208\cdot 10^{-4}~{\text{rad}}} (1 минута в радианах)
1″=2π360∘⋅60′⋅60″=1″p″≈1″206264,8″{\displaystyle 1''={\frac {2\pi }{\displaystyle {360^{\circ }}\cdot 60'\cdot 60''}}={\frac {1''}{p''}}\approx {\frac {1''}{206264{,}8''}}}[4]≈4,848136811⋅10−6 rad{\displaystyle \approx 4{,}848136811\cdot 10^{-6}~{\text{rad}}} (1 секунда в радианах).

Минуты и секунды в радианной мере из-за своих чрезмерно малых величин представляют ограниченный интерес и практически очень мало используются.
Гораздо больший интерес представляет перевод десятичных (сотых, десятитысячных) долей градуса в минуты и секунды и обратно — см. Радиан#Связь радиана с другими единицами и Географические координаты.

Угловая секунда

{\displaystyle \approx 4{,}848136811\cdot 10^{-6}~{\text{rad}}}

Углова́я секу́нда (англ. arcsecond, arc second, as, second of arc; синонимы: дуговая секунда, секунда дуги[6]) — внесистемная астрономическая единица измерения малых углов, тождественная секунде плоского угла[7].

Использование

Угловая секунда (обозначается ″) используется в астрономии при измерении плоских углов в градусных мерах. При измерении углов в часовых мерах (в частности, для определения прямого восхождения) используется единица измерения «секунда» (обозначается s). Соотношение между этими величинами определяется формулой 1s=15″.[8]

Иногда угловую секунду (и производные от неё дольные единицы) ошибочно называют арксекундой[6][9], что является простой транслитерацией с англ. arcsecond.

Дольные единицы

По аналогии с международной системой единиц (СИ), наряду с угловой секундой применяются и её дольные единицы измерения: миллисекунды (англ. milliarcseconds, mas), микросекунды (англ. microarcseconds, µas) и пикосекунды (англ. picoarcseconds, pas). Они не входят в СИ (СИ рекомендует миллирадианы и микрорадианы), но допускаются к применению[7]. Однако согласно ГОСТ 8.417-2002, наименование и обозначения единиц плоского угла (градус, минута, секунда) не допускается применять с приставками[10], в связи с чем такие дольные величины должны приводиться либо к единицам СИ (миллирадианам и т. п.), либо к угловым секундам, либо обозначаться исходными единицами (mas, µas и pas соответственно).

Связь различных угловых единиц измерения
Единица Величина Обозначение Аббревиатура Радиан (прибл.)
градус 1/360 окружности ° deg 17,4532925 mrad
минута 1/60 градуса arcmin, amin, ′^{\displaystyle {\hat {'}}}, MOA 290,8882087 µrad
секунда 1/60 минуты arcsec 4,8481368 µrad
миллисекунда 1/1000 секунды   mas 4,8481368 nrad
микросекунда 1 × 10−6 секунды   μas 4,8481368 prad

Дольные единицы могут использоваться для обозначения собственного движения звёзд и галактик, годичного параллакса и углового диаметра звёзд.

Для наблюдения астрономических объектов под такими сверхмалыми углами астрономы прибегают к методу интерферометрии, при котором сигналы, принимаемые несколькими разнесёнными радиотелескопами, комбинируются в процессе апертурного синтеза. Так, используя методику интерферометрии со сверхдлинной базой, астрономы получили возможность измерить собственное движение галактики Треугольника.[источник не указан 2291 день]

В видимом свете существенно труднее достичь миллисекундного разрешения. Тем не менее, спутник Hipparcos справился с этой задачей в процессе астрометрических измерений, по результатам которых были составлены наиболее точные (по состоянию на 1997 год) каталоги звёзд Tycho (TYC) и Hipparcos (HIP)[11][12].

Примечания

  1. Weisstein, Eric W. Degree (англ.). Wolfram MathWorld. Проверено 26 ноября 2017.
  2. James Hopwood Jeans. The Growth of Physical Science. — 1947. — С. 7.
  3. Murnaghan, Francis D. Analytic geometry. — New York: Prentice-Hall, inc., 1946. — P. 2.
  4. 1 2 3 Переводные множители — <57,295779513>, <3437,747>, <206264,8> — см. Радиан#Связь радиана с другими единицами.
  5. ↑ Боголюбов, 1983, с. 393—394.
  6. 1 2 Англо-русско-английский астрономический словарь. Astronet. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
  7. 1 2 Non-SI units accepted for use with the International System of Units (англ.). SI brochure (8th ed.). Bureau International des Poids et Mesures. — Описание СИ на сайте Международного бюро мер и весов. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
  8. ↑ Справочник. Некоторые внесистемные единицы. ASTROLAB. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
  9. ↑ Glossary entry for English term "arcsecond" (англ.). Справочник по услугам профессионального перевода, предоставляемым независимыми переводчиками и бюро перевода. ProZ.com. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
  10. ↑ ГОСТ 8.417-2002. Единицы величин. Введён в действие с 1 сентября 2003 г. // Информационная система по оборудованию «Прибор.Инфо» : справочник. — 2003. Архивировано 5 августа 2013 года.
  11. Гурьянов С. Почему звезды называются именно так?. проект "Астрогалактика" (29 октября 2005 года). Проверено 26 декабря 2007. Архивировано 23 августа 2011 года.
  12. Цветков А. С. Общие сведения о проекте Hipparcos // Руководство по практической работе с каталогом Hipparcos. — СПб.: АИ СПбГУ.

Литература

См. также

ГРАДУС - это... Что такое ГРАДУС?

  • ГРАДУС — (лат. gradus степень, ступень, мера). 1) одна из равных частей, на которые делится окружность (обыкновенно 1/360 часть). В физике: каждая из равных частей, на которые делится шкала термометра, барометра и др. приборов. 3) в древн. Руси: ученая… …   Словарь иностранных слов русского языка

  • ГРАДУС — ГРАДУС, условная единица, к рой пользуются при измерении самых разнообразных величин, например: температуры, жесткости, кислотности, солености, крепости; градус как единица измерения угловых величин, географический градус и др. Градус… …   Большая медицинская энциклопедия

  • ГРАДУС — (лат. gradus шаг ступень, степень), 1) общее наименование различных единиц температуры, соответствующих разным температурным шкалам. Различают градус шкалы Кельвина, или кельвин (К), градус Цельсия (.С), градусы Реомюра (.R), Фаренгейта (.F). 1К …   Большой Энциклопедический словарь

  • градус — ступень (Даль) См. степень... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. градус высота, степень, ступень; лигрил, десцендент, крепость, мера Словарь русских синоним …   Словарь синонимов

  • ГРАДУС — муж. степень, ступень. Окружность круга делится на 360 градусов, которые и служат мерою для дуги, определяя, какую часть окружности она составляет, и мерою для углов, измеряемых дугою. Градус великого круга земли содержит около 105 верст или 60… …   Толковый словарь Даля

  • ГРАДУС — (от латинского gradus шаг, ступень, степень), 1) общее наименование различных единиц температуры, соответствующих разным температурным шкалам. Различают градусные шкалы Кельвина, или кельвин (К), градус Цельсия (шC), градусы Реомюра (шR),… …   Современная энциклопедия

  • ГРАДУС — ГРАДУС, градуса, муж. (лат. gradus ступень, шаг) (научн.; условно обозначается вверху цифры справа маленьким кружком). 1. Единица измерения дуг и углов, равная 1/360 окружности. Угол в 45 градусов или в 45°. Градус широты. 2. Деление на шкале… …   Толковый словарь Ушакова

  • ГРАДУС — (от лат. gradus шаг, ступень, степень) температурный, общее наименование разл. ед. темп ры, соответствующих разным температурным шкалам. Различают Г. шкалы Кельвина, или кельвин (К), градус Цельсия (°С), Реомюра (°R), Фаренгейта (°F), Ранкина… …   Физическая энциклопедия

  • ГРАДУС — (Degree) 1. Единица измерения угла или дуги, равная 1/90 прямого угла или 1/360 окружности (см. Угол). Применяется для измерения углов, дуг, меридианов, параллелей, широт, долгот, азимутов и т. д. Угол в 1° образуется двумя радиусами,… …   Морской словарь

  • градус — degree Grad 1).Одиниця виміру температури. Розрізняють Г. шкали Кельвіна (К), Цельсія (ОС), Реомюра (ОR), Фаренгейта (ОF). 1 К = 1 ОС = 0,8 ОR = 1,8 ОF. 2). Позасистемна одиниця вимірювання плоского кута, яка допущена міжнародним стандартом для… …   Гірничий енциклопедичний словник

  • Градус (геометрия) — Википедия. Что такое Градус (геометрия)

    Гра́дус, мину́та, секу́нда — общепринятые единицы измерения плоских углов. Также эти величины используются в картографии для определения координат произвольной точки земной поверхности, а также для определения азимута.

    Градус

    Градус (от лат. gradus — деление шкалы, шаг, ступень) обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.

    Причина выбора градуса как единицы измерения углов неизвестна. Одна из теорий предполагает, что это связано с тем, что 360 - приблизительное количество дней в году[1]. Некоторые древние календари, такие как древнеперсидский, использовали год в 360 дней.

    Другая теория гласит, что аккадцы (вавилоняне) поделили окружность, используя угол равностороннего треугольника как базу и поделив результат на 60, следуя своей шестидесятеричной системе счисления[2][3].

    Если построить окружность радиусом 57 см, то 1 градус будет примерно соответствовать 1 см длины дуги данной окружности.

    Градус в альтернативных единицах измерения:

    1∘=2π360∘=π180∘{\displaystyle 1^{\circ }={\frac {2\pi }{\displaystyle {360^{\circ }}}}={\frac {\pi }{\displaystyle {180^{\circ }}}}} радиан =1∘p∘≈1∘57,295779513∘{\displaystyle ={\frac {1^{\circ }}{\displaystyle {p^{\circ }}}}\approx {\frac {1^{\circ }}{\displaystyle {57{,}295779513^{\circ }}}}}[4]≈0,0174532925{\displaystyle \approx 0,0174532925} (радиан в 1°)
    1∘=1360{\displaystyle 1^{\circ }={\frac {1}{360}}} оборота=0,002(7) оборота=0,002777777777...
    1∘=400360{\displaystyle 1^{\circ }={\frac {400}{360}}} градов=1,(1) градов=1,11111111111... градов

    Минуты и секунды

    По аналогии с делением часа как интервала времени градус делят на 60 минут (от лат. minutus — маленький, мелкий; обозначается штрихом x′), а минуту — на 60 секунд (от лат. secunda divisio — второе деление; обозначается двумя штрихами y″. Ранее употреблялась величина в 1/60 секунды — терция (третье деление), с обозначением тремя штрихами — z″′. Деление градуса на минуты и секунды ввёл Клавдий Птолемей[5]; корни же такого деления восходят к учёным Древнего Вавилона (где использовалась шестидесятеричная система счисления).

    Минуты и секунды в других системах измерения:

    1′=2π360∘⋅60′=1′p′≈1′3437,747′{\displaystyle 1'={\frac {2\pi }{\displaystyle {360^{\circ }}\cdot 60'}}={\frac {1'}{p'}}\approx {\frac {1'}{3437{,}747'}}}[4]≈2,90888208⋅10−4 rad{\displaystyle \approx 2{,}90888208\cdot 10^{-4}~{\text{rad}}} (1 минута в радианах)
    1″=2π360∘⋅60′⋅60″=1″p″≈1″206264,8″{\displaystyle 1''={\frac {2\pi }{\displaystyle {360^{\circ }}\cdot 60'\cdot 60''}}={\frac {1''}{p''}}\approx {\frac {1''}{206264{,}8''}}}[4]≈4,848136811⋅10−6 rad{\displaystyle \approx 4{,}848136811\cdot 10^{-6}~{\text{rad}}} (1 секунда в радианах).

    Минуты и секунды в радианной мере из-за своих чрезмерно малых величин представляют ограниченный интерес и практически очень мало используются.
    Гораздо больший интерес представляет перевод десятичных (сотых, десятитысячных) долей градуса в минуты и секунды и обратно — см. Радиан#Связь радиана с другими единицами и Географические координаты.

    Угловая секунда

    {\displaystyle \approx 4{,}848136811\cdot 10^{-6}~{\text{rad}}}

    Углова́я секу́нда (англ. arcsecond, arc second, as, second of arc; синонимы: дуговая секунда, секунда дуги[6]) — внесистемная астрономическая единица измерения малых углов, тождественная секунде плоского угла[7].

    Использование

    Угловая секунда (обозначается ″) используется в астрономии при измерении плоских углов в градусных мерах. При измерении углов в часовых мерах (в частности, для определения прямого восхождения) используется единица измерения «секунда» (обозначается s). Соотношение между этими величинами определяется формулой 1s=15″.[8]

    Иногда угловую секунду (и производные от неё дольные единицы) ошибочно называют арксекундой[6][9], что является простой транслитерацией с англ. arcsecond.

    Дольные единицы

    По аналогии с международной системой единиц (СИ), наряду с угловой секундой применяются и её дольные единицы измерения: миллисекунды (англ. milliarcseconds, mas), микросекунды (англ. microarcseconds, µas) и пикосекунды (англ. picoarcseconds, pas). Они не входят в СИ (СИ рекомендует миллирадианы и микрорадианы), но допускаются к применению[7]. Однако согласно ГОСТ 8.417-2002, наименование и обозначения единиц плоского угла (градус, минута, секунда) не допускается применять с приставками[10], в связи с чем такие дольные величины должны приводиться либо к единицам СИ (миллирадианам и т. п.), либо к угловым секундам, либо обозначаться исходными единицами (mas, µas и pas соответственно).

    Связь различных угловых единиц измерения
    Единица Величина Обозначение Аббревиатура Радиан (прибл.)
    градус 1/360 окружности ° deg 17,4532925 mrad
    минута 1/60 градуса arcmin, amin, ′^{\displaystyle {\hat {'}}}, MOA 290,8882087 µrad
    секунда 1/60 минуты arcsec 4,8481368 µrad
    миллисекунда 1/1000 секунды   mas 4,8481368 nrad
    микросекунда 1 × 10−6 секунды   μas 4,8481368 prad

    Дольные единицы могут использоваться для обозначения собственного движения звёзд и галактик, годичного параллакса и углового диаметра звёзд.

    Для наблюдения астрономических объектов под такими сверхмалыми углами астрономы прибегают к методу интерферометрии, при котором сигналы, принимаемые несколькими разнесёнными радиотелескопами, комбинируются в процессе апертурного синтеза. Так, используя методику интерферометрии со сверхдлинной базой, астрономы получили возможность измерить собственное движение галактики Треугольника.[источник не указан 2291 день]

    В видимом свете существенно труднее достичь миллисекундного разрешения. Тем не менее, спутник Hipparcos справился с этой задачей в процессе астрометрических измерений, по результатам которых были составлены наиболее точные (по состоянию на 1997 год) каталоги звёзд Tycho (TYC) и Hipparcos (HIP)[11][12].

    Примечания

    1. Weisstein, Eric W. Degree (англ.). Wolfram MathWorld. Проверено 26 ноября 2017.
    2. James Hopwood Jeans. The Growth of Physical Science. — 1947. — С. 7.
    3. Murnaghan, Francis D. Analytic geometry. — New York: Prentice-Hall, inc., 1946. — P. 2.
    4. 1 2 3 Переводные множители — <57,295779513>, <3437,747>, <206264,8> — см. Радиан#Связь радиана с другими единицами.
    5. ↑ Боголюбов, 1983, с. 393—394.
    6. 1 2 Англо-русско-английский астрономический словарь. Astronet. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
    7. 1 2 Non-SI units accepted for use with the International System of Units (англ.). SI brochure (8th ed.). Bureau International des Poids et Mesures. — Описание СИ на сайте Международного бюро мер и весов. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
    8. ↑ Справочник. Некоторые внесистемные единицы. ASTROLAB. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
    9. ↑ Glossary entry for English term "arcsecond" (англ.). Справочник по услугам профессионального перевода, предоставляемым независимыми переводчиками и бюро перевода. ProZ.com. Проверено 23 декабря 2007. Архивировано 23 августа 2011 года.
    10. ↑ ГОСТ 8.417-2002. Единицы величин. Введён в действие с 1 сентября 2003 г. // Информационная система по оборудованию «Прибор.Инфо» : справочник. — 2003. Архивировано 5 августа 2013 года.
    11. Гурьянов С. Почему звезды называются именно так?. проект "Астрогалактика" (29 октября 2005 года). Проверено 26 декабря 2007. Архивировано 23 августа 2011 года.
    12. Цветков А. С. Общие сведения о проекте Hipparcos // Руководство по практической работе с каталогом Hipparcos. — СПб.: АИ СПбГУ.

    Литература

    См. также

    В градусах

    Вы не задавались вопросом, почему в градусах измеряют настолько не связанные между собой вещи — углы и температуру? Скажем больше, градусами меряют плотность жидкости и качество молока и (да, мы не забыли) долю спирта. Gradus — латинское слово, означающее шаг, ступень или степень. Иными словами, у градуса, в отличие от метрических единиц измерения, нет конкретной величины, и он не соответствует никакому эталону, привязанному к тем или иным физическим параметрам. При этом размер градуса можно всякий раз устанавливать по-разному, и ничего не изменится. Кому и зачем могла понадобиться такая единица измерения? Давайте разбираться.


    Углы

    Со школы все мы знаем, что в окружности содержится ровно 360 градусов. Но почему именно 360? Ответить на этот вопрос можно по-разному.

    По одной версии, древние астрономы, скорее всего персы и каппадокийцы, заметили, что солнце оказывается в одной и той же точке небосвода лишь один раз в 365 дней. Они объяснили это тем, что солнце совершает полный оборот вокруг земли за год и возвращается в исходную точку.

    Возможно, они округлили число 365, а может, и просто пропустили пять дней, но в итоге заключили: солнце сдвигается на одну трехсот шестидесятую долю окружности в день.

    Другая теория объясняет 360-градусный полный угол совсем другими причинами. Шумеры и вавилоняне пользовались (не самой удобной) шестидесятеричной системой счисления. Большие числа они считали шестидесятками (например, число 1020 это 17 шестидесятков).

    Знаки шумерской шестидесятиричной системы счисления

    Wikimedia commons

    Вписав в окружность правильный шестиугольник, вавилоняне заметили, что в круг отлично помещаются шесть равносторонних треугольников. Каждому треугольнику они приписывали по шестидесятку. В итоге, шесть треугольников по шестидесятку дали известные 360 градусов.

    Шестидесятизначная система объясняет и деление градуса на 60 минут (‘) и 3600 секунд (“). Знак, которым мы сегодня обозначаем градусы (°), впервые был использован в математике в 1569 году, по аналогии с верхним штриховым индексом для минут и секунд.

    Независимо от истории, полный угол в 360 градусов — лучший вариант из возможных, ведь 360 — сверхсоставное число (натуральное число, с бoльшим числом делителей, чем все предыдущие). Оно делится на все числа от 1 до 10 за исключением семи, а еще и на: 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120 и 180. На такое количество частей вы можете разделить окружность простым вычислением в уме.

    Геометрические градусы прошли проверку временем и оказались самой удобной единицей измерения углов. Но есть и другие.

    Так, если у вас есть инженерный калькулятор, то, переключаясь между градусами (DEG) и радианами (RAD), вы, возможно, попадали в режим GRAD — это исчисление в градах (или гонах). Один град — это одна сотая часть прямого угла, а значит, полный угол равен 400 град.

    Такая единица измерения появилась во времена Французской революции вместе с метрической системой и быстро всех запутала. Кроме проблем с названием, — в некоторых странах grad обозначали привычные градусы, — возникли трудности и с вычислением.

    Например, как известно, углы равностороннего треугольника равны друг другу и составляют 60 градусов. Переведем это в грады — 66 целых и шесть в периоде, ужасно неудобно.

    В отличие от метрической системы, без которой трудно представить нашу жизнь, вычисления в градах оказались не самыми простыми, сейчас их практически нигде не используют.

    Но свой след в истории они оставили — именно благодаря градам стоградусная температурная шкала получила название шкалы Цельсия.


    Температура

    Как ни странно, температурные шкалы появились гораздо раньше термометров. Создателем первой шкалы можно считать Галена — древнеримского медика, хирурга и философа.

    Гален утверждал, что существует некая нейтральная температура — он определил ее как температуру смеси одинакового количества кипящей воды и льда. От нейтральной температуры он отсчитал по четыре шага (ступени) в сторону тепла и холода.

    Шведский теолог и физик Иоганн Хаслер на основании работ Галена построил таблицу температуры, опубликованную на страницах труда «De Logistica Medica problematis novem» в 1578 году. Он отложил те же четыре шага тепла и холода по разные стороны от нейтральной температуры, а также заметил, что шкалу можно заменить на последовательность чисел от единицы до девяти.

    В таблице значения температуры называются просто «номерами», но в тексте Хаслер использует слово «градус». Нейтральная температура в его системе будет соответствовать числу пять.

    Таблица температуры Иоганна Хаслера. Слева направо: первый столбец — шкала Хаслера, второй — шкала Галена, следующие столбцы связаны с рецептами лекарств

    Wikimedia commons

    Первое устройство, похожее на современный термометр, создал Галилео Галилей приблизительно в 1597 году. Вслед за этим ученые почти 200 лет искали универсальную, удобную и точную шкалу температур.

    Например, в 1701 году Исаак Ньютон в опубликованной анонимно работе (в ней он уже использует слово gradus для обозначения единиц тепла) предлагат 18 реперных точек, часть из которых формирует геометрическую, а другая — арифметическую прогрессии. В градусах Ньютона точка замерзания воды равна 0 градусов, а температура человеческого тела — 12 градусов.

    В том же году известный астроном Оле Ремер (первым измеривший скорость света) предложил свой вариант. Нулем своей шкалы он выбрал температуру соленой воды со льдом, а вот температуру кипения воды — снова это магическое число — он обозначил как 60 градусов. Эту шкалу позаимствовал знакомый Ремера, Габриэль Фаренгейт.

    Фаренгейт избавился от неудобных дробей, возникавших при измерении температуры человеческого тела (22,5 градуса) и замерзания пресной воды (7,5 градуса), заменив их на 24 и 8 градусов соответственно. Вода стала кипеть при 64 градусах Фаренгейта.

    Некоторое время он производил термометры с такой шкалой, но потом, в 1724 году, умножил ее на 4. По одной версии, Фаренгейт просто хотел сделать шкалу точнее, поэтому увеличил количество рисок на градуснике, по другой — он сделал это, чтобы увеличение температуры на один Фаренгейт приводило к увеличению объема ртути ровно на одну десятитысячную.

    Так появилась знаменитая шкала Фаренгейта, которой люди пользуются и сегодня. Некоторое время она была лучшей из возможных, но затем ей смену пришел более совершенный вариант. Хотя жители США навряд ли согласились бы с нами.

    Жозеф Николя Делиль пошел несколько другим путем. Он выбрал всего одну реперную точку, температуру кипения воды, и обозначил ее за ноль. Градуировать шкалу он решил по расширению ртути в термометре — понижение температуры, приводящее к уменьшению объема ртути на одну стотысячную, Делиль обозначил за один градус.

    Температура замерзания воды в таком случае — 2400 градусов, шкала оказалась излишне мелкой, поэтому в 1738 году Иосия Вейтбрехт изменил ее. Он задал температуру замерзания воды в 150 градусов.

    Такие термометры стали удобными и получили широкое распространение. Ими примерно сто лет пользовались в России, Ломоносов использовал термометр Делиля (правда, перевернув шкалу) в своих опытах.

    Только в этот момент на сцене появляется Андерс Цельсий. В 1741 году он наносит на термометр Делиля свою шкалу — 0 градусов в точке кипения и 100 градусов в точке замерзания воды. Перевернули шкалу (скорее всего, это сделал Карл Линней) через год после смерти Цельсия (он умер в 1744 году от туберкулеза).

    Кстати, к 1745 году уже существовал термометр с нулем в точке замерзания и сотней градусов в точке кипения воды. Он называется термометром Лиона, его изобретатель — французский физик Жан-Пьер Кристен.

    Заслуга Цельсия в другом — он провел эксперименты, продемонстрировавшие, что температура плавления льда практически не зависит от давления. Более того, он с высокой точностью определил, как температура кипения воды изменяется в зависимости от атмосферного давления.

    Цельсий предложил калибровать ноль своей температурной шкалы (в тот момент, точку кипения воды) по атмосферному давлению, определить которое можно по среднему уровню моря.

    Эта калибровка наконец сделала термометры по-настоящему универсальными. Вероятно, именно поэтому прогноз погоды, который вы смотрели сегодня утром, был в градусах Цельсия.

    Но стоградусную температурную шкалу назвали в честь Цельсия только в 1948 году. До этого она так и называлась — стоградусной температурной (centigrade temperature scale). Но во французском (где использовали грады) термин

    centigrade уже был занят в геометрии.

    Чтобы избежать путаницы, Международное бюро мер и весов переименовало шкалу в честь Андерса Цельсия. Так градусы температуры стали градусами Цельсия.

    Диаграмма перевода температур, на которой указаны основные температурные шкалы

    Wikimedia commons

    Шкала Цельсия оказалась идеальной для применения в быту, но физики остались ею недовольны.

    Привязка реперных точек к свойствам воды очень удобна для экспериментов, ведь воду можно найти практически где угодно. А вот для теоретических вычислений, например, связи энергии молекул с температурой, требовалось найти абсолютную шкалу.

    Ее создал Уильям Томсон в 1848 году — нулевая точка его шкалы соответствует абсолютному нулю, а цена деления равна градусу Цельсия. Новую шкалу назвали в честь Томсона (ставшего лордом Кельвином), а градус Цельсия в ней превратился в Кельвин. Но почему Кельвин — это не градус?

    Дело в том, что шкала Кельвина — это шкала абсолютной температуры. Все шкалы, о которых шла речь выше — произвольные, ведь для их градуировки были выбраны произвольные точки.

    Шкалу Кельвина отсчитывают от абсолютного нуля — минимального предела температуры во Вселенной, она тесно связана с энергией молекул через постоянную Больцмана. Чтобы подчернуть, что речь идет об абсолютной температуре, Кельвин не называют градусом.


    Цвет

    Получается, температура в Кельвинах нужна только физикам? Нет, вы наверняка пользовались Кельвинами в бытовом отделе супермаркета, просто не подозревали об этом.

    Выбирая оттенок света лампочки, мы обращаем внимание на цветовую температуру (например, 2800К), она измеряется в Кельвинах.

    Такой свет будет испускать абсолютно черное тело, нагретое до указанной температуры. Так цвет измеряют температурой, а не в длинной волны, ведь излучение нагретого тела, как и лампочки, не монохроматично (состоит из множества частот).


    Алкоголь

    Из бытового отдела переместимся в отдел алкоголя и снова увидим там градусы. А точнее — объемные проценты, называемые градусами.

    В России крепость алкогольных напитков в градусах Гесса стали измерять с 1847 года, когда академик Герман Гесс выпустил книгу «Учет спиртов».

    В этой книге Гесс приводил спиртовые таблицы и инструкции по использованию спиртомера. А сам спиртомер Гесса показывал «не содержание алкоголя, а число ведер воды, имеющей температуру 12,44 Р[еомюра], которое надобно добавить к 100 ведрам испытываемого спирта, чтобы получить полугар, то есть такую смесь, которая содержит 38% алкоголя». Например, к 100 ведрам водки нужно добавить примерно пять ведер воды для получения полугара.

    Официально перестали оценивать крепость в градусах Гесса уже в 1863 году, когда на их место пришли объемные проценты — отношение объема этилового спирта к общему объему напитка. А слово «градус» осталось.

    Кстати, английское degree (градус) не имеет никакого отношения к алкоголю, а вот во Франции скажут, что в коньяке 40 градусов Гей-Люссака.


    Плотность, кислотность молока

    До середины XX века в химии и фармакологии широко использовались градусы Боме, предложенные Антуаном Боме в 1768 году для измерения плотности жидкости.

    В физике и химии градусы Боме были вытеснены нынешней единицей СИ — килограммом на метр в кубе, но их продолжают использовать в пивоварении, переработке сахарной свеклы и других областях.

    Кислотность молока также измеряют в градусах — в градусах Тернера. Это число миллилитров децинормального (0,1 н.) раствора гидроксида натрия, необходимое для нейтрализации 100 миллилитров молока. Молоко высшего сорта должно обладать градусом Тернера в пределах от 16 до 18.

    Олег Макаров

    что такое градусная мера угла?

    Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    Градусной мерой ориентированного угла a называем каждое из чисел а+к*360гр., где а-основная мера, а кEZ.

    Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами (т. е. лучом, исходящим из вершины этого угла и пересекающим какой-нибудь отрезок с концами на сторонах угла)

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    положительное число которое показывает сколько раз градус укладывается в данном угле.

    положительное число, которое показывает, сколько раз градус и его части укладываются в данном угле

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    спасиб спасли

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    Градусной мерой угла называется положительное число, которое показывает, сколько раз градус и его части - минута и секунда - укладываются в данном угле, то есть градусная мера - величина, отражающая количество градусов, минут и секунд между сторонами угла.

    Положительное число, которое показывает, сколько раз градус и его части укладываются в данном угле, называется градусной мерой угла. (Ответ из учебника так что правильно)

    Под градусом я, навальный

    Градусной мерой угла называется положительное число, которое показывает, сколько раз градус и его части - минута и секунда - укладываются в данном угле, то есть градусная мера - величина, отражающая количество градусов, минут и секунд между сторонами угла.

    хватит копировать ответы!!!

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *