Сложение, вычитание, умножение, и деление степеней
Сложение и вычитание степеней
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.
Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 — bn и h5 -d4 есть a3 — bn + h5 — d4.
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a2 и 3a2 равна 5a2.Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.
Так, сумма a2 и a3 есть сумма a2 + a3.
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Из | 2a4 | 3h2b6 | 5(a — h)6 |
Вычитаем | -6a4 | 4h2b6 | 2(a — h)6 |
Результат | 8a4 | -h2b6 | 3(a — h)6 |
Или:
2a4 — (-6a4) = 8a4
3h2b6 — 4h2b6 = -h2b6
5(a — h)6 — 2(a — h)6 = 3(a — h)6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a3 на b2 равен a3b2 или aaabb.
Первый множитель | x-3 | 3a6y2 | a2b3y2 |
Второй множитель | am | -2x | a3b2y |
Результат | amx-3 | -6a6xy2 | a2b3y2a3b2y |
Или:
x-3 ⋅ am = amx-3
3a6y2 ⋅ (-2x) = -6a6xy2
a2b3y2 ⋅ a3b2y = a
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a5b5y3.
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a2.a3 = aa.aaa = aaaaa = a5.
Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.
Так, an.am = am+n.
Для an, a берётся как множитель столько раз, сколько равна степень n;
И am, берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.
Так, a2.a6
= a2+6 = a8. И x3.x2.x = x3+2+1 = x6.Первый множитель | 4an | b2y3 | (b + h — y)n |
Второй множитель | 2an | b4y | (b + h — y) |
Результат | 8a2n | b6y4 | (b + h — y)n+1 |
Или:
4an ⋅ 2an = 8a2n
b2y3 ⋅ b4y = b6y4
(b + h — y)n ⋅ (b + h — y) = (b + h — y)n+1
Умножьте (x3 + x2y + xy2 + y3) ⋅ (x — y). 5}$. Ответ: $\frac{2x}{1}$ или 2x.
3. Уменьшите показатели степеней a2/a
a2.a-4 есть a-2 первый числитель.
a3.a-3 есть a0 = 1, второй числитель.
a3.a-4 есть a-1, общий числитель.
После упрощения: a-2/a-1 и 1/a-1.
4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.
5. Умножьте (a3 + b)/b4 на (a — b)/3.
6. Умножьте (a5 + 1)/x2 на (b2 — 1)/(x + a).
7. Умножьте b4/a-2 на h-3/x и an/y-3.
8. Разделите a4/y3 на a3/y2. Ответ: a/y.
9. Разделите (h 3 — 1)/d4 на (dn + 1)/h.
Умножение одночленов и многочленов | Математика
Если числа обозначены различными буквами, то можно лишь обозначить из произведение; пусть, напр., надо число a умножить на число b, – мы можем это обозначить или a ∙ b или ab, но не может быть и речи о том, чтобы как-нибудь выполнить это умножение. Однако, когда имеем дело с одночленами, то, благодаря 1) присутствию коэффициентов и 2) тому обстоятельству, что в состав этих одночленов могут входить множители, обозначенные одинаковыми буквами, является возможность говорить о выполнении умножения одночленов; еще шире такая возможность при многочленах. Разберем ряд случаев, где возможно выполнять умножение, начиная с простейшего.
1. Умножение степеней с одинаковыми основаниями. Пусть, напр., требуется a3 ∙ a5. Напишем, зная смысл возведения в степень, то же самое подробнее:
a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a
Рассматривая эту подробную запись, мы видим, что у нас написано a множителем 8 раз, или, короче, a
Пусть требуется b42 ∙ b28. Пришлось бы написать сначала множитель b 42 раза, а затем опять множитель b 28 раз – в общем, получили бы, что b берется множителем 70 раз. т. е. b70. Итак, b42 ∙ b28 = b70. Отсюда уже ясно, что при умножении степеней с одинаковыми основаниями основание степени остается без перемены, а показатели степеней складываются. Если имеем a8 ∙ a, то придется иметь в виду, что у множителя a подразумевается показатель степени 1 («a в первой степени»), – следовательно, a8 ∙ a = a9.
Примеры: x ∙ x3 ∙ x5 = x9; a11 ∙ a22 ∙ a33 = a66; 35 ∙ 36 ∙ 3 = 3 12; (a + b)3 ∙ (a + b)4 = (a + b)7; (3x – 1)4 ∙ (3x – 1) = (3x – 1)5 и т. д.
Иногда приходится иметь дело со степенями, показатели которых обозначены буквами, напр., xn (x в степени n). С такими выражениями надо привыкнуть обращаться. Вот примеры:
Поясним некоторые из этих примеров: bn – 3 ∙ b5 надо основание b оставить без перемены, а показатели сложить, т. е. (n – 3) + (+5) = n – 3 + 5 = n + 2. Конечно, подобные сложения должно научиться выполнять быстро в уме.
Еще пример: xn + 2 ∙ xn – 2, – основание x надо оставить без перемены, а показатель сложить, т. е. (n + 2) + (n – 2) = n + 2 + n – 2 = 2n.
Можно выше найденный порядок, как выполнять умножение степеней с одинаковыми основаниями, выразить теперь равенством:
am ∙ an = am + n
2. Умножение одночлена на одночлен. Пусть, напр., требуется 3a²b³c ∙ 4ab²d². Мы видим, что здесь обозначено точкою одно умножение, но мы знаем, что этот же знак умножения подразумевается между 3 и a², между a² и b³, между b³ и c, между 4 и a, между a и b², между b² и d².
3 ∙ 4 ∙ a² ∙ a ∙ b³ ∙ b² ∙ c ∙ d².
Тогда мы сможем перемножить 1) коэффициенты и 2) степени с одинаковыми основаниями и получим 12a³b5cd².
Итак, при умножении одночлена на одночлен мы можем перемножить коэффициенты и степени с одинаковыми основаниями, а остальные множители приходится переписывать без изменения.
Еще примеры:
3. Умножение многочлена на одночлен. Пусть надо сначала какой-нибудь многочлен, напр., a – b – c + d умножить на положительное целое число, напр., +3. Так как положительные числа считаются совпадающими с арифметическими, то это все равно, что (a – b – c + d) ∙ 3, т. е. a – b – c + d взять 3 раза слагаемым, или
(a – b – c + d) ∙ (+3) = a – b – c + d + a – b – c + d + a – b – c + d = 3a – 3b – 3c + 3d,
т. е. в результате пришлось каждый член многочлена умножить на 3 (или на +3).
Отсюда вытекает:
(a – b – c + d) ÷ (+3) = a – b – c + d,
т. е. пришлось каждый член многочлена разделить на (+3). Также, обобщая, получим:
и т. п.
Пусть теперь надо (a – b – c + d) умножить на положительную дробь, напр., на +. Это все равно, что умножить на арифметическую дробь , что значит взять части от (a – b – c + d). Взять одну пятую часть от этого многочлена легко: надо (a – b – c + d) разделить на 5, а это уже умеем делать, – получим . Остается повторить полученный результат 3 раза или умножить на 3, т. е.
В результате мы видим, что пришлось каждый член многочлена умножить на или на +.
Пусть теперь надо (a – b – c + d) умножить на отрицательное число, целое или дробное,
т. е. и в этом случае пришлось каждый член многочлена умножить на –.
Таким образом, какое бы ни было число m, всегда (a – b – c + d) ∙ m = am – bm – cm + dm.
Так как каждый одночлен представляет собою число, то здесь мы видим указание, как умножать многочлен на одночлен – надо каждый член многочлена умножить на этот одночлен.
4. Умножение многочлена на многочлен. Пусть надо (a + b + c) ∙ (d + e). Так как d и e означают числа, то и (d + e) выражает какое-либо одно число.
Поэтому
(a + b + c) ∙ (d + e) = a(d + e) + b(d + e) + c(d + e)
(мы можем объяснить это и так: мы вправе d + e временно принять за одночлен).
Далее, выполняя ряд полученных умножений (одночлена на многочлен), получим:
= ad + ae + bd + be + cd + ce
В этом результате можно изменить порядок членов.
Получим:
(a + b + c) ∙ (d + e) = ad + bd + ed + ae + be + ce,
т. е. для умножения многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Удобно (для этого и был выше изменен порядок полученных членов) умножить каждый член первого многочлена сперва на первый член второго (на +d), затем на второй член второго (на +e), затем, если бы он был, на третий и т. д.; после этого следует сделать приведение подобных членов.
В этих примерах двучлен умножается на двучлен; в каждом двучлене члены расположены по нисходящим степеням буквы, общей для обоих двучленов. Подобные умножения легко выполнять в уме и сразу писать окончательный результат.
Напр.:
От умножения старшего члена первого двучлена на старший член второго, т. е. 4x² на 3x, получим 12x³ старший член произведения – ему подобных, очевидно, не будет. Далее мы ищем, от перемножения каких членов получатся члены с меньшею на 1 степенью буквы x, т. е. с x². Легко видим, что такие члены получатся от умножения 2-го члена первого множителя на 1-й член второго и от умножения 1-го члена первого множителя на 2-ой член второго (скобки внизу примера это указывают). Выполнить эти умножения в уме и выполнить также приведение этих двух подобных членов (после чего получим член –19x²) – дело нетрудное. Затем замечаем, что следующий член, содержащий букву x в степени еще на 1 меньшей, т. е. x в 1-ой степени, получится только от умножения второго члена на второй, и ему подобных не будет.
Еще пример: (x² + 3x)(2x – 7) = 2x³ – x² – 21x.
Также в уме легко выполнять примеры, вроде следующего:
Старший член получается от умножения старшего члена на старший, ему подобных членов не будет, и он = 2a³. Затем ищем, от каких умножений получатся члены с a² – от умножения 1-го члена (a²) на 2-ой (–5) и от умножения второго члена (–3a) на 1-ый (2a) – это указано внизу скобками; выполнив эти умножения и соединив полученные члены в один, получим –11a². Затем ищем, от каких умножений получатся члены с a в первой степени – эти умножения отмечены скобками сверху. Выполнив их и соединив полученные члены в один, получим +11a. Наконец, замечаем, что младший член произведения (+10), вовсе не содержащий a, получается от перемножения младшего члена (–2) одного многочлена на младший член (–5) другого.
Еще пример: (4a3 + 3a2 – 2a) ∙ (3a2 – 5a) = 12a5 – 11a4 – 21a3 + 10a2.
Из всех предыдущих примеров мы также получим общий результат: старший член произведения получается всегда от перемножения старших членов множителей, и подобных ему членов быть не может; также младший член произведения получается от перемножения младших членов множителей, и подобных ему членов также быть не может.
Остальным членам, получаемым при умножении многочлена на многочлен, могут быть подобные, и может даже случиться, что все эти члены взаимно уничтожатся, а останутся лишь старший и младший.
Вот примеры:
(a² + ab + b²) (a – b) = a³ + a²b + ab² – a²b – ab² – b³ = a³ – b³
(a² – ab + b²) (a – b) = a³ – a²b + ab² + a²b – ab² + b³ = a³ + b³
(a³ + a²b + ab² + b³) (a – b) = a4 – b4 (пишем только результат)
(x4 – x³ + x² – x + 1) (x + 1) = x5 + 1 и т. п.
Эти результаты достойны внимания и их полезно запомнить.
Особенно важен следующий случай умножения:
(a + b) (a – b) = a² + ab – ab – b² = a² – b²
или (x + y) (x – y) = x² + xy – xy – y² = x² – y²
или (x + 3) (x – 3) = x² + 3x – 3x – 9 = x² – 9 и т. п.
Во всех этих примерах, применяясь к арифметике, мы имеем произведение суммы двух чисел на их разность, а в результате получается разность квадратов этих чисел.
Если мы увидим подобный случай, то уже нет нужды выполнять умножение подробно, как это делалось выше, а можно сразу написать результат.
Напр., (3a + 1) ∙ (3a – 1). Здесь первый множитель, с точки зрения арифметики, есть сумма двух чисел: первое число есть 3a и второе 1, а второй множитель есть разность тех же чисел; потому в результате должно получиться: квадрат первого числа (т. е. 3a ∙ 3a = 9a²) минус квадрат второго числа (1 ∙ 1 = 1), т. е.
(3a + 1) ∙ (3a – 1) = 9a² – 1.
Также
(ab – 5) ∙ (ab + 5) = a²b² – 25 и т. п.
Итак, запомним
(a + b) (a – b) = a² – b²
т. е. произведение суммы из двух чисел на их разность равно разности квадратов этих чисел.
Умножение и деление степеней, алгебра, 7 класс
Дата публикации: .
Урок на тему: «Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры»
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине «Интеграл» для 7 класса
Пособие к учебнику Ю.Н. Макарычева Пособие к учебнику А.Г. Мордковича
Умножение и деление степеней
Цель урока: научится производить действия со степенями числа.
Для начала вспомним понятие «степень числа». Выражение вида $\underbrace{ a * a * \ldots * a }_{n}$ можно представить, как $a^n$. 3=8$.
Умножение двух чисел с разными степенями. Действия с одночленами
Понятие степени в математике вводится еще в 7 классе на уроке алгебры. И в дальнейшем на протяжении всего курса изучения математики это понятие активно используется в различных своих видах. Степени — достаточно трудная тема, требующая запоминания значений и умения правильно и быстро сосчитать. Для более быстрой и качественной работы со степенями математики придумали свойства степени. Они помогают сократить большие вычисления, преобразовать огромный пример в одно число в какой-либо степени. Свойств не так уж и много, и все они легко запоминаются и применяются на практике. Поэтому в статье рассмотрены основные свойства степени, а также то, где они применяются.
Свойства степени
Мы рассмотрим 12 свойств степени, в том числе и свойства степеней с одинаковыми основаниями, и к каждому свойству приведем пример. Каждое из этих свойств поможет вам быстрее решать задания со степенями, а так же спасет вас от многочисленных вычислительных ошибок.
1-е свойство.
Про это свойство многие очень часто забывают, делают ошибки, представляя число в нулевой степени как ноль.
2-е свойство.
3-е свойство.
Нужно помнить, что это свойство можно применять только при произведении чисел, при сумме оно не работает! И нельзя забывать, что это, и следующее, свойства применяются только к степеням с одинаковыми основаниями.
4-е свойство.
Если в знаменателе число возведено в отрицательную степень, то при вычитании степень знаменателя берется в скобки для правильной замены знака при дальнейших вычислениях.
Свойство работает только при делении, при вычитании не применяется!
5-е свойство.
6-е свойство.
Это свойство можно применить и в обратную сторону. Единица деленная на число в какой-то степени есть это число в минусовой степени.
7-е свойство.
Это свойство нельзя применять к сумме и разности! При возведении в степень суммы или разности используются формулы сокращенного умножения, а не свойства степени.
8-е свойство.
9-е свойство.
Это свойство работает для любой дробной степени с числителем, равным единице, формула будет та же, только степень корня будет меняться в зависимости от знаменателя степени.
Также это свойство часто используют в обратном порядке. Корень любой степени из числа можно представить, как это число в степени единица деленная на степень корня. Это свойство очень полезно в случаях, если корень из числа не извлекается.
10-е свойство.
Это свойство работает не только с квадратным корнем и второй степенью. Если степень корня и степень, в которую возводят этот корень, совпадают, то ответом будет подкоренное выражение.
11-е свойство.
Это свойство нужно уметь вовремя увидеть при решении, чтобы избавить себя от огромных вычислений.
12-е свойство.
Каждое из этих свойств не раз встретится вам в заданиях, оно может быть дано в чистом виде, а может требовать некоторых преобразований и применения других формул. Поэтому для правильного решения мало знать только свойства, нужно практиковаться и подключать остальные математические знания.
Применение степеней и их свойств
Они активно применяются в алгебре и геометрии. Степени в математике имеют отдельное, важное место. С их помощью решаются показательные уравнения и неравенства, а так же степенями часто усложняют уравнения и примеры, относящиеся к другим разделам математики. Степени помогают избежать больших и долгих расчетов, степени легче сокращать и вычислять. Но для работы с большими степенями, либо со степенями больших чисел, нужно знать не только свойства степени, а грамотно работать и с основаниями, уметь их разложить, чтобы облегчить себе задачу. Для удобства следует знать еще и значение чисел, возведенных в степень. Это сократит ваше время при решении, исключив необходимость долгих вычислений.
Особую роль понятие степени играет в логарифмах. Так как логарифм, по сути своей, и есть степень числа.
Формулы сокращенного умножения — еще один пример использования степеней. В них нельзя применять свойства степеней, они раскладываются по особым правилам, но в каждой формуле сокращенного умножения неизменно присутствуют степени.
Так же степени активно используются в физике и информатике. Все переводы в систему СИ производятся с помощью степеней, а в дальнейшем при решении задач применяются свойства степени. В информатике активно используются степени двойки, для удобства счета и упрощения восприятия чисел. Дальнейшие расчеты по переводам единиц измерения или же расчеты задач, так же, как и в физике, происходят с использованием свойств степени.
Еще степени очень полезны в астрономии, там редко можно встретить применение свойств степени, но сами степени активно используются для сокращения записи различных величин и расстояний.
Степени применяют и в обычной жизни, при расчетах площадей, объемов, расстояний.
С помощью степеней записывают очень большие и очень маленькие величины в любых сферах науки.
Показательные уравнения и неравенства
Особое место свойства степени занимают именно в показательных уравнениях и неравенствах. Эти задания очень часто встречаются, как в школьном курсе, так и на экзаменах. Все они решаются за счет применения свойств степени. Неизвестное всегда находится в самой степени, поэтому зная все свойства, решить такое уравнение или неравенство не составит труда.
Урок на тему: «Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры»
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине «Интеграл» для 7 класса
Пособие к учебнику Ю.Н. Макарычева
Пособие к учебнику А.Г. Мордковича
Цель урока: научится производить действия со степенями числа.
Для начала вспомним понятие «степень числа». Выражение вида $\underbrace{ a * a * \ldots * a }_{n}$ можно представить, как $a^n$. 3=8$.
Содержание урокаЧто такое степень?
Степенью называют произведение из нескольких одинаковых множителей. Например:
2 × 2 × 2
Значение данного выражения равно 8
2 × 2 × 2 = 8
Левую часть этого равенстваможно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:
2 3 = 8
Это выражение читается так: «два в третьей степени равно восемь» или «третья степень числа 2 равна 8».
Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.
Например, если дано выражение 5 3 , то следует иметь ввиду, что это выражение равносильно записи 5 × 5 × 5 .
Число, которое повторяется называют основанием степени . В выражении 5 3 основанием степени является число 5 .
А число, которое надписано над числом 5 называют показателем степени . В выражении 5 3 показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза
Саму операцию перемножения одинаковых множителей называют возведением в степень .
Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень :
Видим, что число 2 в четвёртой степени есть число 16.
Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем . Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.
Вообще, определение степени с натуральным показателем выглядит следующим образом:
Степень числа a с натуральным показателем n — это выражение вида a n , которое равно произведению n множителей, каждый из которых равен a
Примеры:
Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.
Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25
Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2
Получилась ошибка, поскольку число 5 во второй степени не равно 10.
Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:
Например, число 5 в первой степени есть само число 5
Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.
Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1
А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:
А выражение 0 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 0 0 может иметь смысл.
Для тренировки решим несколько примеров на возведение чисел в степени.
Пример 1. Возвести число 3 во вторую степень.
Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3
3 2 = 3 × 3 = 9
Пример 2. Возвести число 2 в четвертую степень.
Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2
2 4 =2 × 2 × 2 × 2 = 16
Пример 3. Возвести число 2 в третью степень.
Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2
2 3 =2 × 2 × 2 = 8
Возведение в степень числа 10
Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.
Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2
10 2
Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени
10 2 = 100
Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10
10 2 = 10 × 10 = 100
Пример 2 . Возведём число 10 в третью степень.
В данном случае после единицы будут стоять три нуля:
10 3 = 1000
Пример 3 . Возведем число 10 в четвёртую степень.
В данном случае после единицы будут стоять четыре нуля:
10 4 = 10000
Пример 4 . Возведем число 10 в первую степень.
В данном случае после единицы будет стоять один нуль:
10 1 = 10
Представление чисел 10, 100, 1000 в виде степени с основанием 10
Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.
Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 10 1
10 = 10 1
Пример 2 . Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 10 2
100 = 10 2
Пример 3 . Представим число 1 000 в виде степени с основанием 10.
1 000 = 10 3
Пример 4 . Представим число 10 000 в виде степени с основанием 10.
10 000 = 10 4
Возведение в степень отрицательного числа
При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.
Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)
(−2) 2 = (−2) × (−2) = 4
Если бы мы не заключили в скобки число −2 , то получилось бы что мы вычисляем выражение −2 2 , которое не равно 4 . Выражение −2² будет равно −4 . Чтобы понять почему, коснёмся некоторых моментов.
Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения .
Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.
В случае с выражением −2 2 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.
Поэтому выражение −2 2 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2
Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4
−2 2 = −4
Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2) 2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.
Пример 2 . Возвести число −2 в третью степень.
Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)
(−2) 3 = (−2) × (−2) × (−2) = −8
Пример 3 . Возвести число −2 в четвёртую степень.
Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)
(−2) 4 = (−2) × (−2) × (−2) × (−2) = 16
Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.
Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3
В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным .
Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным .
Пример 7. Возвести число −5 в третью степень.
Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:
(−5) 3 = (−5) × (−5) × (−5) = −125
Пример 8. Возвести число −4 в четвёртую степень.
Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:
(−4) 4 = (−4) × (−4) × (−4) × (−4) = 256
Нахождение значений выражений
При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.
Пример 1 . Найти значение выражения 2 + 5 2
Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2
2 + 5 2 = 2 + 25 = 27
Пример 10 . Найти значение выражения −6 2 × (−12)
Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:
−6 2 × (−12) = −36 × (−12)
Завершаем пример, умножив −36 на (−12)
−6 2 × (−12) = −36 × (−12) = 432
Пример 11 . Найти значение выражения −3 × 2 2
Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3
−3 × 2 2 = −3 × 4 = −12
Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.
Пример 12 . Найти значение выражения (3 2 + 1 × 3) − 15 + 5
Сначала выполняем действия в скобках. Внутри скобок применяем ранее изученные правила, а именно сначала возводим во вторую степень число 3, затем выполняем умножение 1 × 3 , затем складываем результаты возведения в степень числа 3 и умножения 1 × 3 . Далее выполняется вычитание и сложение в порядке их следования. Расставим такой порядок выполнения действия над исходным выражением:
(3 2 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2
Пример 13 . Найти значение выражения 2 × 5 3 + 5 × 2 3
Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:
2 × 5 3 + 5 × 2 3 = 2 × 125 + 5 × 8 = 250 + 40 = 290
Тождественные преобразования степеней
Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.
Допустим, потребовалось вычислить выражение (2 3) 2 . В данном примере два в третьей степени возводится во вторую степень. Иными словами, степень возводится в другую степень.
(2 3) 2 это произведение двух степеней, каждая из которых равна 2 3
При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2
Получили произведение 2 × 2 × 2 × 2 × 2 × 2 , которое равно 64. Значит значение выражения (2 3) 2 или равно 64
Этот пример можно значительно упростить. Для этого показатели выражения (2 3) 2 можно перемножить и записать это произведение над основанием 2
Получили 2 6 . Два в шестой степени это произведение шести множителей, каждый из которых равен 2. Это произведение равно 64
Данное свойство работает по причине того, что 2 3 это произведение 2 × 2 × 2 , которое в свою очередь повторяется два раза. Тогда получается, что основание 2 повторяется шесть раз. Отсюда можно записать, что 2 × 2 × 2 × 2 × 2 × 2 это 2 6
Вообще, для любого основания a с показателями m и n , выполняется следующее равенство:
(a n ) m = a n × m
Это тождественное преобразование называют возведением степени в степень . Его можно прочитать так: «При возведении степени в степень основание оставляют без изменений, а показатели перемножают» .
После перемножения показателей, получится другая степень, значение которой можно найти.
Пример 2 . Найти значение выражения (3 2) 2
В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:
Получили 3 4 . А число 3 в четвёртой степени есть 81
Рассмотрим остальные преобразования.
Умножение степеней
Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.
Например, умножим 2 2 на 3 3 .
2 2 это число 4 , а 3 3 это число 27 . Перемножаем числа 4 и 27 , получаем 108
2 2 × 3 3 = 4 × 27 = 108
В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.
Например, умножим 2 2 на 2 3
В данном примере основания у степеней одинаковые. В этом случае можно записать одно основание 2 и в качестве показателя записать сумму показателей степеней 2 2 и 2 3 . Иными словами, о снование оставить без изменений, а показатели исходных степеней сложить. Выглядеть это будет так:
Получили 2 5 . Число 2 в пятой степени есть 32
Данное свойство работает по причине того, что 2 2 это произведение 2 × 2 , а 2 3 это произведение 2 × 2 × 2 . Тогда получается произведение из пяти одинаковых множителей, каждый из которых равен 2 . Это произведение представимо в виде 2 5
Вообще, для любого a и показателей m и n выполняется следующее равенство:
Это тождественное преобразование носит название основного свойства степени . Его можно прочитать так: «П ри перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают» .
Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.
Например, найдем значение выражения 2 1 × 2 2 × 2 3 . Основание 2
В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.
Пример 1 . Представить в виде степени выражение 5 8 × 25
В данной задаче нужно сделать так, чтобы вместо выражения 5 8 × 25 получилась одна степень.
Число 25 можно представить в виде 5 2 . Тогда получим следующее выражение:
В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:
Запишем решение покороче:
Пример 2 . Представить в виде степени выражение 2 9 × 32
Число 32 можно представить в виде 2 5 . Тогда получим выражение 2 9 × 2 5 . Далее можно применить основание свойство степени — основание 2 оставить без изменений, а показатели 9 и 5 сложить. В результате получится следующее решение:
Пример 3 . Вычислите произведение 3 × 3 , используя основное свойство степени.
Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?
Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 3 1 и 3 1
3 1 × 3 1
Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:
3 1 × 3 1 = 3 2 = 9
Пример 4 . Вычислите произведение 2 × 2 × 3 2 × 3 3 , используя основное свойство степени.
Произведение 2 × 2 заменим на 2 1 × 2 1 , затем на 2 1 + 1 , а затем на 2 2 . Произведение 3 2 × 3 3 заменим на 3 2 + 3 , а затем на 3 5
Пример 5 . Выполнить умножение x × x
Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:
Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.
Решение данного примера желательно записать так:
Пример 6 . Выполнить умножение x 2 × x
Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:
Пример 7 . Выполнить умножение y 3 y 2 y
Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:
Пример 8 . Выполнить умножение aa 3 a 2 a 5
Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:
Пример 9 . Представить степень 3 8 в виде произведения степеней с одинаковыми основаниями.
В данной задаче нужно составить произведение степеней, основания которых будут равны 3 , и сумма показателей которых будет равна 8 . Можно использовать любые показатели. Представим степень 3 8 в виде произведения степеней 3 5 и 3 3
В данном примере мы опять же опирались на основное свойство степени. Ведь выражение 3 5 × 3 3 можно записать как 3 5 + 3 , откуда 3 8 .
Конечно можно было представить степень 3 8 в виде произведения других степеней. Например, в виде 3 7 × 3 1 , поскольку это произведение тоже равно 3 8
Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.
Пример 10 . Представить степень x 12 в виде различных произведений степеней с основаниями x .
Воспользуемся основным свойство степени. Представим x 12 в виде произведений с основаниями x , и сумма показателей которых равна 12
Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:
Возведение в степень произведения
Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.
Например, возведём во вторую степень произведение 2 × 3 . Возьмём в скобки данное произведение и в качестве показателя укажем 2
Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:
Принцип работы данного правила основан на определении степени, которое было дано в самом начале.
Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:
2 × 3 × 2 × 3
От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:
2 × 2 × 3 × 3
Повторяющиеся множители можно заменить на короткие записи — основания с показателями. Произведение 2 × 2 можно заменить на 2 2 , а произведение 3 × 3 можно заменить на 3 2 . Тогда выражение 2 × 2 × 3 × 3 обращается в выражение 2 2 × 3 2 .
Пусть ab исходное произведение. Чтобы возвести данное произведение в степень n , нужно по отдельности возвести множители a и b в указанную степень n
Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:
Пример 2 . Найти значение выражения (2 × 3 × 4) 2
В данном примере нужно возвести во вторую степень произведение 2 × 3 × 4 . Чтобы сделать это, нужно возвести во вторую степень каждый множитель этого произведения и перемножить полученные результаты:
Пример 3 . Возвести в третью степень произведение a × b × c
Заключим в скобки данное произведение, и в качестве показателя укажем число 3
Пример 4 . Возвести в третью степень произведение 3xyz
Заключим в скобки данное произведение, и в качестве показателя укажем 3
(3xyz ) 3
Возведём в третью степень каждый множитель данного произведения:
(3xyz ) 3 = 3 3 x 3 y 3 z 3
Число 3 в третьей степени равно числу 27 . Остальное оставим без изменений:
(3xyz ) 3 = 3 3 x 3 y 3 z 3 = 27x 3 y 3 z 3
В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.
Например, вычислим значение выражения 5 2 × 3 2 . Возведем каждое число во вторую степень и перемножим полученные результаты:
5 2 × 3 2 = 25 × 9 = 225
Но можно не вычислять по отдельности каждую степень. Вместо этого, данное произведение степеней можно заменить на произведение с одним показателем (5 × 3) 2 . Далее вычислить значение в скобках и возвести полученный результат во вторую степень:
5 2 × 3 2 = (5 × 3) 2 = (15) 2 = 225
В данном случае опять же было использовано правило возведения в степень произведения. Ведь, если (a × b ) n = a n × b n , то a n × b n = (a × b) n . То есть левая и правая часть равенства поменялись местами.
Возведение степени в степень
Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.
При возведении степени в степень основание оставляют без изменений, а показатели перемножают:
(a n ) m = a n × m
К примеру, выражение (2 3) 2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:
(2 3) 2 = 2 3 × 2 = 2 6
(2 3) 2 = 2 3 × 2 = 2 6 = 64
Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.
Вернёмся к выражению (2 3) 2 . Выражение в скобках 2 3 представляет собой произведение из трёх одинаковых множителей, каждый из которых равен 2. Тогда в выражении (2 3) 2 степень, находящуюся внутри скобок можно заменить на произведение 2 × 2 × 2 .
(2 × 2 × 2) 2
А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:
(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2
Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:
(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6
Как и раньше получили 2 6 . Значение этой степени равно 64
(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6 = 64
В степень также может возводиться произведение, сомножители которого тоже являются степенями.
Например, найдём значение выражения (2 2 × 3 2) 3 . Здесь показатели каждого множителя нужно умножить на общий показатель 3 . Далее найти значение каждой степени и вычислить произведение:
(2 2 × 3 2) 3 = 2 2×3 × 3 2×3 = 2 6 × 3 6 = 64 × 729 = 46656
Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.
Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:
Но ранее было сказано, что если число дано без показателя, то показатель надо считать равным единице. Получается, что множители произведения 2 × 4 изначально имеют показатели равные 1. Значит в третью степень возводилось выражение 2 1 × 4 1 . А это есть возведение степени в степень.
Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:
Пример 2 . Найти значение выражения (3 3) 2
Основание оставляем без изменений, а показатели перемножаем:
Получили 3 6 . Число 3 в шестой степени есть число 729
Пример 3 xy )³
Пример 4 . Выполнить возведение в степень в выражении (abc )⁵
Возведём в пятую степень каждый множитель произведения:
Пример 5 ax ) 3
Возведём в третью степень каждый множитель произведения:
Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.
Пример 6 . Выполнить возведение в степень в выражении (10xy ) 2
Пример 7 . Выполнить возведение в степень в выражении (−5x ) 3
Пример 8 . Выполнить возведение в степень в выражении (−3y ) 4
Пример 9 . Выполнить возведение в степень в выражении (−2abx )⁴
Пример 10 . Упростите выражение x 5 × (x 2) 3
Степень x 5 пока оставим без изменений, а в выражении (x 2) 3 выполним возведение степени в степени:
x 5 × (x 2) 3 = x 5 × x 2 × 3 = x 5 × x 6
Теперь выполним умножение x 5 × x 6 . Для этого воспользуемся основным свойством степени — основание x оставим без изменений, а показатели сложим:
x 5 × (x 2) 3 = x 5 × x 2× 3 = x 5 × x 6 = x 5 + 6 = x 11
Пример 9 . Найти значение выражения 4 3 × 2 2 , используя основное свойство степени.
Основное свойство степени можно использовать в случае, если основания исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.
Посмотрим внимательно на степень 4 3 . Основание у этой степени есть число 4, которое можно представить в виде 2 2 . Тогда исходное выражение примет вид (2 2) 3 × 2 2 . Выполнив возведение степени в степень в выражении (2 2) 3 , мы получим 2 6 . Тогда исходное выражение примет вид 2 6 × 2 2 , вычислить которое можно, используя основное свойство степени.
Запишем решение данного примера:
Деление степеней
Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.
Например, разделим 4 3 на 2 2 .
Вычислим 4 3 , получим 64 . Вычислим 2 2 , получим 4. Теперь разделим 64 на 4, получим 16
Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.
Например, найдем значение выражения 2 3: 2 2
Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:
Значит, значение выражения 2 3: 2 2 равно 2 .
Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.
Вернемся к предыдущему примеру 2 3: 2 2 . Здесь делимое это 2 3 , а делитель 2 2 .
Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.
В нашем случае, разделить 2 3 на 2 2 означает найти такую степень, которая при умножении на делитель 2 2 даст в результате 2 3 . А какую степень можно умножить на 2 2 , чтобы получить 2 3 ? Очевидно, что только степень 2 1 . Из основного свойства степени имеем:
Убедиться, что значение выражения 2 3: 2 2 равно 2 1 можно непосредственно вычислив само выражение 2 3: 2 2 . Для этого сначала найдём значение степени 2 3 , получим 8 . Затем найдём значение степени 2 2 , получим 4 . Разделим 8 на 4, получим 2 или 2 1 , поскольку 2 = 2 1 .
2 3: 2 2 = 8: 4 = 2
Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:
Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получится единица.
Например, найдём значение выражения 2 2: 2 2 . Вычислим значение каждой степени и выполним деление получившихся чисел:
При решении примера 2 2: 2 2 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 2 2 и 2 2 равна нулю:
Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 2 2: 2 2 обычным методом, не используя правило деления степеней, получится единица.
Пример 2 . Найти значение выражения 4 12: 4 10
4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:
4 12: 4 10 = 4 12 − 10 = 4 2 = 16
Пример 3 . Представить частное x 3: x в виде степени с основанием x
Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:
Пример 4 . Представить частное x 3: x 2 в виде степени с основанием x
Воспользуемся правилом деления степеней. Основание x
Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:
Числитель и знаменатель дроби разрешается записывать в развёрнутом виде, а именно в виде произведений одинаковых множителей. Степень x 3 можно записать как x × x × x , а степень x 2 как x × x . Тогда конструкцию x 3 − 2 можно будет пропустить и воспользоваться сокращением дроби. В числителе и в знаменателе можно будет сократить по два множителя x . В результате останется один множитель x
Или ещё короче:
Также, полезно уметь быстро сокращать дроби, состоящие из степеней. Например, дробь можно сократить на x 2 . Чтобы сократить дробь на x 2 нужно числитель и знаменатель дроби разделить на x 2
Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:
Или ещё короче:
Пример 5 . Выполнить деление x 12 : x 3
Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:
Запишем решение при помощи сокращения дроби. Деление степеней x 12 : x 3 запишем в виде . Далее сократим данную дробь на x 3 .
Пример 6 . Найти значение выражения
В числителе выполним умножение степеней с одинаковыми основаниями:
Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:
Завершаем пример, вычислив степень 7 2
Пример 7 . Найти значение выражения
Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (2 3) 4
Теперь выполним в числителе умножение степеней с одинаковыми основаниями.
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .
Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a 2 и 3a 2 равна 5a 2 .
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.
Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.
Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .
Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.
Так, a n .a m = a m+n .
Для a n , a берётся как множитель столько раз, сколько равна степень n;
И a m , берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.
Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .
Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1
Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).
Это правило справедливо и для чисел, показатели степени которых — отрицательные . 5}$. Ответ: $\frac{2x}{1}$ или 2x.
3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .
4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .
5. Умножьте (a 3 + b)/b 4 на (a — b)/3.
6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).
7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .
8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.
9. Разделите (h 3 — 1)/d 4 на (d n + 1)/h.
Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно — разность квадратов! Получаем:
Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило.
Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.
Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках.
Но важно запомнить: меняются все знаки одновременно !
Вернемся к примеру:
И снова формула:
Целыми мы называем натуральные числа, противоположные им (то есть взятые со знаком « ») и число.
целое положительное число , а оно ничем не отличается от натурального, то все выглядит в точности как в предыдущем разделе.
А теперь давайте рассмотрим новые случаи. Начнем с показателя, равного.
Любое число в нулевой степени равно единице :
Как всегда, зададимся вопросом: почему это так?
Рассмотрим какую-нибудь степень с основанием. Возьмем, например, и домножим на:
Итак, мы умножили число на, и получили то же, что и было — . А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на. Значит.
Можем проделать то же самое уже с произвольным числом:
Повторим правило:
Любое число в нулевой степени равно единице.
Но из многих правил есть исключения. И здесь оно тоже есть — это число (в качестве основания).
С одной стороны, в любой степени должен равняться — сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, как и любое число в нулевой степени, должен равняться. Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.
Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа. Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:
Отсюда уже несложно выразить искомое:
Теперь распространим полученное правило на произвольную степень:
Итак, сформулируем правило:
Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к. на делить нельзя).
Подведем итоги:
I. Выражение не определено в случае. Если, то.
II. Любое число в нулевой степени равно единице: .
III. Число, не равное нулю, в отрицательной степени обратно такому же числу в положительной степени: .
Задачи для самостоятельного решения:Ну и, как обычно, примеры для самостоятельного решения:
Разбор задач для самостоятельного решения:Знаю-знаю, числа страшные, но на ЕГЭ надо быть готовым ко всему! Реши эти примеры или разбери их решение, если не смог решить и ты научишься легко справляться с ними на экзамене!
Продолжим расширять круг чисел, «пригодных» в качестве показателя степени.
Теперь рассмотрим рациональные числа. Какие числа называются рациональными?
Ответ: все, которые можно представить в виде дроби, где и — целые числа, причем.
Чтобы понять, что такое «дробная степень» , рассмотрим дробь:
Возведем обе части уравнения в степень:
Теперь вспомним правило про «степень в степени» :
Какое число надо возвести в степень, чтобы получить?
Эта формулировка — определение корня -ой степени.
Напомню: корнем -ой степени числа () называется число, которое при возведении в степень равно.
То есть, корень -ой степени — это операция, обратная возведению в степень: .
Получается, что. Очевидно, этот частный случай можно расширить: .
Теперь добавляем числитель: что такое? Ответ легко получить с помощью правила «степень в степени»:
Но может ли основание быть любым числом? Ведь корень можно извлекать не из всех чисел.
Никакое!
Вспоминаем правило: любое число, возведенное в четную степень — число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!
А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение не имеет смысла.
А что насчет выражения?
Но тут возникает проблема.
Число можно представить в виде дргих, сократимых дробей, например, или.
И получается, что существует, но не существует, а ведь это просто две разные записи одного и того же числа.
Или другой пример: раз, то можно записать. Но стоит нам по-другому записать показатель, и снова получим неприятность: (то есть, получили совсем другой результат!).
Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем .
Итак, если:
- — натуральное число;
- — целое число;
Примеры:
Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:
5 примеров для тренировкиРазбор 5 примеров для тренировки
1. Не забываем об обычных свойствах степеней:
2. . Здесь вспоминаем, что забыли выучить таблицу степеней:
ведь — это или. Решение находится автоматически: .
Ну а теперь — самое сложное. Сейчас мы разберем степень с иррациональным показателем .
Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением
Ведь по определению иррациональные числа — это числа, которые невозможно представить в виде дроби, где и — целые числа (то есть, иррациональные числа — это все действительные числа кроме рациональных).
При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.
Например, степень с натуральным показателем — это число, несколько раз умноженное само на себя;
…число в нулевой степени — это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось — поэтому результатом является только некая «заготовка числа», а именно число;
…степень с целым отрицательным показателем — это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.
Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель — это даже не действительное число.
Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.
КУДА МЫ УВЕРЕНЫ ТЫ ПОСТУПИШЬ! (если научишься решать такие примеры:))
Например:
Реши самостоятельно: Разбор решений:1. Начнем с уже обычного для нас правила возведения степени в степень:
Теперь посмотри на показатель. Ничего он тебе не напоминает? Вспоминаем формулу сокращенного умножения разность квадратов:
В данном случае,
Получается, что:
Ответ: .
2. Приводим дроби в показателях степеней к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например:
Ответ: 16
3. Ничего особенного, применяем обычные свойства степеней:
ПРОДВИНУТЫЙ УРОВЕНЬ
Определение степени
Степенью называется выражение вида: , где:
- — основание степени;
- — показатель степени.
Степень с натуральным показателем {n = 1, 2, 3,…}
Возвести число в натуральную степень n — значит умножить число само на себя раз:
Степень с целым показателем {0, ±1, ±2,…}
Если показателем степени является целое положительное число:
Возведение в нулевую степень :
Выражение неопределенное, т.к., с одной стороны, в любой степени — это, а с другой — любое число в -ой степени — это.
Если показателем степени является целое отрицательное число:
(т.к. на делить нельзя).
Еще раз о нулях: выражение не определено в случае. Если, то.
Примеры:
Степень с рациональным показателем
- — натуральное число;
- — целое число;
Примеры:
Свойства степеней
Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.
Посмотрим: что такое и?
По определению:
Итак, в правой части этого выражения получается такое произведение:
Но по определению это степень числа с показателем, то есть:
Что и требовалось доказать.
Пример : Упростите выражение.
Решение : .
Пример : Упростите выражение.
Решение : Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием мы объединяем, а остается отдельным множителем:
Еще одно важное замечание: это правило — только для произведения степеней !
Ни в коем случае нелья написать, что.
Так же, как и с предыдущим свойством, обратимся к определению степени:
Перегруппируем это произведение так:
Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -я степень числа:
По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: !
Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать? Но это неверно, ведь.
Степень с отрицательным основанием.До этого момента мы обсуждали только то, каким должен быть показатель степени. Но каким должно быть основание? В степенях с натуральным показателем основание может быть любым числом .
И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже. Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?
Например, положительным или отрицательным будет число? А? ?
С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.
Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на (), получится — .
И так до бесконечности: при каждом следующем умножении знак будет меняться. Можно сформулировать такие простые правила:
- четную степень, — число положительное .
- Отрицательное число, возведенное в нечетную степень, — число отрицательное .
- Положительное число в любой степени — число положительное.
- Ноль в любой степени равен нулю.
Определи самостоятельно, какой знак будут иметь следующие выражения:
Справился? Вот ответы:
1) ; 2) ; 3) ; 4) ; 5) ; 6) .
В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.
В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание — степень четная, а значит, результат всегда будет положительным. Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).
Пример 6) уже не так прост. Тут нужно узнать, что меньше: или? Если вспомнить, что, становится ясно, что, а значит, основание меньше нуля. То есть, применяем правило 2: результат будет отрицательным.
И снова используем определение степени:
Все как обычно — записываем определение степеней и, делим их друг на друга, разбиваем на пары и получаем:
Прежде чем разобрать последнее правило, решим несколько примеров.
Вычисли значения выражений:
Решения :
Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно — разность квадратов!
Получаем:
Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило 3. Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.
Если домножить его на, ничего не поменяется, верно? Но теперь получается следующее:
Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках. Но важно запомнить: меняются все знаки одновременно! Нельзя заменить на, изменив только один неугодный нам минус!
Вернемся к примеру:
И снова формула:
Итак, теперь последнее правило:
Как будем доказывать? Конечно, как обычно: раскроем понятие степени и упростим:
Ну а теперь раскроем скобки. Сколько всего получится букв? раз по множителей — что это напоминает? Это не что иное, как определение операции умножения : всего там оказалось множителей. То есть, это, по определению, степень числа с показателем:
Пример:
Степень с иррациональным показателем
В дополнение к информации о степенях для среднего уровня, разберем степень с иррациональным показателем. Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением — ведь по определению иррациональные числа — это числа, которые невозможно представить в виде дроби, где и — целые числа (то есть, иррациональные числа — это все действительные числа, кроме рациональных).
При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах. Например, степень с натуральным показателем — это число, несколько раз умноженное само на себя; число в нулевой степени — это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось — поэтому результатом является только некая «заготовка числа», а именно число; степень с целым отрицательным показателем — это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.
Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.
Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель — это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.
Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)
Например:
Реши самостоятельно:
Ответы:
- Вспоминаем формулу разность квадратов. Ответ: .
- Приводим дроби к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например: .
- Ничего особенного, применяем обычные свойства степеней:
КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ
Степенью называется выражение вида: , где:
Степень с целым показателем
степень, показатель которой — натуральное число (т.е. целое и положительное).
Степень с рациональным показателем
степень, показатель которой — отрицательные и дробные числа.
Степень с иррациональным показателем
степень, показатель которой — бесконечная десятичная дробь или корень.
Свойства степеней
Особенности степеней.
- Отрицательное число, возведенное в четную степень, — число положительное .
- Отрицательное число, возведенное в нечетную степень, — число отрицательное .
- Положительное число в любой степени — число положительное.
- Ноль в любой степени равен.
- Любое число в нулевой степени равно.
ТЕПЕРЬ ТЕБЕ СЛОВО…
Как тебе статья? Напиши внизу в комментариях понравилась или нет.
Расскажи о своем опыте использования свойств степеней.
Возможно у тебя есть вопросы. Или предложения.
Напиши в комментариях.
И удачи на экзаменах!
Сложение и вычитание чисел с разными степенями. Правило умножение степеней с разными основаниями
Урок на тему: «Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры»
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине «Интеграл» для 7 класса
Пособие к учебнику Ю.Н. Макарычева
Пособие к учебнику А.Г. Мордковича
Цель урока: научится производить действия со степенями числа.3=8$.
Деление степеней с одинаковым основанием. Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями.
3.a-3 есть a0 = 1, второй числитель. В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. Теперь рассмотрим их на конкретных примерах и попробуем доказать.
Таким образом мы доказали, что при делении двух степеней с одинаковыми основаниями, их показатели надо вычитать. После того как определена степень числа, логично поговорить про свойства степени.
Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров. Например, основное свойство дроби am·an=am+n при упрощении выражений часто применяется в виде am+n=am·an. Приведем пример, подтверждающий основное свойство степени. Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке.
Свойства степеней с натуральными показателями
Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Из полученного равенства am−n·an=am и из связи умножения с делением следует, что am−n является частным степеней am и an. Этим доказано свойство частного степеней с одинаковыми основаниями. Для наглядности покажем это свойство на примере. Например, для любых натуральных чисел p, q, r и s справедливо равенство. Для большей ясности приведем пример с конкретными числами: (((5,2)3)2)5=(5,2)3+2+5=(5,2)10.
Сложение и вычитание одночленов
Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. Достаточно очевидно, что для любого натурального n при a=0 степень an есть нуль. Действительно, 0n=0·0·…·0=0. К примеру, 03=0 и 0762=0. Переходим к отрицательным основаниям степени. Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m, где m — натуральное.
Переходим к доказательству этого свойства. Докажем, что при m>n и 0Осталось доказать вторую часть свойства. Следовательно, am−an>0 и am>an, что и требовалось доказать. Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами.
Если p=0, то имеем (a0)q=1q=1 и a0·q=a0=1, откуда (a0)q=a0·q. По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств. Условиям p 0 в этом случае будут эквивалентны условия m 0 соответственно.
При этом условию p>q будет соответствовать условие m1>m2, что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями. Эти неравенства по свойствам корней можно переписать соответственно как и. А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно.
Основные свойства логарифмов
Вычисление значения степени называют действием возведения в степень. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание). Операции с корнями.
Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем;нодействиясостепенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения. Если мы хотим, чтобы формула a m: a n=a m — nбыла справедлива при m = n,нам необходимо определение нулевой степени.
Умножение степеней чисел с одинаковыми показателями. Далее мы сформулируем теорему о делении степеней с одинаковыми основаниями, решим разъясняющие задачи и докажем теорему в общем случае. Перейдём теперь к определению отрицательных степеней.1. Если Вы теперь аккуратно воспользуетесь свойствами степеней (при возведении степени в степень показатели…
То есть показатели степени действительно вычитаются, но, поскольку в знаменателе у степени показатель отрицательный, при вычитании минус на минус даёт плюс, и показатели складываются. Вспомним, что называется одночленом, и какие операции можно делать с одночленами. Напомним, что для приведения одночлена к стандартному виду необходимо вначале получить численный коэффициент, перемножив все численные множители, а после этого перемножить соответствующие степени.
Переход к новому основанию
То есть, мы должны научиться различать подобные и не подобные одночлены. Сделаем вывод: подобные одночлены имеют одинаковую буквенную часть, и такие одночлены можно складывать и вычитать.
Спасибо Вам за отзыв. Если наш проект вам понравился и вы готовы помочь или принять участие в нём, перешлите информацию о проекте знакомым и коллегам. В предыдущем видео говорилось,что в примерах с одночленами может быть только умножение:»Найдем отличие этих выражений от предыдущих.
Само понятие одночлена как математической единицы подразумевает только умножение чисел и переменных, если есть другие операции, выражение уже не будет одночленом. Но вместе с тем между собой одночлены можно складывать, вычитать, делить… Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.
Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают! Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.
То есть, свойство натуральной степени n произведения k множителей записывается как (a1·a2·…·ak)n=a1n·a2n·…·akn.3. В остальном, когда различные основания и показатели, произвести полное умножение нельзя. Иногда можно частично упростить или прибегнуть к помощи вычислительной техники.
Степень с отрицательным показателем. Деление степеней с одинаковым основанием. 4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю. Основание и аргумент первого логарифма — точные степени. Данное свойство распространяется на степень произведения трех и большего количества множителей. Следовательно, am−an>0 и am>an, что и требовалось доказать. Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями.
Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке. То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным. Вычисление значения степени называют действием возведения в степень. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).
После того как определена степень числа, логично поговорить про свойства степени. В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров. Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами.
Приведем пример, подтверждающий основное свойство степени. Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Основное свойство дроби позволяет записать равенство am−n·an=a(m−n)+n=am.
Переход к новому основанию
То есть, свойство натуральной степени n произведения k множителей записывается как (a1·a2·…·ak)n=a1n·a2n·…·akn. Для наглядности покажем это свойство на примере. Доказательство можно провести, используя предыдущее свойство. Например, для любых натуральных чисел p, q, r и s справедливо равенство. Для большей ясности приведем пример с конкретными числами: (((5,2)3)2)5=(5,2)3+2+5=(5,2)10.
Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. Достаточно очевидно, что для любого натурального n при a=0 степень an есть нуль. Действительно, 0n=0·0·…·0=0. К примеру, 03=0 и 0762=0. Переходим к отрицательным основаниям степени. Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m, где m — натуральное.
Переходим к доказательству этого свойства. Докажем, что при m>n и 0По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств. Условиям p 0 в этом случае будут эквивалентны условия m 0 соответственно. При этом условию p>q будет соответствовать условие m1>m2, что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями.
Операции с корнями. Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем;нодействиясостепенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения. Если мы хотим, чтобы формула a m: a n=a m — nбыла справедлива при m = n,нам необходимо определение нулевой степени. Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать.
Вынесение показателя степени из логарифма
Если основания разные, эти правила не работают! Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.
Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств. Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами. Часто в процессе решения требуется представить число как логарифм по заданному основанию.
Свойства степеней, формулировки, доказательства, примеры.
Число n может быть абсолютно любым, ведь это просто значение логарифма. Она так и называется: основное логарифмическое тождество. Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением. В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма.
Примеры решения примеров с дробями, содержащими числа со степенями
Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице. 1 = 0 — это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения. Вот и все свойства. Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.
Логарифмическая единица и логарифмический ноль
2.a-4 есть a-2 первый числитель. В этом случае советуем поступать следующим образом. Это действие третьей ступени. Например, основное свойство дроби am·an=am+n при упрощении выражений часто применяется в виде am+n=am·an. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0n=0, а при знакомстве с делением мы условились, что на нуль делить нельзя. Из полученного равенства am−n·an=am и из связи умножения с делением следует, что am−n является частным степеней am и an. Этим доказано свойство частного степеней с одинаковыми основаниями.
Аналогично, если q=0, то (ap)0=1 и ap·0=a0=1, откуда (ap)0=ap·0. В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. Эти неравенства по свойствам корней можно переписать соответственно как и. А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно.
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .
Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a 2 и 3a 2 равна 5a 2 .
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.
Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.
Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.5}$. Ответ: $\frac{2x}{1}$ или 2x.
3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .
4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .
5. Умножьте (a 3 + b)/b 4 на (a — b)/3.
6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).
7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .
8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.
9. Разделите (h 3 — 1)/d 4 на (d n + 1)/h.
Правила умножения с одинаковыми степенями. Правило умножение степеней с разными основаниями. Свойства степеней с рациональными показателями
Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.
Число c является n -ной степенью числа a когда:
Операции со степенями.
1. Умножая степени с одинаковым основанием их показатели складываются:
a m ·a n = a m + n .
2. В делении степеней с одинаковым основанием их показатели вычитаются:
3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:
(abc…) n = a n · b n · c n …
4. Степень дроби равняется отношению степеней делимого и делителя:
(a/b) n = a n /b n .
5. Возводя степень в степень, показатели степеней перемножают:
(a m) n = a m n .
Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.
Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .
Операции с корнями.
1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:
2. Корень из отношения равен отношению делимого и делителя корней:
3. При возведении корня в степень довольно возвести в эту степень подкоренное число:
4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:
5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:
Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:
Формулу a m :a n =a m — n можно использовать не только при m > n , но и при m n .
Например . a 4:a 7 = a 4 — 7 = a -3 .
Чтобы формула a m :a n =a m — n стала справедливой при m=n , нужно присутствие нулевой степени.
Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.
Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.
Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .
Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
Запомните!
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.
Данное свойство степеней также действует на произведение трёх и более степеней.
- Упростить выражение.
b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15 - Представить в виде степени.
6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17 - Представить в виде степени.
(0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
Важно!
Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.
Нельзя
заменять сумму
(3 3 + 3 2)
на 3 5
. Это понятно, если
посчитать
(3 3 + 3 2) = (27 + 9) = 36
, а
3 5 = 243
Свойство № 2
Частное степеней
Запомните!
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 443 8: t = 3 4
T = 3 8 − 4
Ответ: t = 3 4 = 81Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
- Пример. Упростить выражение.
4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5 - Пример. Найти значение выражения, используя свойства степени.
= = = = = 2 11 − 5 = 2 6 = 64Важно!
Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4
Будьте внимательны!
Свойство № 3
Возведение степени в степеньЗапомните!
При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
(a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.
Свойства 4
Степень произведенияЗапомните!
При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
(a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.
- Пример 1.
(6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2 - Пример 2.
(−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6
Важно!
Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.
(a n · b n)= (a · b) nТо есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.
- Пример. Вычислить.
2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000 - Пример. Вычислить.
0,5 16 · 2 16 = (0,5 · 2) 16 = 1
В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.
Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216
Пример возведения в степень десятичной дроби.
4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4Свойства 5
Степень частного (дроби)Запомните!
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
(a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.
- Пример. Представить выражение в виде частного степеней.
(5: 3) 12 = 5 12: 3 12
Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.
- Пример 1.
В прошлом видеоуроке мы узнали, что степенью некоего основания называется такое выражение, которое представляет собой произведение основания на самого себя, взятого в количестве, равном показателю степени. Изучим теперь некоторые важнейшие свойства и операции степеней.
Например, умножим две разные степени с одинаковым основанием:
Представим это произведение в полном виде:
(2) 3 * (2) 2 = (2)*(2)*(2)*(2)*(2) = 32
Вычислив значение этого выражения, мы получим число 32. С другой стороны, как видно из этого же примера, 32 можно представить в виде произведения одного и того же основания (двойки), взятого в количестве 5 раз. И действительно, если пересчитать, то:
Таким образом, можно с уверенностью прийти к выводу, что:
(2) 3 * (2) 2 = (2) 5
Подобное правило успешно работает для любых показателей и любых оснований. Это свойство умножения степени вытекает из правила сохранности значения выражений при преобразованиях в произведении. При любом основании а произведение двух выражений (а)х и (а)у равно а(х + у). Иначе говоря, при произведении любых выражений с одинаковым основанием, итоговый одночлен имеет суммарную степень, образующуюся сложением степени первого и второго выражений.
Представляемое правило прекрасно работает и при умножении нескольких выражений. Главное условие — что бы основания у всех были одинаковыми. Например:
(2) 1 * (2) 3 * (2) 4 = (2) 8
Нельзя складывать степени, да и вообще проводить какие-либо степенные совместные действия с двумя элементами выражения, если основания у них являются разными.
Как показывает наше видео, в силу схожести процессов умножения и деления правила сложения степеней при произведении прекрасно передаются и на процедуру деления. Рассмотрим такой пример:
Произведем почленное преобразование выражения в полный вид и сократим одинаковые элементы в делимом и делителе:
(2)*(2)*(2)*(2)*(2)*(2) / (2)*(2)*(2)*(2) = (2)(2) = (2) 2 = 4
Конечный результат этого примера не так интересен, ведь уже в ходе его решения ясно, что значение выражения равно квадрату двойки. И именно двойка получается при вычитании степени второго выражения из степени первого.
Чтобы определить степень частного необходимо из степени делимого вычесть степень делителя. Правило работает при одинаковом основании для всех его значений и для всех натуральных степеней. В виде абстракции имеем:
(а) х / (а) у = (а) х — у
Из правила деления одинаковых оснований со степенями вытекает определение для нулевой степени. Очевидно, что следующее выражение имеет вид:
(а) х / (а) х = (а) (х — х) = (а) 0
С другой стороны, если мы произведем деление более наглядным способом, то получим:
(а) 2 / (а) 2 = (а) (а) / (а) (а) = 1
При сокращении всех видимых элементов дроби всегда получается выражение 1/1, то есть, единица. Поэтому принято считать, что любое основание, возведенное в нулевую степень, равно единице:
Вне зависимости от значения а.
Однако будет абсурдно, если 0 (при любых перемножениях дающий все равно 0) будет каким-то образом равен единице, поэтому выражение вида (0) 0 (ноль в нулевой степени) просто не имеет смысла, а к формуле (а) 0 = 1 добавляют условие: «если а не равно 0».
Решим упражнение. Найдем значение выражения:
(34) 7 * (34) 4 / (34) 11
Так как основание везде одинаково и равно 34, то итоговое значение будет иметь такое же основание со степенью (согласно вышеуказанных правил):
Иначе говоря:
(34) 7 * (34) 4 / (34) 11 = (34) 0 = 1
Ответ: выражение равно единице.
Как умножать степени? Какие степени можно перемножить, а какие — нет? Как число умножить на степень?
В алгебре найти произведение степеней можно в двух случаях:
1) если степени имеют одинаковые основания;
2) если степени имеют одинаковые показатели.
При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели — сложить:
При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:
Рассмотрим, как умножать степени, на конкретных примерах.
Единицу в показателе степени не пишут, но при умножении степеней — учитывают:
При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:
В выражениях возведение в степень выполняется в первую очередь.
Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом — умножение:
www.algebraclass.ru
Сложение, вычитание, умножение, и деление степеней
Сложение и вычитание степеней
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .
Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a 2 и 3a 2 равна 5a 2 .
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.
Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.
Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .
Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.
Так, a n .a m = a m+n .
Для a n , a берётся как множитель столько раз, сколько равна степень n;
И a m , берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.
Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .
Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1
Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).
Это правило справедливо и для чисел, показатели степени которых — отрицательные .
1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.
2. y -n .y -m = y -n-m .
3. a -n .a m = a m-n .
Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть
Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.
Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.
Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
(a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .
Деление степеней
Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.
Таким образом a 3 b 2 делённое на b 2 , равно a 3 .
Запись a 5 , делённого на a 3 , выглядит как $\frac $.3$
Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.
Примеры решения примеров с дробями, содержащими числа со степенями
1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.
2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.
3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .
4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .
5. Умножьте (a 3 + b)/b 4 на (a — b)/3.
6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).
7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .
8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.
Свойства степени
Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
a m · a n = a m + n , где « a » — любое число, а « m », « n » — любые натуральные числа.
Данное свойство степеней также действует на произведение трёх и более степеней.
b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
(0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.
Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243
Свойство № 2
Частное степеней
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
(2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
3 8: t = 3 4
Ответ: t = 3 4 = 81
Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
- Пример. Упростить выражение.
4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
Пример. Найти значение выражения, используя свойства степени.
2 11 − 5 = 2 6 = 64
Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4
Свойство № 3
Возведение степени в степень
При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
(a n) m = a n · m , где « a » — любое число, а « m », « n » — любые натуральные числа.
Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.
(a n · b n)= (a · b) n
То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.
2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
0,5 16 · 2 16 = (0,5 · 2) 16 = 1
В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.
Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216
Пример возведения в степень десятичной дроби.
4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4
Свойства 5
Степень частного (дроби)
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
(a: b) n = a n: b n , где « a », « b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.
(5: 3) 12 = 5 12: 3 12
Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.
Степени и корни
Операции со степенями и корнями. Степень с отрицательным ,
нулевым и дробным показателем. О выражениях, не имеющих смысла.
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются .
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
(a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.
П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .
Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).
1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:
2. Корень из отношения равен отношению корней делимого и делителя:
3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:
4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:
5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:
Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.
Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:
Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .
П р и м е р. a 4: a 7 = a 4 — 7 = a — 3 .
Если мы хотим, чтобы формула a m : a n = a m — n была справедлива при m = n , нам необходимо определение нулевой степени.
Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.
П р и м е р ы. 2 0 = 1, (– 5) 0 = 1, (– 3 / 5) 0 = 1.
Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а:
О выражениях, не имеющих смысла. Есть несколько таких выражений.
где a ≠ 0 , не существует.
В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0
— любое число.
В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.
0 0 — любое число.
Р е ш е н и е. Рассмотрим три основных случая:
1) x = 0 – это значение не удовлетворяет данному уравнению
2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,
что x – любое число; но принимая во внимание, что в
нашем случае x > 0 , ответом является x > 0 ;
Правила умножения степеней с разным основанием
СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,
СТЕПЕННАЯ ФУНКЦИЯ IV
§ 69. Умножение и деление степеней с одинаковыми основаниями
Теорема 1. Чтобы перемножить степени с одинаковыми основаниями, достаточно показатели степеней сложить, а основание оставить прежним , то есть
Доказательство. По определению степени
2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.
Мы рассмотрели произведение двух степеней. На самом же деле доказанное свойство верно для любого числа степеней с одинаковыми основаниями.
Теорема 2. Чтобы разделить степени с одинаковыми основаниями, когда показатель делимого больше показателя делителя, достаточно из показателя делимого вычесть показатель делителя, а основание оставить прежним, то есть при т > п
(a =/= 0)
Доказательство. Напомним, что частным от деления одного числа на другое называется число, которое при умножении на делитель дает делимое. Поэтому доказать формулу , где a =/= 0, это все равно, что доказать формулу
Если т > п , то число т — п будет натуральным; следовательно, по теореме 1
Теорема 2 доказана.
Следует обратить внимание на то, что формула
доказана нами лишь в предположении, что т > п . Поэтому из доказанного пока нельзя делать, например, таких выводов:
К тому же степени с отрицательными показателями нами еще не рассматривались и мы пока что не знаем, какой смысл можно придать выражению 3 — 2 .
Теорема 3. Чтобы возвести степень в степень, достаточно перемножить показатели, оставив основание степени прежним , то есть
Доказательство. Используя определение степени и теорему 1 этого параграфа, получаем:
что и требовалось доказать.
Например, (2 3) 2 = 2 6 = 64;
518 (Устно.) Определить х из уравнений:
1) 2 2 2 2 3 2 4 2 5 2 6 = 2 x ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 x ;
2) 3 3 3 3 5 3 7 3 9 = 3 x ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 x .
519. (У с т н о.) Упростить:
520. (У с т н о.) Упростить:
521. Данные выражения представить в виде степеней с одинаковыми основаниями:
1) 32 и 64; 3) 8 5 и 16 3 ; 5) 4 100 и 32 50 ;
2) -1000 и 100; 4) -27 и -243; 6) 81 75 8 200 и 3 600 4 150 .
Правило деления степеней. При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя. Примеры:
Слайд 11 из презентации «Деление и умножение степеней» к урокам алгебры на тему «Степень»
Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке алгебры, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Деление и умножение степеней.ppt» можно в zip-архиве размером 1313 КБ.
«Деление и умножение степеней» — a2 a3 = a2+3 = a5. a3 = a · a · a. Найдем произведение a2 и a3. 100. 2+3. 5 раз. 64 = 144 = 1 0000 =. Умножение и деление степеней. 3 раза. a2 a3 =.
«Степени двойки» — 1024+. Правила перевода из одной системы счисления в другую. Гусельникова Е.В. Школа №130. Содержание. Таблица степеней двойки. Переведём число 1998 из десятичной в двоичную систему. Кислых В.Н. 11Э Зинько К.О. 11Э. Преподаватель: Выполнили: Рассмотрим схему преобразования на примере.
«Степень с отрицательным показателем» — Степень с отрицательным показателем. 5 12?3 (27?3). -2. -1. Вычислите: -3.
«Степень с рациональным показателем» — по теме: «Степень с рациональным показателем». Цели урока: I. Организационная часть. Проверка домашнего задания 1.Математический диктант 2. Взаимопроверка III.Самостоятельная работа IV. Обобщающий урок. Ход урока. Подготовка к контрольной работе V. Подведение итогов урока VI. II.
«Степень с целым показателем» — Представьте выражение в виде степени. X-12. Расположите в порядке убывания. Представьте выражение x-12 в виде произведения двух степеней с основанием x, если один множитель известен. Вычислите. Упростите.
«Свойства степени» — Обобщение знаний и умений по применению свойств степени с натуральным показателем. Вычислительная пауза. Свойства степени с натуральным показателем. Проверь себя! Применение знаний для решения различных по сложности задач. Тест. Физминутка. Развитие настойчивости, мыслительной активности и творческой деятельности.
Правило деление степеней
1. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей (с тем же показателем):
(abc…) n = a n b n c n …
Пример 1. (7 2 10) 2 = 7 2 2 2 10 2 = 49 4 100 = 19600. Пример 2. (x 2 –a 2) 3 = [(x +a)(x — a)] 3 =(x +a) 3 (x — a) 3
Практически более важно обратное преобразование:
a n b n c n … = (abc…) n
т.е. произведение одинаковых степеней нескольких величин равно той же степени произведения этих величин.
Пример 3. Пример 4. (a +b) 2 (a 2 – ab +b 2) 2 =[(a +b)(a 2 – ab +b 2)] 2 =(a 3 +b 3) 2
2. Степень частного (дроби) равна частному от деления той же степени делимого на ту же степень делителя:
Пример 5. Пример 6.
Обратное преобразование:. Пример 7.. Пример 8..
3. При умножении степеней с одинаковыми основаниями показатели степеней складываются:
Пример 9.2 2 2 5 =2 2+5 =2 7 =128. Пример 10. (a – 4c +x) 2 (a – 4c +x) 3 =(a – 4c + x) 5 .
4. При делении степеней с одинаковыми основаниями показатель степени делителя вычитается из показателя степени делимого
Пример 11. 12 5:12 3 =12 5-3 =12 2 =144. Пример 12. (x-y) 3:(x-y) 2 =x-y.
5. При возведении степени в степень показатели степеней перемножаются:
Пример 13. (2 3) 2 =2 6 =64. Пример 14.
Сложение, вычитание, умножение, и деление степеней
Сложение и вычитание степеней
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .
Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a 2 и 3a 2 равна 5a 2 .
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.
Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.
Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .
Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.
Так, a n .a m = a m+n .
Для a n , a берётся как множитель столько раз, сколько равна степень n;
И a m , берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.
Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .
Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1
Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).
Это правило справедливо и для чисел, показатели степени которых — отрицательные .
1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.
2. y -n .y -m = y -n-m .
3. a -n .a m = a m-n .
Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть
Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.n$.
mathematics-tests.com
Степени и корни
Операции со степенями и корнями. Степень с отрицательным ,
нулевым и дробным показателем. О выражениях, не имеющих смысла.
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются .
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
(a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.
П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .
Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).
1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:
2. Корень из отношения равен отношению корней делимого и делителя:
3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:
4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:
5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:
Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.
Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:
Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .
П р и м е р. a 4: a 7 = a 4 — 7 = a — 3 .
Если мы хотим, чтобы формула a m : a n = a m — n была справедлива при m = n , нам необходимо определение нулевой степени.
Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.
П р и м е р ы. 2 0 = 1, (– 5) 0 = 1, (– 3 / 5) 0 = 1.
Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а:
О выражениях, не имеющих смысла. Есть несколько таких выражений.
где a ≠ 0 , не существует.
В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0
— любое число.
В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.
0 0 — любое число.
Р е ш е н и е. Рассмотрим три основных случая:
1) x = 0 – это значение не удовлетворяет данному уравнению
2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,
что x – любое число; но принимая во внимание, что в
нашем случае x > 0 , ответом является x > 0 ;
- Правила техники безопасности при работе утюгом Правила техники безопасности при работе утюгом. 1.Перед включением утюга в электросеть нужно проверить изоляцию шнура и положение утюга на подставке. 2.Включение и […]
- Проблемы водного налога Состояние, анализ и проблемы совершенствования водного налога При заборе воды сверх установленных квартальных (годовых) лимитов водопользования налоговые ставки в части такого превышения […]
- как составить приказ о переходе с 223фз на 44 фз Сергей Антонов 30 Ответ написан год назад Профессор 455 Ответ написан год назад Например: приказ об отмене применения положения о закупках. Оценка ответа: 0 Добавить […]
- Деление отрицательных чисел Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление — это действие, обратное умножению. Если « a » и « b » положительные числа, то разделить число « a » на число « […]
- Разрешения D1, 960Н, 720Р, 960Р, 1080Р Системы видеонаблюдения получают все большее распространение по всему миру. Оборудование постоянно совершенствуется, и данная сфера постоянно развивается. Как и в любой […]
- Конституционное право Российской Федерации. Баглай М.В. 6-е изд., изм. и доп. — М.: Норма, 200 7 . — 7 84 с. Настоящий учебник, представляющий собой шестое, измененное и дополненное, издание, написан известным […]
04.Счет, степени, корни — MAPHY.COM
Основные теоретические сведения
Некоторые рекомендации к проведению алгебраических вычислений, преобразований и упрощений
При выполнении численных вычислений с большим количеством операций и дробей желательно выполнять следующие рекомендации:
- Переводите десятичные дроби в обыкновенные, т.е. такие у которых есть числитель и знаменатель.
- Не старайтесь посчитать сразу все выражение. Выполняйте вычисления по одному действию, пошагово. При этом учтите, что:
- сначала выполняют операции в скобках;
- затем считают произведения и/или деления;
- потом суммируют или вычитают;
- и в последнюю очередь, если это была многоэтажная дробь, делят уже полностью упрощенный числитель на тоже полностью упрощенный знаменатель;
- причем выполняя в первую очередь операции в скобках также соблюдают ту же последовательность, сначала произведения или деления внутри скобок, потом суммирование или вычитание в скобках, а если внутри скобки есть другая скобка то действия в ней выполняются прежде всего.
- Не спешите умножать и делить «страшные числа». Скорее всего, в одном из следующих действий что-то сократится. Чтобы проще было сократить можно числа раскладывать на простые множители.
- При сложении и вычитании выделяйте в дробях целую часть (если это возможно). При умножении и делении, наоборот, приводите дробь к виду без целой части.
От корней в знаменателе принято избавляться. Для избавления от корня над всем знаменателем умножают числитель и знаменатель на выражение, равное знаменателю. Для избавления от корня над частью знаменателя умножают числитель и знаменатель на сопряженное знаменателю выражение. В этом случае образуется разность квадратов (сопряжённым для (a — b) является выражение (a + b) и наоборот).
При преобразовании или упрощении алгебраических выражений последовательность действий такова:
- Разложить на множители все, что можно разложить на множители.
- Сократить все, что можно сократить.
- И только потом приводить к общему знаменателю. Ни в коем случае не пытайтесь сразу сломя голову приводить к общему знаменателю. Пример будет становиться чем дальше, тем страшнее.
- Снова разложить на множители и сократить.
Для того чтобы перевести десятичную периодическую дробь в обыкновенную (с числителем и знаменателем) необходимо:
- Из числа, стоящего до второго периода в исходной периодической дроби вычесть число, стоящее до первого периода в этой же дроби и записать полученную разность в числитель будущей обыкновенной дроби.
- В знаменателе же записать столько девяток, сколько цифр в периоде исходной дроби, и столько нулей, сколько цифр между запятой и первым периодом.
- Не забыть про целую часть, если она есть.
При решении задач из данной темы также необходимо помнить много сведений из предыдущих тем. Приведём далее основные из них.
Формулы сокращенного умножения
При выполнении различных алгебраических преобразований часто удобно пользоваться формулами сокращенного умножения. Зачастую эти формулы применяются не столько для того чтобы сократить процесс умножения, а наоборот скорее для того, чтобы по результату понять, что его можно представить как произведение некоторых множителей. Таким образом, данные формулы нужно уметь применять не только слева направо, но и справа налево. Перечислим основные формулы сокращенного умножения:
Последние две формулы также часто удобно использовать в виде:
Квадратный трехчлен и теорема Виета
В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:
Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:
Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:
Произведение корней квадратного уравнения согласно теореме Виета может быть вычислено по формуле:
Итак, еще раз о теореме Виета:
- Если D < 0 (дискриминант отрицателен), то уравнение корней не имеет и теорему Виета применять нельзя.
- Если D > 0 (дискриминант положителен), то уравнение имеет два корня и теорема Виета прекрасно работает.
- Если D = 0, то уравнение имеет единственный корень, для которого бессмысленно вводить понятие суммы или произведения корней, поэтому теорему Виета тоже не применяем.
Основные свойства степеней
У математических степеней есть несколько важных свойств, перечислим их:
Последнее свойство выполняется только при n > 0. Ноль можно возводить только в положительную степень. Ну а основное свойство отрицательной степени записывается следующим образом:
Основные свойства математических корней
Математический корень можно представить в виде обычной степени, а затем пользоваться всеми свойствами степеней приведёнными выше. Для представления математического корня в виде степени используют следующую формулу:
Тем не менее можно отдельно выписать ряд свойств математических корней, которые основываются на свойствах степеней описанных выше:
Для арифметических корней выполняется следующее свойство (которое одновременно можно считать определением корня):
Последнее справедливо: если n – нечетное, то для любого a; если же n – четное, то только при a больше либо равном нолю. Для корня нечетной степени выполняется также следующее равенство (из под корня нечетной степени можно выносить знак «минус»):
Так как значение корня четной степени может быть только неотрицательным, то для таких корней имеется следующее важное свойство:
Итак всегда нужно помнить, что под корнем четной степени может стоять только неотрицательное выражение, и сам корень тоже есть неотрицательное выражение. Кроме того, нужно отметить, что если используется запись со значком математического корня, то показатель степени этого корня может быть только целым числом, причем это число должно быть больше либо равно двум:
Основные свойства квадратного корня
Квадратным корнем называется математический корень второй степени:
Квадратный корень можно извлечь только из неотрицательного числа. При этом значение квадратного корня также всегда неотрицательно:
Для квадратного корня существует два важных свойства, которые важно очень хорошо запомнить и не путать:
Если под корнем стоит несколько множителей, то корень можно извлекать из каждого из них по-отдельности. При этом важно понимать, что каждый из этих множителей по-отдельности (а не только их произведение) должны быть неотрицательными:
Основы алгебры — Показатели — Углубленно
Показатели используются во многих задачах алгебры, поэтому важно понимать правила работы с экспонентами. Давайте подробно рассмотрим каждое правило и посмотрим несколько примеров.
Правила из 1
Есть два запомнить простые «правила 1».
Во-первых, любое число возведенный в степень «один», равняется самому себе. Это имеет смысл, потому что степень показывает, во сколько раз основание умножается само на себя.Если это только умножается один раз, то логично, что он равен самому себе.
Во-вторых, один возведен в любую власть — один. Это тоже логично, потому что один раз один раз один, сколько бы раз вы его умножали, всегда равен единице.
Товар Правило
Показатель степени «правило произведения» говорит нам, что при умножении двух степеней, которые имеют на той же базе можно складывать экспоненты.В этом примере вы можете увидеть, как оно работает. Добавление экспонентов — это всего лишь короткий путь!
Мощность Правило
«Власть» правило «говорит нам, что чтобы возвести степень в степень, просто умножьте степень. Здесь видно, что 5 2 в 3-й степени равно 5 6 .
Частное Правило
Частное Правило говорит нам, что мы можем разделить две степени с одинаковым основанием, вычитая экспоненты.Вы поймете, почему это работает, если изучите показанный пример.
Нулевое правило
Согласно «правило нуля», любое ненулевое число, возведенное в степень нуля равно 1.
отрицательный Экспоненты
Последнее правило в этом уроке говорится, что любое ненулевое число в отрицательной степени равно его обратному возведению в противоположную положительную силу.
назад наверх
4 простых способа умножения экспонент [+ действия]
Что общего у землетрясений, фондового рынка, информатики и ядерной физики?
Все они включают экспонентов умножения .
Показатели являются неотъемлемой частью алгебры, полиномиальных уравнений и курсов математики более высокого уровня, но многим студентам сложно понять, как с ними работать. Вы ознакомились с правилами экспонента со своим классом, и теперь пора применить их.
Давайте рассмотрим: правила экспонент
Прежде чем вы начнете учить своих учеников умножению экспонентов, вы можете сделать с ними быстрый обзор основ работы экспонентов.
Показатели (также называемые степенью ) регулируются правилами, как и все остальное в классе математики. Вот краткое резюме:
Показатель степени — это способ выражения повторного умножения . Например, 35 представляет собой три, умноженные на себя пять раз:
35 = 3 × 3 × 3 × 3 × 3 = 243
35 = 243
Первое число называется основанием . Представляет собой число, которое умножается.
Второе меньшее число — это показатель степени . Он представляет собой количество раз, когда основание умножается само на себя.
Существует семь правил экспоненты :
- Правило произведения степеней : сложение степеней при умножении подобных оснований
- Правило отношения степеней : вычитание степеней при делении подобных оснований
- Правило силы полномочий : Умножение степеней вместе при увеличении степени на другой показатель степени
- Степень произведения rul e: Распределение мощности на каждую основу при возведении нескольких переменных в степень
- Степень правила частного : Распределение мощности на все значения в частное
- Правило нулевой степени : Любое основание, возведенное в степень нуля, становится единицей
- Правило отрицательной экспоненты : Чтобы изменить отрицательную экспоненту на положительную, переверните ее на обратную
Понятно? Тогда давай продолжим.
Как умножить экспоненты 4 способами
Помните, что все эти стратегии — просто ярлыки, помогающие упростить более сложные уравнения. Чтобы найти фактическое значение показателя степени, учащиеся должны сначала понять, что это означает: повторное умножение .
Познакомьте студентов с основами, такими как выражение показателей в виде произведений, прежде чем переходить к умножению показателей.
Когда они освоятся с концепцией, пора начинать.
1. Умножение степеней с одним и тем же основанием
При умножении степеней используйте первое правило: складывайте степени вместе при умножении одинаковых оснований.
52 × 56 =?
Основания уравнения остаются неизменными, а значения показателей складываются.
52 × 56 = 58
Но почему это работает? Давайте посмотрим немного внимательнее:
Сложение экспонент — это всего лишь быстрый путь к ответу. Когда мы складываем экспоненты, мы увеличиваем количество раз, когда основание умножается само на себя.
Это правило остается неизменным, независимо от сложности вопроса. Вот более сложный пример с переменными:
(2𝒙8) (3𝒙5) =?
Во-первых, умножьте числа (2 и 3) вместе, так как это коэффициентов , а не основание. (Коэффициент — это число, умноженное на переменную, например 𝒙.)
Затем сложите показатели степени.
(2𝒙8) (3𝒙5) = 6𝒙13
2. Умножение степеней с разными основаниями
Можно умножать экспоненты с разными основаниями, но есть одна важная загвоздка: экспоненты должны быть одинаковыми.
Вот как это сделать:
54 × 24 =?
Сначала перемножьте основания вместе. Затем добавьте показатель степени. Вместо того, чтобы складывать два показателя вместе, оставьте то же самое.
54 × 24 = 104
Вот почему это работает:
Это из-за правила четвертой степени: распределяет мощность на каждую базу при возведении нескольких переменных в степень . Это уравнение также можно записать как (5 × 2) 4, что означает, что показатель степени распределяется между 5 и 2.
Теперь давайте попробуем умножить переменные на показатели.
(3y3) (4y3) =?
Помните, что правило выполняется до тех пор, пока , поскольку показатели степени и переменные равны (поскольку переменные 𝒙 и y нельзя комбинировать).
(3y3) (4y3) = 12y3
3. Умножение показателей степени с разными основаниями и показателями
Что происходит, когда вы хотите умножить разные показатели степени с разными основаниями?
Короткий ответ: вы не можете. В отличие от приведенных выше примеров, здесь нет ярлыка.
Например:
Поскольку 24 и 32 не имеют ничего общего, чтобы их можно было объединить, ответ не может быть упрощен до одного показателя степени и должен быть выражен как обычное число.
4. Умножение отрицательных показателей
Это может показаться сложным, но умножение показателей степени на отрицательные числа в точности совпадает с умножением показателей степени на неотрицательные числа.
Начните с изучения свойств отрицательных чисел. В частности, просмотрите, как их складывать и умножать.Ваши ученики должны чувствовать себя комфортно, работая с отрицательными числами, прежде чем они перейдут к отрицательным показателям.
Затем запомните правило седьмого показателя степени: , чтобы изменить отрицательный показатель степени на положительный, переверните его на обратное значение .
То же основание, разные степени:
4-3 × 42 =?
Помните — складывайте экспоненты с одинаковыми основаниями.
4-3 × 42 = 4-1
Чтобы решить эту экспоненту, переверните отрицательную экспоненту в обратную.
4-1 = ¼ = 0.25
Разное основание, но одинаковые показатели:
2-5 × 3-5 =?
Как и выше, умножьте основания и оставьте экспоненты прежними.
2-5 × 3-5 = 6-5
Чтобы решить, переверните отрицательный показатель степени в обратную величину.
6-5 = ⅙5
Если показатели степени не имеют ничего общего, решите уравнение напрямую:
2-3 × 32
Сначала преобразуйте отрицательные показатели степени в обратные, затем вычислите.
При умножении показателей степени напомните учащимся:
- Сложить показатели , если основания одинаковые
- Умножить основания , если показатели одинаковые
- Если ничего не одинаковое , просто решите это
Практика умножения на показатели
1.Prodigy
Повышение уровня владения математикой — важная часть уверенности учащихся в курсах математики в средней школе и колледже. Студенты могут практиковать умножение показателей и другие математические концепции с Prodigy, в то время как вы задаете индивидуальные вопросы в игре, основанные на содержании урока.
Ваш класс будет исследовать мир, наполненный увлекательными заданиями, экзотическими домашними животными и изучением математики. Вы сможете выбрать, на какие вопросы они будут отвечать, и в режиме реального времени получать данные о том, что они усвоили, над чем работают и где им может потребоваться дополнительная помощь.
Обладая 1,400 навыками и их неисчислимым количеством, вы сможете предоставить материалов, соответствующих учебной программе, по любой теме, которую вы изучаете, включая умножение показателей.
2. Exponent War
Education.comКлассическая карточная игра, но с невероятно интересным поворотом!
Студенты работают в командах по двое и соревнуются друг с другом. Раздайте каждой команде колоду карт (с вынутыми дамами, валетами и королями) и попросите каждого игрока вытащить две карты.Первая карта — это база, а вторая карта — экспонента.
Каждой паре предстоит соревноваться, чтобы решить свое уравнение и найти продукт. Побеждает команда с наибольшим ответом. Установите таймер для класса и посмотрите, кто наберет больше очков.
Пока ученики играют, пройдитесь по классу и убедитесь, что они не пропустили ни одной ступеньки. Если вы видите много ошибок или затруднений у учащихся, примите это как знак того, что вам, возможно, придется сделать некоторый обзор.
3. Показательная охота за мусорщиками
Дайте вашим ученикам возможность искать сокровища и исследовать класс с помощью показательной охоты за мусорщиками.
Разделите ваш класс на группы по три или четыре человека. В зависимости от количества групп, сделайте несколько разных наборов карточек. Начинайте каждый набор с карточки, на которой есть проблема. Напишите ответ на проблему на следующей карточке, а другую задачу на обратной стороне. Продолжайте, пока не получите три или четыре набора задач (или больше).
Начиная с первой карточки, каждая группа должна решить задачу и найти правильный ответ где-нибудь еще в классе .Найдя правильную карточку с ответами, они могут перевернуть ее и решить следующую задачу. Раздайте учащимся записки для решения и позвольте им начать поиск ответов. Какая бы команда ни финишировала первой, становится победителем!
4. Exponent Jeopardy
Каждый ученик любит классическую игру Jeopardy. Используя настраиваемый шаблон, замените мелочи вопросами, которые дают учащимся возможность попрактиковаться в умножении показателей, и разделите класс на две команды.
Вот несколько советов, которые помогут обеспечить бесперебойную работу игры:
- Если у вас большой класс, подумайте о том, чтобы разделить класс на несколько игр, чтобы у каждого ученика была возможность участвовать. Предложите учащимся сделать игру самостоятельно.Дайте им шаблон (или пусть более продвинутые ученики начнут с нуля) и попросите их сделать небольшую игру.
- Используйте его в качестве конечного упражнения перед тестом и сочетайте более важные вопросы с более сложными ответами
5. Рабочие листы для умножения показателей
Рабочие листы — это проверенный метод развития математики свободное владение определенным набором навыков. Они также могут быть индикатором понимания учащимся, когда используются как часть стратегии формирующего оценивания.Вот некоторые из наших фаворитов:
Если вы ищете рабочий лист, который охватывает больше, чем просто умножение степеней, ознакомьтесь с нашей таблицей правил экспонент (с ключом ответа).
Для чего-то более уникального, попробуйте это упражнение с умножением полиномов. Как и в обычном рабочем листе, в нем есть вопросы, на которые студенты должны ответить, но он также содержит «банк ответов» для студентов. Вырежьте сопутствующие полоски и перемешайте их. Попросите учащихся сопоставить ответы с правильным разделом на своем листе после решения уравнения и демонстрации своей работы.
Умножение степеней: давайте рассмотрим
Если ваши ученики помнят только три вещи, убедитесь, что это следующие концепции:
- Сложите степени при умножении, как основания
- Умножьте основания при умножении как экспоненты
- Показатели — это произведение многократного умножения
Если они помнят эти три правила, у них будет прочный фундамент, построенный еще до первого урока алгебры в средней школе.
Как всегда, делайте это медленно и убедитесь, что учащиеся понимают основы, прежде чем все усложняется. Это может показаться сложной идеей для преподавания, но придерживайтесь шагов и продвигайтесь в логическом порядке, чтобы увидеть, как знания ваших учеников растут.
Создайте или войдите в свою учетную запись учителя на Prodigy — бесплатной игровой платформе для обучения математике, которую легко использовать как преподавателям, так и ученикам. Он соответствует учебным планам англоязычных стран, его любят более миллиона учителей и 50 миллионов студентов.Зарегистрируйтесь сейчас
Умножение экспонентов — объяснение и примеры
Показатели степени — это степени или индексы. Показатель или степень обозначают, сколько раз число многократно умножается само на себя. Например, когда мы встречаем число, записанное как 5 3 , это просто означает, что 5 умножается само на себя три раза. Другими словами, 5 3 = 5 x 5 x 5 = 125.
Экспоненциальное выражение состоит из двух частей, а именно из основания, обозначенного как b, и экспоненты, обозначенного как n.Общая форма экспоненциального выражения: b n .
Как умножить экспоненты?
Умножение экспонент является важной частью математики более высокого уровня, однако многим ученикам сложно понять, как это сделать. Хотя выражения, включающие отрицательные и множественные показатели, кажутся сбивающими с толку.
В этой статье мы собираемся изучить умножение экспонент и, следовательно, это поможет вам чувствовать себя более комфортно при решении задач с показателями.
Умножение экспонент включает в себя следующие подтемы:
- Умножение показателей с одинаковым основанием
- Умножение показателей с разными основаниями
- Умножение отрицательных показателей
- Умножение дробей на показатели
- Умножение дробей на показатели
- Умножение дробных переменных с показателями
- Умножение квадратных корней на показатели
Умножение показателей с одинаковым основанием
При умножении показателей с одинаковым основанием показатели степени складываются.Правило умножения для сложения показателей, когда основания одинаковы, можно обобщить следующим образом: a n xa m = a n + m
Пример 1
- m⁵ × m³ = (m × m × м × м × м) × (м × м × м)
= м 5 + 3
= m⁸
- 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 3 4+ 3 = 3⁶
- (-3) ³ × (-3) ⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]
= (-3) 3 +4
= (-3) 7
- 5³ × 5⁶
= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)
= 5 3 + 6
= 5⁹
= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [(-7) × (-7) × (-7) × (-7 ) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].
= (-7) ²²
Умножение показателей степени с разными основаниями
При умножении двух переменных с разными основаниями, но одинаковыми показателями степени, мы просто умножаем основания и ставим один и тот же показатель степени. Это правило можно резюмировать следующим образом:
a n ⋅ b n = (a ⋅ b) n
Пример 2
- (x 3 ) * (y 3 ) = xxx * yyy = (xy) 3
- 3 2 x 4 2 = (3 x 4) 2 = 12 2 = 144
Если степень и основание различаются , затем каждое число вычисляется отдельно, а затем результаты умножаются.В этом случае формула имеет вид : a n ⋅ b m
Пример 3
- Как умножить отрицательные показатели?
Для чисел с одинаковым основанием и отрицательной степенью мы просто складываем степень. В общем: -n x -m = a — (n + m) = 1 / a n + m .
Пример 4
- 2 -3 x 2 -4 = 2 — (3 + 4) = 2 -7 = 1/2 7 = 1 / (2 х 2 х 2 х 2 х 2 х 2 х 2) = 1/128 = 0.0078125
Точно так же, если основания разные, а показатели одинаковы, мы сначала умножаем основания и используем показатель степени.
a -n xb -n = (a x b) -n
Пример 5
- 3 -2 x 4 -2 = (3 x 4) -2 = 12 -2 = 1/12 2 = 1 / (12⋅12) = 1/144 = 0,0069444
- Как умножить дроби на показатели?
При умножении дробей с одинаковым основанием мы складываем экспоненты.Например:
(a / b) n x (a / b) m = (a / b) n + m
Пример 6
- (4/3) 3 x (3/5) 3 = ((4/3) x (3/5)) 3 = (4/5) 3 = 0,8 3 = 0,8 x 0,8 x 8 = 0,512
- (4/3) 3 x (4/3) 2 = (4/3) 3 + 2 = (4/3) 5 = 4 5 /3 5 = 4,214
- (-1/4) -3 × (-1/4) -2
(-1/4) -3 × (-1/4) -2
= (4 / -1) 3 × (4 / -1) 2
= (-4) 3 × (-4) 2
= (-4) (3 + 2)
= ( -4) 5
= -4 5
= -1024. - (-2 / 7 ) -4 × (-5 / 7 ) 2
(-2 / 7 ) -4 × (-5 / 7 ) 2
= (7 / -2) 4 × (-5/7) 2
= (-7/2) 4 × (-5/7) 2
= (-7) 4 /2 4 × (-5) 2 /7 2
= {7 4 × (-5) 2 } / {2 4 × 7 2 }
= {7 2 × (-5) 2 } / 2 4
= [49 × (-5) × (-5)] / 16
= 1225/16
- Как умножить дробные показатели?
Общая формула для этого случая: a н / м ⋅ b н / м = (a ⋅ b) н / м
Пример 7
- 2 3 / 2 x 3 3/2 = (2⋅3) 3/2 = 6 3/2 = √ (6 3 ) = √216 = 14.7
Точно так же дробные показатели с одинаковыми основаниями, но разными показателями имеют общую формулу: a (n / m) xa (k / j) = a [(n / m) + (k / j)]
Пример 8
- 2 (3/2) x 2 (4/3) = 2 [(3/2) + (4/3)] = 7.127
- Как умножить квадратные корни на показатели?
Для показателей с одинаковым основанием можно сложить показатели:
(√a) n x (√a) m = a (n + m) / 2
Пример 9
- (√5) 2 x ( √ 5) 4 = 5 (2 + 4) / 2 = 5 6/2 = 5 3 = 125
- Умножение переменных на показатели
Для показателей с одинаковым основанием мы можем сложить показатели:
x n * x m = x n + m
Пример 10
- x 2 * x 3 = (x * x) ⋅ (x * x * x) = x 2 + 3 = x 5
- Длина прямоугольник равен квадрату его ширины.Если площадь этого прямоугольника равна 64 квадратным единицам, найдите длину прямоугольника.
- Свету требуется 5 × 10 2 секунд, чтобы пройти от Солнца до Земли. Если скорость света 3 × 10 8 м / с, каково расстояние между Солнцем и Землей?
Ответы
- 4 шт.
- 1,5 × 10 11 м
Умножение показателей — Как умножить показатели
Как умножать показатели.
Умножение показателей с одинаковым основанием
Для экспонент с одинаковым основанием мы должны добавить показатели:
a n ⋅ a m = a n + m
Пример:
2 3 ⋅ 2 4 = 2 3 + 4 = 2 7 = 2⋅2⋅2⋅2⋅2⋅2⋅2 = 128
Умножение показателей с разными основаниями
Если основания разные и показатели a и b совпадают, мы можем сначала умножить a и b:
a n ⋅ b n = ( a ⋅ b ) n
Пример:
3 2 ⋅ 4 2 = (3⋅4) 2 = 12 2 = 12⋅12 = 144
Когда основания и показатели различаются, мы должны вычислить каждую экспоненту, а затем умножить:
a n ⋅ b m
Пример:
3 2 ⋅ 4 3 = 9 ⋅ 64 = 576
Умножение отрицательной степени
Для экспонент с одинаковым основанием мы можем добавить показатели:
a -n ⋅ a -m = a — (n + m ) = 1 / а н + м
Пример:
2 -3 ⋅ 2 -4 = 2 — (3 + 4) = 2 -7 = 1/2 7 = 1 / (2⋅2⋅2⋅2⋅2⋅2 ⋅2) = 1/128 = 0.0078125
Если основания разные и показатели a и b совпадают, мы можем сначала умножить a и b:
a -n ⋅ b -n = ( a ⋅ b ) -n
Пример:
3 -2 ⋅ 4 -2 = (3⋅4) -2 = 12 -2 = 1/12 2 = 1 / (12⋅12) = 1/144 = 0,0069444
Когда основания и показатели различаются, мы должны вычислить каждую экспоненту, а затем умножить:
a -n ⋅ b -m
Пример:
3 -2 ⋅ 4 -3 = (1/9) ⋅ (1/64) = 1/576 = 0.0017361
Умножение дробей на показатели
Умножение дробей на экспоненты с одинаковым основанием дроби:
( a / b ) n ⋅ ( a / b ) m = ( a / b ) n + m
Пример:
(4/3) 3 ⋅ (4/3) 2 = (4/3) 3 + 2 = (4/3) 5 = 4 5 /3 5 = 4,214
Умножение дробей на показатели с одинаковым показателем:
( a / b ) n ⋅ ( c / d ) n = (( a / b ) ⋅ ( c / d )) n
Пример:
(4/3) 3 ⋅ (3/5) 3 = ((4/3) ⋅ (3/5)) 3 = (4/5) 3 = 0.8 3 = 0,8⋅0,8⋅0,8 = 0,512
Умножение дробей на показатели с разными основаниями и показателями:
( a / b ) n ⋅ ( c / d ) m
Пример:
(4/3) 3 ⋅ (1/2) 2 = 2,37 ⋅ 0,25 = 0,5925
Умножение дробных показателей
Умножение дробных показателей на одинаковые дробные показатели:
a н / м ⋅ b н / м = ( a ⋅ b ) н / м
Пример:
2 3/2 ⋅ 3 3/2 = (2⋅3) 3/2 = 6 3/2 = √ ( 6 3 ) = √ 216 = 14.7
Умножение дробных показателей с одинаковым основанием:
a ( n / m ) ⋅ a ( k / j ) = a [( n / m ) + ( k / j )]
Пример:
2 (3/2) ⋅ 2 (4/3) = 2 [(3/2) + (4/3)] = 7,127
Умножение дробных показателей на разные показатели и дроби:
a н / м ⋅ b к / дж
Пример:
2 3/2 ⋅ 2 4/3 = √ (2 3 ) ⋅ 3 √ (2 4 ) = 2.828 ⋅ 2,52 = 7,127
Умножение квадратного корня на показатель степени
Для экспонент с одинаковым основанием мы можем добавить показатели:
(√ a ) n ⋅ ( √a ) м = а ( п + м ) / 2
Пример:
(√5) 2 ⋅ ( √ 5) 4 = 5 (2 + 4) / 2 = 5 6/2 = 5 3 = 125
Умножение переменных на показатели
Для экспонент с одинаковым основанием мы можем добавить показатели:
x n ⋅ x м = x n + m
Пример:
x 2 ⋅ x 3 = ( x⋅x ) ⋅ ( x⋅x⋅x ) = x 2 + 3 = x 5
См. Также
Умножениес показателями Рона Куртуса
SfC Home> Арифметика> Алгебра>
Рона Куртуса (от 8 июля 2019 г.)
Когда вы умножаете экспоненциальные выражения , есть несколько простых правил, которым нужно следовать.Если у них одинаковая база, вы просто добавляете экспоненты.
Примечание : основание экспоненциального выражения x y равно x , а показатель степени равен y .
Это также верно для чисел и переменных с разными основаниями, но с одинаковым показателем степени. Вы можете применить правила, когда включены другие числа.
Это правило не применяется, если числа или переменные имеют разное основание и разную степень.
Вопросы, которые могут у вас возникнуть:
- Как вы умножаете экспоненты с одинаковым основанием?
- А как насчет разных оснований, но с одинаковым показателем степени?
- А как насчет других номеров?
- Когда правило не применяется?
Этот урок ответит на эти вопросы.
Умножение показателей с одинаковым основанием
Когда вы умножаете две переменные или числа, у которых одинаковое основание , вы просто прибавляете показателей.
(x a ) * (x b ) = x a + b
Таким образом, x 3 * x 4 = x 3 + 4 = x 7 .
Доказательство: Поскольку x 3 = x * x * x и x 4 = x * x * x * x , то
(x * x * x) * (x * x * x * x) = x * x * x * x * x * x * x = x 7
Демонстрация с номерами
Демонстрация этого правила видна, когда вы умножаете 7 3 на 7 2 .Результат:
(7 * 7 * 7) * (7 * 7) =
7 * 7 * 7 * 7 * 7 = 7 5
Вместо того, чтобы записывать числа, вы можете просто сложить экспоненты:
7 3 * 7 2 = 7 3 + 2 = 7 5
Аналогично, 2 3 * 2 5 * 2 2 = 2 3 + 5 + 2 = 2 10 .
Вы можете видеть, что когда вы умножаете числа с одинаковым основанием в степени, вы прибавляете их показателей.
Разные основания, но одинаковая экспонента
Когда вы умножаете две переменные или числа или с разными основаниями , но с одинаковой степенью , вы можете просто умножить основания и использовать ту же экспоненту. Например:
(x a ) * (y a ) = (xy) a
Также:
(x 3 ) * (y 3 ) = xxx * yyy = (xy) 3
Аналогично с номерами:
3 2 * 4 2 = (3 * 4) 2 = 12 2 = 144
в т.ч. другие номера
Если у вас есть экспоненциальные числа, которые умножаются на другие числа, вы можете легко выполнить арифметику.Например, упростить:
(12 * 7 5 ) * (2 * 7 3 )
Переставьте числа:
(12 * 2) * (7 5 * 7 3 )
Затем сложите экспоненты:
24 * 7 8
Другие числа или переменные также могут быть экспонентами. Некоторые примеры включают:
(3 3 * 5 2 ) * (5 3 * 3 3 ) = (3 3 + 3 ) * (5 2 + 3 ) = 3 6 * 5 5
(7 * x 3 ) * (y 2 * x 5 ) = 7y 2 x 8
(a 3 * b 3 ) * (b 6 * a 5 ) = a 8 b 9
Когда правило не применяется
Когда вы умножаете выражения с разными основаниями и разными показателями , нет правила, упрощающего процесс.
Например, предположим, что вы хотите умножить 2 3 * 5 2 .
Вы можете видеть, что 2 3 = 8 и 5 2 = 25 . Таким образом, 8 * 25 = 200 . Но если вы попробуете (2 * 5) 3 + 2 , вы получите 10 5 , что неверно.
Сводка
Когда вы умножаете два числа или переменных с одинаковым основанием, вы просто складываете экспоненты. Когда вы умножаете выражения с одинаковой степенью, но с разными основаниями, вы умножаете основания и используете одну и ту же экспоненту.
Когда вы включаете в умножение другие числа или переменные, вы просто разбиваете их на несколько умножений, например (x * 10 5 ) * (x * 10 3 ) = x 2 * 10 8 .
Когда вы умножаете выражения с разными основаниями и разными показателями, нет правила, упрощающего процесс.
Всегда старайся
Ресурсы и ссылки
Полномочия Рона Куртуса
Сайтов
Показатели: основные правила — PurpleMath.com
Правила экспонент — RapidTables.com
Законы экспонент — MathisFun.com
Калькулятор экспонент — CalculatorSoup.com
Ресурсы по алгебре
Книги
(Примечание: Школа чемпионов может получать комиссионные от покупки книг)
Лучшие книги по алгебре
Вопросы и комментарии
Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.
Поделиться страницей
Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:
Студенты и исследователи
Веб-адрес этой страницы:
www.school-for-champions.com/algebra/
exponents_multiplication.htm
Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.
Авторские права © Ограничения
Где ты сейчас?
Школа чемпионов
Темы по алгебре
Умножение на экспоненты
Отрицательные экспоненты: правила умножения и деления
Обновлено 14 ноября 2020 г.
Крис Дезил
Если вы какое-то время занимались математикой, вы, вероятно, встречали экспоненты.Показатель степени — это число, которое называется основанием, за которым следует другое число, обычно записываемое надстрочным индексом. Второе число — это показатель степени или степень. Он сообщает вам, сколько раз нужно умножить базу на себя. Например, 8 2 означает умножение 8 на себя дважды, чтобы получить 16, а 10 3 означает 10 × 10 × 10 = 1000. Когда у вас есть отрицательные показатели, правило отрицательной экспоненты требует, чтобы вместо умножения основания указанное количество раз вы делите основание на 1 такое количество раз.8
Чтобы понять, почему это так, обратите внимание, что x 5 означает ( x × x × x × x × x ) И x 3 означает ( x x x x x ). Когда вы умножаете эти члены, вы получаете ( x × x × x × x × x × x × x × x ) = x 8 .5} {x}
Дробные экспоненты: правила умножения и деления
Обновлено 8 декабря 2020 г.
Ли Джонсон
Обучение работе с показателями степени является неотъемлемой частью любого математического образования, но, к счастью, правила умножения и их деление соответствует правилам для недробных показателей. Первым шагом к пониманию того, как обращаться с дробными показателями, является краткое изложение того, что они собой представляют, а затем вы можете посмотреть, как можно комбинировать показатели, когда они умножаются или делятся и имеют одинаковое основание.