Подобие треугольников — это… Что такое Подобие треугольников?
Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.
Признаки подобия треугольников
Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.
Первый признак
Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. |
То есть
Дано: и
Доказать:
Доказательство
- 1)По условию по теореме о сумме углов треугольника.
- Согласно условию, по теореме об отношении площадей треугольников, имеющих по равному углу; но по той же причине, так как ; следовательно, . Аналогично используя равенства и , получаем, что .
- Итак, в рассматриваемых треугольниках все их углы соответственно равны, и сходственные стороны пропорциональны, то есть эти треугольники являются подобными по определению, ч.т.д.
Второй признак
Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны. |
Дано: и Доказать:
Доказательство
Третий признак
Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны. |
Дано: ∆ABC и ∆A1B1C1, = = .
Доказать: ∆ABC ∆A1B1C1.
Доказательство
Признаки подобия прямоугольных треугольников
- По острому углу — см. первый признак;
- По двум катетам — см. второй признак;
- По катету и гипотенузе — см. третий признак.
Свойства подобных треугольников
Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:
Связанные определения
- Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
- Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.
![]() | В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 26 декабря 2012. |
Литература
- Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.: ил.
См. также
Ссылки
Признаки подобия треугольников — это… Что такое Признаки подобия треугольников?
- Признаки подобия треугольников
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого.
Признаки подобия треугольников
Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.
Первый признак
Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1, ∠B=∠B1.Доказать: ∆ABC
.∆A1B1C1
Доказательство
Второй признак
Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны.
Дано: ∆ABC и ∆A1B1C1, ∠A=∠A1,=
.
Доказать: ∆ABC
∆A1B1C1.
Доказательство
Третий признак
Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.
Дано=
=
.
Доказать: ∆ABC
∆A1B1C1.
Доказательство
Признаки подобия прямоугольных треугольников
- По острому углу — см. первый признак;
- По двум катетам — см. второй признак;
- По катету и гипотенузе — см. второй признак.
Свойства подобных треугольников
Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:
Связанные определения
- Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
- Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.
Литература
- Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.: ил.
См. также
Ссылки
Wikimedia Foundation. 2010.
- Признак Абеля
- Признание: Два лица зла (фильм)
Смотреть что такое «Признаки подобия треугольников» в других словарях:
Признаки равенства треугольников — Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия
Подобие треугольников
— Признаки подобия треугольников геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … ВикипедияПреобразование подобия — Подобие преобразование евклидова пространства, при котором для любых двух точек A, B и их образов A , B имеет место соотношение | A B | = k | AB | , где k положительное число, называемое коэффициентом подобия. Содержание 1 Примеры 2 Связанны … Википедия
Подобные треугольники — Подобные треугольники треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … Википедия
Треугольник — У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия
Подобие — У этого термина существуют и другие значения, см. Подобие (значения). Подобие преобразование евклидова пространства, при котором для любых двух точек , и их образов , имеет место соотношение , где положительное число, называемое… … Википедия
Подобные фигуры — Подобие преобразование евклидова пространства, при котором для любых двух точек A, B и их образов A , B имеет место соотношение | A B | = k | AB | , где k положительное число, называемое коэффициентом подобия. Содержание 1 Примеры 2 Связанны … Википедия
подобие — я; ср. 1. Пренебр. Нечто похожее, сходное с чем л. Жалкое п. старинного полонеза. П. человеческой фигуры. Не Гамлет, а его бесконечные подобия. Лепить по своему подобию (влияя на кого л., воспитывая кого л., делать его похожим на себя). 2. Матем … Энциклопедический словарь
Площадь треугольника — Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия
подобие — я; ср. 1) пренебр. Нечто похожее, сходное с чем л. Жалкое подо/бие старинного полонеза. Подо/бие человеческой фигуры. Не Гамлет, а его бесконечные подобия. Лепить по своему подобию (влияя на кого л., воспитывая кого л., делать его похожим на… … Словарь многих выражений
partners.academic.ru
Подобные треугольники | Математика
В двух треугольниках, имеющих равные углы, стороны, лежащие против одинаковых углов, называются сходственными (соответственными).
В треугольниках ABC и DEF (черт. 152), в которых
∠A = ∠D, ∠B = ∠E, ∠C = ∠F
стороны AB и DE, BC и EF, AC и DF, лежащие против равных углов C и F, A и D, B и E будут соответственными сторонами.
Определение подобных треугольников. Подобными называются такие два треугольника, у которых углы равны и сходственные стороны пропорциональны.
Если в двух треугольниках (черт. 152) ABC и DEF углы равны
∠A = ∠D, ∠B = ∠E, ∠C = ∠F
и соответственные стороны пропорциональны
AB/DE = AC/DF = BC/EF
то треугольники называются подобными.
Подобие обычно выражают знаком ∼.
Подобие двух треугольников изображают письменно:
ABC ∼ DEF.
Случаи подобия треугольников
Теорема 89. (Первый случай подобия.)
Дано. В треугольниках ABC и DEF углы равны (черт. 153).
∠A = ∠D, ∠B = ∠E, ∠C = ∠F
Требуется доказать, что они подобны. Для этого нужно доказать, что их стороны пропорциональны, т. е. удовлетворяют отношениям:
AB/DE = AC/DF = BC/EF
Доказательство. Наложим треугольник DEF на ABC так, чтобы вершина E совпала с вершиной B, сторона ED со стороной AB. По равенству углов B и E сторона EF пойдет по стороне BC. Положим, точка D упадет в D’, а точка F в E’. Треугольник D’BE’ равен треугольнику DEF, следовательно,
∠D’ = ∠D, ∠D = ∠A
откуда
∠D’ = ∠A.
Если соответственные углы равны, то D’E || AC.
По теореме 86 имеют место равенства
AC/D’E’ = AB/BD’ = BC/BE’
Так как BD’ = ED, BE’ = EF, D’E’ = DF, то
AC/DF = AB/ED = BC/EF (ЧТД).
Теорема 90 (второй случай подобия). Два треугольника подобны, если они имеют по два равных угла.
Доказательство. Если в двух треугольниках ABC и DEF два угла равны (черт. 153).
A = D, B = E
то и третьи углы тоже равны, а в таком случае треугольники подобны (теорема 89).
Теорема 91 (третий случай подобия). Два треугольника подобны, если они имеют по равному углу, заключающемуся между пропорциональными сторонами.
Дано. В треугольниках ABC и DEF (черт. 153) углы B и E равны, и стороны, их содержащие, пропорциональны, т. е.
∠B = ∠E и AB/DE = BC/EF.
Требуется доказать, что треугольники подобны.
Доказательство. Совместим угол E с углом B, и отложим BD’ = ED, BE’ = EF, тогда ∆BD’E’ = ∆DEF, следовательно,
∠D’ = ∠D, ∠E’ = ∠F.
Так как имеет место пропорция
AB/BD’ = BC/BE’
то сторона D’E’ || AC (теорема 87).
Поэтому ∠D’ = ∠A, ∠C = ∠E’.
Следовательно,
∠A = ∠D, ∠C = ∠F, ∠B = ∠E
т. е. три угла одного равны трем углам другого треугольника.
В этом же случае треугольники ABC и DEF подобны (ЧТД).
Теорема 92 (четвертый случай подобия). Два треугольника подобны, если стороны одного пропорциональны сторонам другого.
Дано. В треугольниках ABC и abc (черт. 154) стороны пропорциональны:
AB/ab = BC/bc = AC/ac (1)
Требуется доказать, что у них углы равны, т. е.
A = a, B = b, C = c.
Доказательство. Отложим на стороне BA отрезок Ba’, равный ba, и проведем отрезок a’c’, параллельный AC, тогда будут иметь место отношения:
AB/Ba’ = BC/Bc’ = AC/a’c’
Так как Ba’ = ba, то рядом с этими имеют место отношения:
AB/ab = BC/Bc’ = AC/a’c’ (2)
Сопоставляя отношения (1) и (2), заключаем, что
Bc’ = bc, a’c’ = ac,
следовательно, два треугольника a’Bc’ и abc равны, откуда
∠B = ∠b, ∠Ba’c’ = ∠a, ∠Bc’a’ = ∠c
а так как
∠A = ∠a’, ∠C = ∠c’, то
B = b, A = a, C = c,
следовательно, углы двух треугольников ABC и abc равны (ЧТД).
Теорема 93 (пятый случай подобия). Два треугольника подобны, если стороны одного параллельны сторонам другого.
Доказательство. Здесь могут быть два случая:
1-й случай. Если углы двух треугольников с параллельными сторонами обращены в одну сторону. В таком случае в двух таких треугольниках ABC и abc (черт. 155) все углы одного соответственно равны углам другого, и, следовательно, треугольники подобны.
2-й случай. Когда углы с параллельными сторонами обращены в разные стороны. Так в треугольниках ABC и a’b’c’ стороны параллельны.
AB || a’b’, AC || a’c’, BC || b’c’.
Углы же между параллельными сторонами обращены в разные стороны.
В таком случае, продолжив стороны a’c’ и a’b’, откладываем на продолжении их части a’b» = a’b’ и a’c» = a’c’.
Треугольники a’b»c» и a’b’c’ равны. Треугольник a’b»c» подобен треугольнику ABC, ибо у него стороны параллельны и углы, направленные в одну сторону, равны, следовательно,
∆ABC ~ a’b»c», следовательно, ∆ABC ~ a’b’c’ и
AB/a’b’ = AC/a’c’ = BC/b’c’
Теорема 94 (шестой случай подобия). Два треугольника подобны, если стороны одного перпендикулярны к сторонам другого.
Даны два треугольника ABC и abc (черт. 156), стороны которых перпендикулярны:
ab ⊥ AB, ac ⊥ AC, bc ⊥ BC
Требуется доказать, что треугольники подобны.
Доказательство. Продолжим стороны ac и bc до пересечения их со сторонами AC и BC в точках n и p. Тогда в двух треугольниках mcn и mCp все углы равны, ибо
n = p как прямые
Углы при точке m равны как вертикальные,
а следовательно, и третьи углы равны ∠pCm = ∠mcn.
Так как
∠pCm = ∠ACB, ∠mcn = ∠acb
следовательно,
∠ACB = ∠acb
Подобным же образом можно доказать, что A = a, B = b, следовательно, треугольники ABC и abc подобны и имеет место пропорция
AB/ab = AC/ac = BC/bc
Подобие прямоугольных треугольников
Теорема 95. Два прямоугольных треугольника подобны, если они имеют по равному острому углу.
Дано. У прямоугольных треугольников ABC и abc (черт. 157) острые углы C и c равны.
Требуется доказать, что треугольники ABC и abc подобны.
Доказательство. Углы B и b равны как прямые, углы C и c равны по условию, следовательно, они подобны (теорема 90).
Теорема 96. Два прямоугольных треугольника подобны, если катет и гипотенуза одного пропорциональна катету и гипотенузе другого.
Дано. В прямоугольных треугольниках ABC и abc (черт. 157)
AC/ac = AB/ab (a)
Требуется доказать, что ∠A = ∠a, ∠C = ∠c.
Доказательство. Отложим на отрезке BA отрезок Bm, равный ba и из точки m проведем отрезок mn, параллельный ac, тогда имеет место пропорция:
AC/mn = AB/Bm (b)
Так как Bm = ab по построению, то, сравнивая две пропорции (a) и (b), заключаем, что ac = mn, следовательно, два прямоугольных треугольника Bmn и abc, имея по равному катету и равной гипотенузе, равны.
Действительно, у них Bm = ab, mn = ac. У равных треугольников и углы равны:
∠m = ∠a = ∠A и ∠n = ∠c = ∠C
следовательно, два треугольника ABC и abc подобны.
Теорема 97. В подобных треугольниках высоты пропорциональны сторонам.
Даны два подобных треугольника ABC и FED (черт. 158), следовательно,
∠A = ∠F, ∠B = ∠E, ∠C = ∠D и
AB/FE = BC/ED = AC/DF
и проведены высоты BH и Eh.
Требуется доказать, что AB/FE = BH/Eh.
Доказательство. Прямоугольные треугольники ABH и FEh подобны, ибо ∠A = ∠F по условию, ∠AHB = ∠FhE как прямые, следовательно,
AB/FE = BH/Eh (ЧТД).
Теорема 98. Прямая, разделяющая угол треугольника пополам, делит его противоположную сторону на части пропорциональные двум другим сторонам.
Дано. Отрезок BD делит угол B треугольника ABC пополам (черт. 159).
∠ABD = ∠DBC или ∠α = ∠β
Требуется доказать, что AB/BC = AD/DC.
Доказательство. Проведем из точки A отрезок AF параллельный BD до пересечения его с прямой BC в точке F. В треугольнике FBA
∠AFB = ∠β как соответственные углы,
∠FAB = ∠α как внутренние накрест-лежащие углы от пересечения параллельных AF и BD третьей прямой AB.
Так как ∠α = ∠β по условию, то
∠AFB = ∠FAB, т. е. треугольник FAB равнобедренный, поэтому FB = AB.
Из того, что AF || BD вытекает пропорция:
FB/BC = AD/DC
Заменяя FB равным отрезком AB, получим пропорцию:
AB/BC = AD/DC (ЧТД).
Теорема 99 (обратная 98). Прямая, проведенная из вершины треугольника и делящая противоположную сторону на части, пропорциональные двум другим сторонам, делит угол при вершине пополам.
Дано. В треугольнике ABC (черт. 159) прямая BD рассекает противоположную сторону так, что имеет место пропорция:
AB/BC = AD/DC (a)
Требуется доказать, что ∠α = ∠β.
Доказательство. Проведем отрезок AF параллельно BD, тогда из треугольника AFC вытекает пропорция:
FB/BC = AD/DC (b)
Сравнивая две пропорции (a) и (b), заключаем, что FB = AB, следовательно,
∠AFB = ∠FAB.
Так как ∠α = ∠FAB, ∠β = ∠AFB, то и
∠α = ∠β (ЧТД).
Отношения в прямоугольном треугольнике
Теорема 100. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, среднепропорционален между частями гипотенузы.
Дано. В треугольнике ABC угол ABC прямой (черт. 160) и BD ⊥ AC.
Требуется доказать, что AD/BD = BD/DC.
Доказательство. Треугольники ABD и BDC подобны, ибо углы при точке D равны как прямые; кроме того из равенств ∠A + ∠α = d, ∠α +∠β = d вытекает
A + α = α + β, или A = β, следовательно и C = α.
Из подобия треугольников ABD и BDC вытекает пропорция
AD/BD = BD/DC (ЧТД).
Примечание. Если составляют одно отношение из сторон одного треугольника, то другое отношение составляется из соответственных сторон другого треугольника. При этом рассуждают следующим образом: против стороны AD лежит угол α, которому в подобном треугольнике BCD равен угол C, а против него лежит сходственная сторона BD треугольника BCD и т. д.
Теорема 101. Каждый катет среднепропорционален между целой гипотенузой и отрезком, прилежащим катету.
Доказательство. a) Треугольники ABC и ABD (черт. 160) подобны, ибо ∠ABC = ∠ADB как прямые, ∠A общий, следовательно,
∠C = ∠α
Из подобия треугольников вытекает пропорция:
AD/AB = AB/AC (a)
b) Треугольники ABC и BCD подобны, ибо ∠ABC = ∠BDC как прямые, ∠C общий, следовательно,
∠A = ∠β, откуда
DC/BC = BC/AC (b)
Теорема 102. Квадрат гипотенузы равен сумме квадратов катетов.
Из предыдущих пропорций (a) и (b) вытекают равенства:
AB2 = AD · AC
BC2 = DC · AC
Складывая их, получим:
AB2 + BC2 = AD · AC + DC · AC или
AB2 + BC2 = AC (AD + DC) = AC · AC = AC2, т. е.
AC2 = AB2 + BC2
откуда
a) Гипотенуза равна корню квадратному из суммы квадратов катетов.
b) Катет равен корню квадратному из квадрата гипотенузы без квадрата другого катета.
Теорема 103. Диагональ квадрата несоизмерима с его стороной, или гипотенуза равнобедренного прямоугольного треугольника несоизмерима с катетом.
Дано. В квадрате ABCD проведена диагональ AC (черт. 161).
Требуется доказать, что отношение AC/AD есть величина несоизмеримая.
Доказательство. Станем сравнивать больший отрезок AC с меньшим BC по обыкновенным приемам нахождения общей меры, т. е. наложим меньший отрезок на больший, первый остаток на меньший и т. д.
a) Наложим отрезок BC на отрезок AC. Отложив отрезок AE, равный AB или BC, мы видим, что отрезок BC уложился один раз, ибо
AB + BC > AC.
Так как AB = BC, то 2BC > AC и BC > ½AC, следовательно, первый остаток EC < BC.
b) Наложим первый остаток EC на отрезок BC. Для этого из точки E восставим перпендикуляр EF и соединим точку F с A.
c) Треугольник FEC равнобедренный, ибо ∠EFC = ∠BAC как углы с перпендикулярными сторонами
∠BAC = ∠ECF, следовательно,
∠EFC = ∠ECF
На этом основании стороны EF и EC равны:
EF = EC (1)
Треугольники ABF и AEF равны, ибо они прямоугольны и у них
AF сторона общая
AB = AE по построению, следовательно,
BF = EF (2)
Таким образом из равенств (1) и (2) выходит, что
EC = EF = BF
Не трудно видеть, что первый остаток укладывается в отрезке BC не более двух раз. Отложив EC два раза на отрезке BC, найдем точку G и второй остаток GC. Таким образом, остаток после наложения сторон квадрата на диагональ укладывается в стороне квадрата не более двух раз.
d) Наложим второй остаток GC на первый EC.
В прямоугольном и равнобедренном треугольнике FEC соотношение между отрезками GC, FC и EC то же самое как и соотношение между данными отрезками EC, AC и BC в треугольнике ABC, ибо треугольник FEC прямоугольный и равнобедренный, следовательно, при дальнейшем наложении мы будем снова получать остаток. Продолжая так поступать, мы всегда будем получать остатки, поэтому общей меры мы никогда не получим, следовательно, отрезки AC и BC несоизмеримы.
Обозначив длину диагонали черед l, длину стороны квадрата через a, последовательные величины остатков через d1, d2 и т. д., т. е. положив
AC = l, BC = a, CE = d1, GC = d2 и т. д.
имеем равенства:
l = a + d1, a = 2d1 + d2, d1 = 2d2 + d3 и т. д.
откуда
l/a = 1 + d1/a
a/d1 = 2 + d2/d1 или d1/a = ½ + d2/d1
d1/d2 = 2 + d3/d2 или d2/d1 = ½ + d3/d2
следовательно,
l/a = 1 + ½ + ½ + …
Отношение между длинами l и a выражается бесконечной непрерывной дробью. Несоизмеримость впрочем прямо вытекает из выражения диагонали квадрата по катетам.
Действительно,
AC2 = AB2 + BC2.
Так как AB = BC, то AC2 = 2AB2, откуда AC = AB√2 и AC/AB = √2 величина несоизмеримая.
Соотношение между сторонами остроугольного и тупоугольного треугольника
Теорема 104. Квадрат стороны, лежащей против острого угла, равен сумме квадратов прочих двух сторон треугольника без удвоенного произведения основания на отрезок, заключающийся между вершиной острого угла и высотой.
Здесь могут быть два случая: 1) когда перпендикуляр, выражающий высоту, пойдет внутри и 2) когда он пойдет вне треугольника.
Первый случай. Перпендикуляр BD (черт. 162), опущенный из вершины B на основание AC треугольника ABC, пойдет внутри треугольника.
Требуется доказать, что AB2 = BC2 + AC2 — 2AC · DC.
Доказательство. Для прямоугольного треугольника ABD имеем равенство:
AB2 = BD2 + AD2 (a)
AD = AC — DC, AD2 = (AC — DC)2 = AC2 + DC2 — 2AC · DC
Из прямоугольного треугольника BDC имеем:
BD2 = BC2 — DC2
Вставляя величины BD2 и AD2 в равенство (a), получим:
AB2 = BC2 — DC2 + AC2 + DC2 — 2AC · DC, откуда
AB2 = BC2 + AC2 — 2AC · DC (ЧТД).
2-й случай. Перпендикуляр BD (черт. 163) лежит вне треугольника ABC.
Доказательство. Из прямоугольного треугольника ABD имеем:
AB2 = BD2 + DA2
Из прямоугольного треугольника BCD имеем:
BD2 = BC2 — CD2
следовательно,
AB2 = BC2 — CD2 + DA2.
Так как
DA = CD — AC
DA2 = (CD — AC)2 = CD2 + AC2 — 2CD · AC, то
AB2 = BC2 — CD2 + CD2 + AC2 — 2CD · AC, откуда
AB2 = BC2 + AC2 — 2CD · AC (ЧТД).
Теорема 105. Квадрат стороны, лежащей против тупого угла, равен сумме квадратов прочих двух сторон треугольника с удвоенным произведением основания на отрезок его от вершины тупого угла до высоты.
Дано. В тупоугольном треугольнике ABC отрезок CD (черт. 164) есть отрезок, лежащий между вершиной тупого угла и высотой.
Требуется доказать, что
AB2 = AC2 + BC2 + 2AC · CD
Доказательство. Из тупоугольного треугольника ABC имеем:
AB2 = BD2 + AD2 (a)
AD = AC + CD, AD2 = AC2 + CD2 + 2AC · CD
Из прямоугольного треугольника BCD вытекает, что
BD2 = BC2 — CD2
Заменяя AD2 и BD2 в равенстве (a), получим:
AB2 = BC2 — CD2 + AC2 + CD2 + 2AC · CD
откуда
AB2 = BC2 + AC2 + 2AC · CD (ЧТД).
Теорема 106. Сумма квадратов диагоналей равна сумме квадратов всех четырех сторон параллелограмма.
Дан параллелограмм ABCD (черт. 165) и проведены его диагонали AC и BD.
Требуется доказать, что
AC2 + BD2 = AB2 + BC2 + CD2 + AD2
Доказательство. Опустив перпендикуляры BE и CF, имеем из косоугольного треугольника ABD равенство:
BD2 = AB2 + AD2 — 2AD · AE (1)
Из тупоугольного треугольника ACD равенство:
AC2 = CD2 + AD2 + 2AD · DF (2)
Отрезки AE и DF равны, ибо прямоугольные треугольники ABE и DCF равны, так как они имеют по равному катету и равной гипотенузе.
Сложив равенства (1) и (2), имеем:
BD2 + AC2 = AB2 + AD2 + CD2 + AD2
Так как AD = BC, то
BD2 + AC2 = AB2 + BC2 + CD2 + AD2 (ЧТД).
Теорема 107. Сумма квадратов двух сторон треугольника равна сумме удвоенного квадрата отрезка, соединяющей вершину с серединой основания, с удвоенным квадратом половины основания.
Дано. Соединим вершину B с серединой основания D треугольника ABC так, что AD = DC (черт. 166).
Требуется доказать, что
AB2 + BC2 = 2AD2 + 2BD2
Доказательство. Проведем высоту BE.
Из прямоугольных треугольников ABE и BCE вытекают равенства:
AB2 = BE2 + AE2
BC2 = BE2 + CE2
Сложив их, находим:
AB2 + BC2 = 2BE2 + AE2 + CE2 (a)
Так как AE = AD + DE = CD + DE, CE = CD — DE, то
AE2 = (CD + DE)2 = CD2 + DE2 + 2CD · DE
CE2 = (CD — DE)2 = CD2 + DE2 — 2CD · DE
откуда
AE2 + CE2 = 2CD2 + 2DE2 (b)
Заменяя в равенстве (a) сумму AE2 + CE2 из равенства (b), имеем:
AB2 + BC2 = 2BE2 + 2CD2 + 2DE2.
Из прямоугольного треугольника BDE видно, что
BE2 = BD2 — DE2
следовательно
AB2 + BC2 = 2BD2 — 2DE2 + 2CD2 + 2DE2
откуда
AB2 + BC2 = 2BD2 + 2CD2 (ЧТД).
maths-public.ru
подобные треугольники — это… Что такое подобные треугольники?
- подобные треугольники
- мат. similar triangles
Большой англо-русский и русско-английский словарь. 2001.
- подобные тела
- подобные фигуры
Смотреть что такое «подобные треугольники» в других словарях:
Подобные треугольники — Подобные треугольники треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … Википедия
Признаки подобия треугольников — Подобные треугольники треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … Википедия
Теорема Пифагора — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия
Пифагора теорема — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия
ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера
ПОДОБНЫЙ — ПОДОБНЫЙ, подобная, подобное; подобен, подобна, подобно. 1. кому чему. Сходный, совершенно похожий. Происшествие, подобное этому, было в прошлом году. 2. Такой, этот (о котором говорится). «Где еще мыслимы подобные вещи?» Маяковский. Перечислить… … Толковый словарь Ушакова
Высота треугольника — У этого термина существуют и другие значения, см. Высота (значения). Высота в треугольниках различного типа Высота треугольника перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зав … Википедия
Теорема Наполеона — Теорема Наполеона утверждение евклидовой планиметрии о равносторонних треугольниках … Википедия
подо́бный — ая, ое; бен, бна, бно. 1. кому чему. Сходный с кем , чем л., похожий на кого , что л. [Белесова:] Если бы вы или кто нибудь из подобных вам людей навещали меня хоть изредка, мне было бы лучше, теплее на душе. А. Островский, Богатые невесты. Он… … Малый академический словарь
ПОДОБИЕ — ср. (доба, время, пора, срок, год, година: добрый, удобный, сдобный и пр.) сходство, согласие, одновидность, схожесть. И подобия нет подлинника. | Вещь сделанная по образцу или в подражанье; изображенье чего; образ чего либо. Иссеченное из камня… … Толковый словарь Даля
Мгновенный центр скоростей — Мгновенный центр скоростей при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело. Содержание 1 Положение… … Википедия
dic.academic.ru
Подобные треугольники | Треугольники
Два треугольника подобны, если об этом сказано в условии либо если это можно доказать по одному из признаков подобия треугольников.
Определение
Подобные треугольники — это треугольники, у которых углы равны, а стороны пропорциональны.
(или:
Два треугольника подобны, если между их точками можно установить взаимно-однозначное соответствие, при котором отношение расстояний между любыми парами соответствующих точек равно одной и той же постоянной k, k — коэффициент подобия).
Как и в случае равных треугольников, важно правильно называть подобные треугольники: равные углы должны находиться на соответствующих позициях.
Определение подобных треугольников предполагает выполнение шести пар равенств (равенство трёх пар углов и пропорциональность трёх пар сторон). Признаки подобия позволяют сократить число равенств до 2-3 (для прямоугольных треугольников — до 1-2).
Свойства подобных треугольников
1) Периметры подобных треугольников относятся как их соответствующие стороны:
2) Соответствующие линейные элементы подобных треугольников (медианы, высоты, биссектрисы и т.д.) относятся как их соответствующие стороны.
3) Площади подобных фигур относятся как квадраты их соответствующих линейных размеров:
www.treugolniki.ru
подобные треугольники — с английского на русский
Подобные треугольники — Подобные треугольники треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … Википедия
Признаки подобия треугольников — Подобные треугольники треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. Содержание 1 Признаки подобия треугольников 1.1 Первый признак … Википедия
Теорема Пифагора — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия
Пифагора теорема — Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия
ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера
ПОДОБНЫЙ — ПОДОБНЫЙ, подобная, подобное; подобен, подобна, подобно. 1. кому чему. Сходный, совершенно похожий. Происшествие, подобное этому, было в прошлом году. 2. Такой, этот (о котором говорится). «Где еще мыслимы подобные вещи?» Маяковский. Перечислить… … Толковый словарь Ушакова
Высота треугольника — У этого термина существуют и другие значения, см. Высота (значения). Высота в треугольниках различного типа Высота треугольника перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зав … Википедия
Теорема Наполеона — Теорема Наполеона утверждение евклидовой планиметрии о равносторонних треугольниках … Википедия
подо́бный — ая, ое; бен, бна, бно. 1. кому чему. Сходный с кем , чем л., похожий на кого , что л. [Белесова:] Если бы вы или кто нибудь из подобных вам людей навещали меня хоть изредка, мне было бы лучше, теплее на душе. А. Островский, Богатые невесты. Он… … Малый академический словарь
ПОДОБИЕ — ср. (доба, время, пора, срок, год, година: добрый, удобный, сдобный и пр.) сходство, согласие, одновидность, схожесть. И подобия нет подлинника. | Вещь сделанная по образцу или в подражанье; изображенье чего; образ чего либо. Иссеченное из камня… … Толковый словарь Даля
Мгновенный центр скоростей — Мгновенный центр скоростей при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело. Содержание 1 Положение… … Википедия
translate.academic.ru
Подобные треугольники, формулы и примеры
Определение и формулы подобных треугольников
ОПРЕДЕЛЕНИЕ Треугольники называются подобными, если у них равные углы и соответствующие стороны пропорциональны.Рис.1
Например, на рисунке 1 изображены треугольники и , у которых
По определению, эти треугольники подобные. Пишут: .
Число 2, которое равняется отношению соответствующих сторон, называют коэффициентом подобия.
Если и , то .
ЛЕММАЛемма (Про подобные треугольники). Прямая параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от данного треугольника ему подобный.
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |||
ru.solverbook.com