Действия с процентами – правила нахождения процентов от числа и нахождение процентного выражения числа от другого

Содержание

Внеклассный урок - Процент. Действия с процентами

Процент. Действия с процентами

Процент – это одна сотая часть целого.

1% = 1/100 = 0,01

 

1) Действия с процентами.

Нахождение процента от числа.

Формула

Пример

                          x% · a
                         ———
                           100

Найдем 20% от числа 250:

 

                                     20 · 250
                                   ————  =  50
                                        100

 

Нахождение числа по данному проценту.

Формула

Пример

                      100% · b
                      ————
                            x%

22 – это 40% какого-то числа. Какое это число?

                                               22 · 100%
                                               ————  =  55
                                                      40%

 

Нахождение процентного отношения.

Формула

Пример

                       a
                      — · 100%
                       b

          Сколько процентов от числа 90 составляет число 27?

                                       27
                                       — · 100% = 30%
                                       90

 

Увеличение на определенный процент.

Формула

Пример

                                  x%

                a · (1 +  ———)
                               100%

Увеличим число 290 на 40 процентов:

                   40
290 · (1 + ———) = 290 · (1 + 0,4) = 290 · 1,4 = 406
                  100

 

Уменьшение на определенный процент.

Формула

Пример

                                  x%
                a · (1 –  ———)
                               100%

Уменьшим число 290 на 40 процентов:

                               40
           290 · (1 – ———) = 290 · (1 – 0,4) = 290 · 0,6 = 174
                              100

 

2) Действия с процентами с помощью правила пропорции.

Можно совершать действия с процентами, применяя правило пропорции. «Рисуем» Z.

 

Нахождение процента от числа.

Пример:
Найдем 20% от числа 250.

Решение:

250 – это всё число, то есть 100%. Сколько же будет 20%? Делаем пропорцию:

100% —— 250
20% —— х

«Рисуем» букву Z, начиная от х:

х = 20 · 250 : 100 = 50

 

Нахождение числа по данному проценту.

Пример:
22 – это 40% какого-то числа. Какое это число?

Решение:
22 —— 40%
х —— 100%

х  =  100 · 22 : 40  =  55

 

Нахождение процентного отношения.

Пример:
Сколько процентов от числа 90 составляет число 27?
Решение:
90 —— 100%
27 —— х%

х  =  27 · 100 : 90 = 30%

 

Увеличение на определенный процент.

Пример:
Увеличим число 290 на 40 процентов.

Решение:
290 —— 100%
х   ——   140%

х = 140 · 290 : 100 = 406

 

Уменьшение на определенный процент.

Пример:
Уменьшим число 290 на 40 процентов.

Решение:
290 —— 100%
х   ——   60%

х = 60 · 290 : 100 = 174

Правила с процентами

Что такое процент? Формула процентов

Зачастую даются задания, да и в жизни нужно узнать, чему будет равно число, увеличенное на заданное количество процентов. К примеру, дано число Х. Нужно узнать, чему будет равно значение Х, если его увеличить, допустим, на 40%. Сначала нужно перевести 40% в дробное число (40/100). Итак, результатом увеличения числа Х станет: Х + 40% ∙ Х= ( 1+40 /

100) ∙ Х = 1,4 ∙ Х. Если вместо Х подставить любое число, возьмем, к примеру, 100, тогда все выражение будет равно: 1,4 ∙ Х = 1,4 ∙ 100 = 140.

В первую очередь нужно найти в численном виде количество людей и количество Наави. Так, 80% от 200 000 будет равняться 160 000. Столько представителей гуманоидной расы проживает на Виценции. Количество людей, соответственно, равняется 40 000. Из них 40%, то есть 16 000, обслуживают рудник. Значит, 24 000 людей занимаются добычей тетаниума.

Правила с процентами

Как видите, засада заключается в том, что проценты считаются каждый раз от новой цены. От последней. Так бывает практически всегда. Если в задаче на последовательное повышение-понижение величины открытым текстом не сказано, от чего считать проценты, надо считать их от последнего значения. И то, правда. Продавец откуда знает, сколько раз эта тетрадка дорожала-дешевела до него и сколько она стоила в самом начале…

Скорый поезд №205 «Красноярск — Анапа» сделал остановку на станции «Сызрань-город». Василий и Кирилл пошли в привокзальный магазинчик за мороженым для Лены и гамбургером для себя. Когда они купили всё необходимое, уборщица магазина сообщила, что их поезд уже поехал. Василий и Кирилл быстро-быстро побежали и успели заскочить в вагон. Вопрос: успел бы в этих условиях заскочить в вагон чемпион мира по бегу?
Считаем, что в обычных условиях чемпион мира бежит на 30% быстрее Василия и Кирилла. Однако, стремление догнать вагон (он был последний), угостить Лену мороженым и съесть гамбургер, увеличило их скорость на 20%. А мороженое с гамбургером в руках чемпиона и шлёпанцы на ногах уменьшили бы его скорость на 10%.

Как решать задачи на проценты

В классе учится 30 человек, из них 16 мальчиков. Вопрос, на сколько процентов мальчиков больше, чем девочек. Для начала необходимо сосчитать, какой процент составляют учащиеся мальчики, затем нужно узнать, сколько процентов девочек. А уж в конце найти разницу.

  1. Чтобы не запутаться в задачках на проценты, всегда будьте бдительны: переходите от конкретных величин к процентам и наоборот, если понадобится. Главное, никогда не путать одно с другим.
  2. Будьте внимательны, когда высчитываете проценты. Важно знать, от какой конкретной величину нужно считать. При последовательных изменениях величин процент вычисляется от последнего значения.
  3. Прежде, чем записать ответ еще раз прочитайте всю задачу, ведь может быть так, что вы нашли только промежуточный ответ, и вам необходимо выполнить еще одно или пару действий.

Как решать задачи на проценты в 6 классе

Определить вид задачи на проценты можно по записи ее условия. Если напротив 100% стоит число, то это — задача на нахождение процентов от числа. Если число напротив 100% неизвестно, то это — задача на нахождение числа по его процентам. Если же неизвестное значение стоит в колонке процентов, то это — задача на нахождение процентного отношения двух чисел.

Самый простой способ (но это на мой взгляд) — первоначальную цену можно обозначить, к примеру, а. Это 100%. После увеличения на 7% цена составила 107% от первоначальной, то есть 1,07а. После увеличения цены еще на 5% получим 1,05∙1,07а=1,1235а. Разница между новой и первоначальной ценой составляет 1,1235а-а=0,1235. Переводим десятичную дробь в проценты: 0,1235=12,35%. Здесь подробнее.

Другую задачу завтра посмотрю. Извините, засыпаю. Еще ошибусь где-либо, дети станут возмущаться: «Как вы смеете других учить, а сами ошибки делаете?»

Правила с процентами

Процент это один из интересных и часто применяемых на практике инструментов. Проценты частично или полностью применяются в любой науке, на любой работе и даже в повседневном общении. Человек, который хорошо разбирающийся в процентах, создаёт впечатление умного и образованного. В данном уроке мы узнаем, что такое процент и какие действия можно с ним выполнять.

Эта запись читается как «один процент». Она заменяет собой дробь . Также она заменяет собой десятичную дробь 0,01 потому что если перевести обычную дробь в десятичную дробь, то мы получим 0,01. Стало быть между этими тремя выражениями можно поставить знак равенства:

Что такое процент

Одним из базовых понятий математики является процент. Для того чтобы понять, что такое процент, достаточно разделить заданную целую величину на сто. Одна сотая часть будет одним процентом (обозначается 1%). Как в точных и экономических науках, так и в других сферах жизни проценты используются для обозначения долей по отношению к целому. При этом само целое обозначается как 100%. В некоторых случаях используется при сравнении двух величин: например, иногда стоимость товаров не сравнивается в денежных единицах, а оценивается, на сколько % цена одного товара больше или меньше цены другого. Термин также получил широкое распространение в банковском деле и в большинстве случаев используется в качестве синонима словосочетания «процентная ставка».

Существует обратное правило нахождения числа по его проценту. Для того чтобы получить результат по такой математической операции (второму из трёх базовых типов задач на процентные вычисления) необходимо указанное в условиях число разделить на заданную процентную величину, после чего полученный результат умножить на 100. При этом первым действием вычисляется количество единиц исходной величины в 1%, а вторым – в целом (то есть в 100%). Если количество % превышает 100, то полученный результат всегда будет меньше числового значения, заданного условиями задачи – и наоборот.

Правила с процентами

Решение. Вода составляет 76% от 35 кг. По правилу нахождения процентов от данного числа (чтобы найти проценты от данного числа нужно обратить проценты в десятичную или обыкновенную дробь, а затем умножить данное число на эту дробь

) получаем 0,76∙35=26,6 кг.

Решение. Потребуется найти число по его процентам. Применяем правило нахождения числа по его процентам (чтобы найти число по его процентам нужно обратить проценты в десятичную дробь, а затем разделить данное число на эту дробь). 1) 85%=0,85; 2) 5780:0,85=578000:85=6800 книг.

Вычисление процентов, или Повседневная математика

Вычисление процентов – несложная математическая операция, которая довольно часто встречается в повседневной жизни. Например, нужно посчитать, сколько человек экономит, используя дисконтную карту магазина или покупая товар на распродаже со скидкой, под какой процент берет кредит. Проценты можно посчитать при помощи калькулятора или пропорции, пригодится формула вычисления процентов и знание элементарных известных соотношений.

Вычисление процентов в школьной программе изучается классе в 5-м, если не раньше. Согласно определению, процент – это одна сотая часть числа. Термин появился в Древнем Риме и буквально переводится как «со ста». Первоначально идея вычислять проценты зародилась еще в Вавилоне. Параллельно в Древней Индии научились считать проценты при помощи пропорции.

Что такое процент? Как посчитать процент от числа? :: SYL.ru

Процент - это специальный математический знак, применяемый для обозначения относительных величин. Какова его история и как рассчитать процент от числа - об этом пойдет речь в статье.

как посчитать процент от числа

Процент - что это такое?

Процент - это понятие, которое используется в нескольких значениях и сферах деятельности:

  1. В математике: это одна сотая часть какого-либо числа, представленная в виде целого.
  2. В метрологии: это единица измерения, выраженная в сотых долях какой-либо величины.
  3. В экономике и банковском деле: величина дохода, получаемая субъектом финансовых отношений от каждой сотни денежных единиц.

Как мы видим, данное понятие используется в различных областях, а потому необходимо знать, как посчитать процент от числа.

Процент как единица измерения

Этот термин имеет латинское происхождение: "per cent" можно перевести как "на сотню". По сути, это одна сотая часть чего-то. В математике и информатике имеет свое обозначение - "%". То есть 10 килограмм от одной тонны (что составляет, как известно, 1000 кг) - это будет как раз 1 %. В школах понятие процента очень часто объясняют на примере пирога. Так, целый пирог - это единица (или 100 %). Если мы отрежем от него половину - то это будет 50 %, если четверть - то 25 % и так далее.

как рассчитать процент от числа

История процента

О процентах знали (и активно их применяли в качестве своеобразной системы исчисления) еще в древнеримском государстве. Тогда использовались дроби в качестве определения размера налога на товары (его величина составляла одну сотую).

Как свидетельствуют многочисленные источники, такая дробная система активно использовалась и позже, уже в Средние Века. С её помощью вычисляли размер процентных ставок, а также величину доходов и убытков. Начиная с 17 века эта система стала общестандартной для подобных исчислений. На территории нашей страны процентная система прижилась во времена великого реформатора Петра Первого. Однако можно утверждать, что она существовала и раньше в виде привязки денег (монет) к стандарту 1:100 (ведь русский рубль издавна и не случайно делился именно на 100 копеек).

Математический знак процента и история его происхождения

Как же возник этот математический знак, который обозначает "проценты" и известен сегодня во всем мире? Оказывается, история его происхождения очень любопытна, а возник он вследствие простой опечатки! Так, французский математик в 1685 году издает труд под названием "Руководство по коммерческой арифметике". При этом для обозначения процента он пользовался сокращением "cto". Когда же он отдал свою рукопись в печать, то человек, набиравший его текст, воспринял это сокращение как дробь и в книге напечатал его именно так: "0/0". Вот так и родился этот знак - в результате банальной опечатки наборщика! И очень быстро он стал популярным и узнаваемым по всей планете.

как вычислить процент от числа

Как вычислить процент от числа?

Каждый человек практически ежедневно может столкнуться с необходимостью произвести математическое действие с процентами. Как посчитать процент от числа правильно? Сделать это совсем несложно. К примеру, вам нужно определить величину, которая равняется 35 % от числа 1500. Для этого необходимо исходное число разделить на 100 и умножить полученный результат на 35. Получаем ответ: 525.

Как посчитать процент от числа с помощью калькулятора?

Если у вас есть калькулятор, то произвести такую математическую операцию тоже не составит труда. Так, в поле счетной машинки нужно ввести "1500", затем нажать "умножить", ввести "35" и в конце нажать специальную кнопку "%". В результате мы получим то же числовое значение: 525.

как посчитать процент от числа

Правила использования знака при компьютерном наборе

Этот знак используется исключительно вместе с цифрой. До 1982 года ГОСТом было принято не разрывать знак "%" и числовое значение, идущее перед ним. Однако потом правила набора изменились, теперь между числом и знаком процента нужно ставить так называемый неразрывный пробел. Это пробел, который не разрывает два соседних символа на разные строки документа. Исключением является лишь тот случай, когда знак применяется на письме для обозначения слова "процентный", или "процентная". Так, например, при написании фразы "5%-й раствор глюкозы" пробел между числом и знаком не ставится.

В заключение

Процент - это понятие, о котором знали еще древние римляне. Процентная система активно использовалась ими для различных экономических расчетов. Применяется она и в наши дни в разных науках и сферах деятельности общества. Надеемся, что наша статья помогла вам разобраться с тем, как посчитать процент от числа быстро и легко.

Процент — Википедия

Материал из Википедии — свободной энциклопедии

%

Проце́нт (нем. Prozent, от новолат. per centum «на сотню; сотая») — сотая часть; обозначается знаком «%»; используется для обозначения доли чего-либо по отношению к целому. Например, 17 % от 500 кг означает 17 частей по 5 кг каждая, то есть 85 кг. Справедливо также утверждение, что 200 % от 500 кг является 1000 кг, поскольку 1 % от 500 кг равен 5 кг, и 5 × 200 = 1000.

В Древнем Риме, задолго до существования десятичной системы счисления, вычисления часто производились с помощью дробей, которые были кратны 1/100. Например, Октавиан Август взимал налог в размере 1/100 на товары, реализовавшиеся на аукционе, это было известно как лат. centesima rerum venalium (сотая доля продаваемых вещей). Подобные расчёты были похожи на вычисление процентов.

При деноминации валюты в средние века вычисления со знаменателем 100 стали более привычными, а с конца XV века до начала XVI века данный метод расчёта стал повсеместно использоваться, судя по содержанию изученных материалов, содержащих арифметические вычисления. Во многих из этих материалов данный метод применялся для расчёта прибыли и убытка, процентных ставок, а также в «тройном правиле»[1]. В XVII веке данная форма вычислений стала стандартом для представления процентных ставок в сотых долях[2].

В России понятие процента впервые ввёл Пётр I. Но считается, что подобные вычисления начали применяться в Смутное время, как результат первой в мировой истории привязки чеканных монет 1 к 100, когда рубль сначала состоял из 10 гривенников, а позже из 100 копеек[источник не указан 1879 дней].

Соотношение процентов и десятичных дробей[править | править код]

  • 0 % = 0;
  • 0,07 % = 0,0007;
  • 45,1 % = 0,451;
  • 76,69 % = 0,7669;
  • 100 % = 1;
  • 146 % = 1,46;
  • 200 % = 2
  • 500 % = 5
  • «Работать за проценты» — работать за вознаграждение, исчисляемое в зависимости от прибыли или оборота.
  • «Процентщик» — человек, ссужающий деньги под большие проценты, ростовщик.

Изменения показателей, которые сами исчисляется в процентах, обычно выражают не в процентах от исходного показателя, а в так называемых «процентных пунктах», выражающих разность нового и старого значений показателя[3]. Например, если в некой стране индекс деловой активности вырос с 50 % до 51 %, то он изменился на 51 %−50 %50 %=150=0,02=2 %{\displaystyle {\frac {51~\%-50~\%}{50~\%}}={\frac {1}{50}}=0{,}02=2~\%}, а в процентных пунктах изменение составило 51 %−50 %=1 %{\displaystyle 51~\%-50~\%=1~\%}.

Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах. Если сравнение по разности вполне однозначно, то есть всегда можно найти, насколько одна величина больше или меньше другой, то для сравнения в процентах нужно указывать, относительно какой величины вычисляется процент. Такое указание, впрочем, необязательно в том случае, когда говорят, что одна величина больше другой на число процентов, превышающее 100. В этом случае остаётся только одна возможность вычисления процента, а именно деление разности на меньшее из двух чисел с последующим умножением результата на 100.

⛭
  • Плюс (+)
  • Минус ()
  • Знак умножения (· или ×)
  • Знак деления (: или /)
  • Обелюс (÷)
  • Знак корня ()
  • Факториал (!)
  • Знак интеграла ()
  • Набла ()
  • Знак равенства (=, , и др.)
  • Знаки неравенства (, >, < и др.)
  • Пропорциональность ()
  • Скобки (( ), [ ], ⌈ ⌉, ⌊ ⌋, { }, ⟨ ⟩)
  • Вертикальная черта (|)
  • Косая черта, слеш (/)
  • Обратная косая черта, бэкслеш (\)
  • Знак бесконечности ()
  • Знак градуса (°)
  • Штрих (, , , )
  • Звёздочка (*)
  • Процент (%)
  • Промилле ()
  • Тильда (~)
  • Карет (^)
  • Циркумфлекс (ˆ)
  • Плюс-минус (±)
  • Знак минус-плюс ()
  • Десятичный разделитель (, или .)
  • Символ конца доказательства ()

Как отнять проценты от числа: три эффективных способа

В жизни рано или поздно каждый столкнется с ситуацией, когда необходимо будет работать с процентами. Но, к сожалению, большинство людей не готовы к таким ситуациям. И данное действие вызывает затруднения. В этой статье будет рассказано, как отнять проценты от числа. Более того, разобраны будут различные способы решения задачи: от самого простого (с помощью программ) до одного из сложнейших (с помощью ручки и листка).

Отнимаем вручную

Сейчас мы узнаем, как отнять процент от числа с помощью ручки и листка. Действия, которые будут представлены ниже, изучает абсолютно каждый человек еще в школе. Но по какой-то из причин не каждый запомнил все манипуляции. Итак, что вам будет нужно, мы уже разобрались. Теперь расскажем, что необходимо делать. Чтобы было более понятно, рассматривать будем пример, беря за основу конкретные числа. Допустим, вы хотите отнять 10 процентов от числа 1000. Конечно, вполне возможно эти действия провернуть в уме, так как задача очень проста. Главное, понять саму суть решения.

В первую очередь вам необходимо записать пропорцию. Допустим, у вас есть две колонки с двумя рядами. Запомнить нужно одно: в левый столбец вписываются числа, а в правый - проценты. В левой колонке будет записано два значения - 1000 и X. Икс вписан потому, что именно он символизирует число, которое нужно будет найти. В правой колонке будут вписаны - 100% и 10%.

Теперь получается, что 100% - это число 1000, а 10% - X. Чтобы найти икс, нужно 1000 умножить на 10. Полученное значение делим на 100. Запомните: необходимый процент нужно всегда умножать на взятое число, после чего произведение следует поделить на 100%. Формула выглядит так: (1000*10)/100. На картинке будут наглядно изображены все формулы по работе с процентами.

как отнять проценты от числа

У нас получилось число 100. Именно оно и кроется под тем самым иксом. Теперь все, что остается сделать, это от 1000 отнять 100. Получается 900. Вот и все. Теперь вы знаете, как отнять проценты от числа с помощью ручки и тетради. Потренируйтесь самостоятельно. И со временем данные действия вы сможете совершать в уме. Ну а мы двигаемся дальше, рассказывая о других способах.

Отнимаем с помощью калькулятора Windows

Ясное дело: если под рукою есть компьютер, то мало кто захочет применить для подсчетов ручку и тетрадь. Проще воспользоваться техникой. Именно поэтому сейчас рассмотрим, как отнять проценты от числа с помощью калькулятора Windows. Однако стоит сделать небольшую ремарку: многие калькуляторы способны совершать эти действия. Но пример будет показан именно с использованием калькулятора Windows для большего понимания.

как отнять процент от числа в excel

Здесь все просто. И очень странно, что мало кто знает, как отнять проценты от числа в калькуляторе. Изначально откройте саму программу. Для этого войдите в меню "Пуск". Далее выберите "Все программы", после чего перейдите в папку "Стандартные" и выберите "Калькулятор".

Теперь все готово для того, чтобы приступить к решению. Оперировать будем теми же числами. У нас есть 1000. И от нее нужно отнять 10%. Все что нужно - ввести в калькулятор первое число (1000), далее нажать минус (-), после чего кликнуть на процент (%). Как только вы это сделали, вам сразу покажется выражение 1000-100. То есть калькулятор автоматически посчитал, сколько это 10% от 1000.

Теперь нажмите Enter или же равно (=). Ответ: 900. Как можно заметить, и первый, и второй способ привел к одному и тому же итогу. Поэтому решать только вам, каким способом пользоваться. Ну, а мы тем временем переходим к третьему, последнему варианту.

Отнимаем в Excel

Многие люди пользуются программой Excel. И бывают такие ситуации, когда жизненно необходимо быстро произвести расчет в этой программе. Именно поэтому сейчас разберемся, как отнять процент от числа в Excel. В программе это сделать очень просто, используя формулы. К примеру, у вас есть колонка со значениями. И вам нужно от них отнять 25%. Для этого выделите колонку рядом и в поле для формул впишите равно (=). После этого нажмите ЛКМ по ячейке с числом, далее ставим "-" (и опять кликаем на ячейку с числом, после этого вписываем - "*25%). У вас должно получиться, как на картинке.

как в эксель отнять процент от числа

Как можно заметить, эта все та же формула, что и приводилась в первый раз. После нажатия Enter вы получите ответ. Чтобы быстро отнять 25% ото всех чисел в колонке, достаточно лишь навести курсор на ответ, разместив его в нижнем правом углу, и протянуть вниз на нужное количество ячеек. Теперь вы знаете, как в "Эксель" отнять процент от числа.

Вывод

Напоследок хочется сказать лишь одно: как можно видеть из всего вышесказанного, во всех случаях используется лишь одна формула - (x*y)/100. И именно с ее помощью у нас и получилось решить задачу всеми тремя способами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *