Длина экватора эратосфен – полная история расчетов и интересные факты

полная история расчетов и интересные факты

Экватор в переводе с латыни означает "уравнивать". Принято считать, что экватор - это условная окружность, делящая земной шар на северное и южное полушария, и самая длинная окружность (или параллель) Земли, перпендикулярная ее оси вращения.

Экватор является отправной точкой для определения координат любого места на планете. Без него невозможно бы было определить точное положение в пространстве любых географических объектов или это было крайне затруднительно.

Всем давно известно, что если быть академически точным, то Земля на самом деле представляет собой не сферу, а геоид. Геоид — тело, по своим пропорциям напоминающее сферу, однако ей не являющееся. И действительно, в самой высокой точке планеты высота составляет 8 848 м (гора Эверест) и в самой низкой - 10 994 м (Марианская впадина) относительно уровня моря.

То есть если учитывать все перепады высот, то любой расчет вызовет массу проблем. Поэтому в международном сообществе для простоты расчетов нашу планету принято считать сферой. В том числе экватор считается окружностью, хоть и на самом деле ею не является.

Согласно международному стандарту WGS-84

радиус Земли составляет 6 378 137 м. Согласно другому стандарту IAU-1976 и IAU-2000 радиус Земли равен 6 378 140 м. Разница в три метра связана с разницей в подходах и способах расчета. Тем не менее, длина экватора составляет 40 075 км, какой бы из стандартов мы ни взяли, поскольку после вычисления длины окружности по формуле l=2πR разница будет только во втором знаке после запятой.

Геоид — тело, по своим пропорциям напоминающее сферу, однако ей не являющееся

История расчетов

Первые попытки подсчитать длину экватора были предприняты еще в Древней Греции Эратосфеном. Хотя, собственно, если брать известный на тот момент мир, он считал не экватор, а радиус Земли в районе Европы, который привязан к длине окружности через 2πR. В те времена еще не существовало научного понятия о Земле как планете.

Чтоб не вдаваться в подробности эксперимента, объясним его суть. Эратосфен определил, что в момент, когда в городе Сиена (ныне Асуан) Солнце находится в зените и освещает дно колодца, в этот же момент времени в Александрии оно "отстает" примерно на 7 градусов и не освещает дно колодца. Что, в свою очередь, примерно составляет 1/50 часть окружности. Теперь, зная расстояние от Сиены до Александрии (оно составляло около 5000 стадиев), можно было определить длину окружности.

Тем неожиданнее являются результаты расчетов. Эратосфен считал протяженность экватора в 252 000 стадиев. Но так как за свою жизнь он прожил и в Александрии (Египет) и в Афинах (Греция), историки и географы до сих пор не могут с уверенностью сказать, какими именно стадиями пользовался при расчетах Эратосфен. Если греческими, то по Эратосфену радиус составлял 7 082 км, если египетскими - 6 287 км. Какой бы результат вы ни взяли для своего времени, это был невероятно точный расчет радиуса.

Позже попытки рассчитать длину экватора были приняты многими европейскими учеными. Впервые о возможном усреднении радиуса для удобства вычислений при расчетах заговорил голландец Снеллиус. В XVII веке он предложил рассчитывать радиус без учета естественных преград. В XVIII веке Франция (первая из стран) перешла на метрическую систему измерения. Причем при расчете эталона длины французские ученые привязывались именно к радиусу Земли.

Расчет был привязан к длине математического маятника, полупериод колебания которого составляет одну секунду. Для своего времени идея была прорывная. Однако при путешествиях к южным широтам, французский картограф Жан Рише заметил, что период колебания увеличился. Причина была в том, что Земля представляет собой геоид и сила тяжести ближе к экватору падает.

Длина экватора по Эратосфену

Исследования в России

В Российской империи также проводились исследования по определению формы, длины и других параметров Земли. Пожалуй, самым крупным и важным из них был проект "Русской дуги" или "Дуги Струве" под руководством Фридриха Георга Вильгельма Струве (Василия Яковлевича Струве). Для проведения измерений было построено 265 триангуляционных пункта, представлявших собой 258 треугольников с общей стороной. Длина дуги составляла 2820 км, что является 1/14 окружности Земного шара. Дуга на тот момент проходила через территорию Норвегии, Швеции и Российской империи. Финансировалось исследование лично императором Александром I, а далее и Николаем I.

Данный проект был первым из измерений Земли, который точно определил ее форму и параметры. При измерении параметров Земли спутниковыми методами в XX веке погрешность измерений Струве составила 2 см.

В Советском Союзе геодезическая школа также предпринимала попытки расчета параметров эллипсоида Земли. В 1940 году благодаря работам А.Н. Изотова и Ф.Н. Красовского был рассчитан и принят как стандарт для геодезических работ в СССР эллипсоид Красовского, определяющий все основные параметры эллипсоида Земли. По Красовскому приняты следующие параметры:

  1. Малый радиус Земли (полярный радиус) составляет 6 356,863 км.
  2. Большой радиус (экваториальный) 6 378,245 км.
  3. Длина экватора составляет 40 075,696 км.
  4. Площадь поверхности Земли 510 083 058 км2.

Сколько километров составляет длина экватора

Интересные факты

Эти факты будет интересно знать:

  1. Длину в 40 075 км в среднем за два года проезжает автомобиль в России.
  2. Скорость вращения Земли на экваторе составляет 465 метров в секунду, что быстрее скорости звука. С этим связано предпочтение запуска космических кораблей ближе к экватору. При старте ракета уже движется со сверхзвуковой скоростью относительно Земли. Это значительно экономит топливо.
  3. Единственным ледником на экваторе является шапка вулкана Каямба в Эквадоре.
  4. При перемещении с полюса на экватор предметы и тела теряют 0,53% своей массы. Это связано с удалением от центра масс Земли.
  5. Еще ни одному путешественнику не удалось пройти вдоль земной части экватора.
  6. В Бразилии в городе Макапа есть футбольный стадион, посередине которого проходит линия экватора.

Видео

Массу полезной информации о Земле вы узнаете из этого видео.

liveposts.ru

Ответ: Результаты вычисления длины экватора Эратосфеном..?

Это было достаточно сложно.
От проезжих путешественников Эратосфен услышал о необычном явлении, которое они наблюдали в Сиене, городе, расположенном далеко к югу от Александрии. Путешественники рассказали, что в полдень первого дня лета — в самый тельный день в году — в Сиене исчезали тени. Солнце в это время стояло прямо над головой, лучи его падали на землю отвесно вниз. Внимательно вглядываясь в воду водоема, можно было рассмотреть отражение Солнца на дне. Эратосфен съездил в Сиену и убедился в этом сам. Вернувшись в Александрию, он обнаружил, что и в самый длительный день года в полдень стены мусейона продолжали отбрасывать тень на землю.
Основываясь на этом простом наблюдении, он смог вычислить окружность Земли. Вот как он это сделал.
Вычисления окружности Эратосфен знал, что из – за громадного расстояния от Земли до Солнца, лучи последнего достигают и Сиены и Александрии параллельными лучами. То есть лучи Солнца, падающие на землю в Александрии, параллельны лучам, падающим на землю в Сиене в то же время. Если бы Земля была плоской, то тени исчезали бы на ней повсеместно 21 июня. Но так как, рассуждал он, Земля искривлена, то в Александрии, удаленной от Сиены на 500 миль (1 миля равна 1,609 километра) к северу, местные стены и колонны наклонены по отношению к сиенским стенам и колон нам под некоторым углом.

Итак, в полдень первого дня лета Эратосфен измерил тень, отбрасываемую обелиском, стоявшим неподалеку от мусейона. Зная высоту обелиска, он смог легко вычислить длину линии, соединяющей вершину обелиска и конец тени. Получился воображаемый треугольник. После того как треугольник был «очерчен», оставалось, используя известные к тому времени правила геометрии, вычислить его углы. И Эратосфен их вычислил.
Он нашел, что угол отклонения обелиска от солнечного луча составляет чуть больше 7 градусов. Так как в Сиене вертикальные предметы не отбрасывали тени, то угол между ними и солнечным лучом составлял ноль градусов. Короче, никакого угла не было. Это означало, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Такой угол между городами — это 1/50 часть окружности. Всякая окружность содержит 360 градусов, земная окружность в этом смысле не исключение. Эратосфен умножил расстояние между Сиеной и Александрией — 500 миль — на 50 и получил значение окружности Земли. Оно оказалось равным 25 тысячам миль. Современные ученые, измерившие с помощью высококлассной техники окружность Земли, нашли ее равной 24 894 тысяч миль.

sky-travels.ru

«Как эратосфен определил размеры земли?» – Яндекс.Знатоки

Это было достаточно сложно.
От проезжих путешественников Эратосфен услышал о необычном явлении, которое они наблюдали в Сиене, городе, расположенном далеко к югу от Александрии. Путешественники рассказали, что в полдень первого дня лета — в самый тельный день в году — в Сиене исчезали тени. Солнце в это время стояло прямо над головой, лучи его падали на землю отвесно вниз. Внимательно вглядываясь в воду водоема, можно было рассмотреть отражение Солнца на дне. Эратосфен съездил в Сиену и убедился в этом сам. Вернувшись в Александрию, он обнаружил, что и в самый длительный день года в полдень стены мусейона продолжали отбрасывать тень на землю.
Основываясь на этом простом наблюдении, он смог вычислить окружность Земли. Вот как он это сделал.
Вычисления окружности Эратосфен знал, что из – за громадного расстояния от Земли до Солнца, лучи последнего достигают и Сиены и Александрии параллельными лучами. То есть лучи Солнца, падающие на землю в Александрии, параллельны лучам, падающим на землю в Сиене в то же время. Если бы Земля была плоской, то тени исчезали бы на ней повсеместно 21 июня. Но так как, рассуждал он, Земля искривлена, то в Александрии, удаленной от Сиены на 500 миль (1 миля равна 1,609 километра) к северу, местные стены и колонны наклонены по отношению к сиенским стенам и колон нам под некоторым углом.

Итак, в полдень первого дня лета Эратосфен измерил тень, отбрасываемую обелиском, стоявшим неподалеку от мусейона. Зная высоту обелиска, он смог легко вычислить длину линии, соединяющей вершину обелиска и конец тени. Получился воображаемый треугольник. После того как треугольник был «очерчен», оставалось, используя известные к тому времени правила геометрии, вычислить его углы. И Эратосфен их вычислил.
Он нашел, что угол отклонения обелиска от солнечного луча составляет чуть больше 7 градусов. Так как в Сиене вертикальные предметы не отбрасывали тени, то угол между ними и солнечным лучом составлял ноль градусов. Короче, никакого угла не было. Это означало, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Такой угол между городами — это 1/50 часть окружности. Всякая окружность содержит 360 градусов, земная окружность в этом смысле не исключение. Эратосфен умножил расстояние между Сиеной и Александрией — 500 миль — на 50 и получил значение окружности Земли. Оно оказалось равным 25 тысячам миль. Современные ученые, измерившие с помощью высококлассной техники окружность Земли, нашли ее равной 24 894 тысяч миль.

yandex.ru

Как измерили Землю и узнали ее форму | Архив

Теперь вы знаете, что в сказочной Вселенной наших далеких предков Земля даже не напоминала шар. Жители Древнего Вавилона представляли ее в виде острова в океане. Египтянам она виделась вытянутой с севера на юг долиной, в центре которой был Египет. А древние китайцы одно время изображали Землю в виде прямоугольника... Вы улыбаетесь, представляя себе такую Землю, но часто ли вы задумывались о том, как люди догадались, что Земля - не безграничная плоскость или диск, плавающий в океане? Когда я спрашивал об этом ребят, то одни говорили, что о шарообразности Земли люди узнали после первых кругосветных путешествий, а другие вспоминали, что при появлении из-за горизонта корабля мы сначала видим мачты, а потом палубу. Доказывают ли такие и некоторые подобные им примеры, что Земля - шар? Вряд ли. Ведь объехать можно и вокруг... чемодана, а верхние части корабля появлялись бы и в том случае, если бы Земля имела форму полушария или была похожа, скажем, на... бревно. Подумайте об этом и постарайтесь изобразить сказанное на своих рисунках. Тогда вы поймете: приведенные примеры свидетельствуют лишь о том, что

Земля изолирована в пространстве и, возможно, шарообразна.

Как же узнали, что Земля - шар? Помогла, как я уже вам рассказал, Луна, а точнее - лунные затмения, во время которых на Луне всегда видна круглая тень Земли. Устройте небольшой "театр теней": освещайте в темной комнате предметы разной формы (треугольник, тарелку, картофелину, мяч и т. д.) и замечайте, какая тень от них получается на экране или просто на стене. Убедитесь, что только мячик всегда образует на экране тень в виде круга. Итак, Луна помогла людям узнать, что Земля - это шар. К такому выводу ученые в Древней Греции (например, великий Аристотель) пришли еще в IV веке до нашей эры. Но еще очень долго "здравый смысл" человека не мог смириться с тем, что люди обитают на шаре. Даже представить себе не могли, как можно жить на "другой стороне" шара, ведь находящимся там "антиподам" пришлось бы все время ходить вниз головой... Но где бы ни находился человек на земном шаре, всюду брошенный вверх камень будет под действием силы притяжения Земли падать вниз, то есть на земную поверхность, а если бы было возможно, то и к центру Земли. На самом деле, людям, конечно, нигде, кроме цирков и спортивных залов, не приходится ходить вверх ногами и вниз головой. Они в любом месте Земли ходят нормально: земная поверхность у них под ногами, а небо над головой.

Около 250 года до нашей эры греческий ученый Эратосфен впервые довольно точно измерил земной шар. Эратосфен жил в Египте в городе Александрия. Он догадался сравнить высоту Солнца (или его угловое расстояние от точки над головой, зенита, которое так и называется - зенитное расстояние) в один и тот же момент времени в двух городах - Александрии (на севере Египта) и Сиене (ныне Асуан, на юге Египта). Эратосфену было известно, что в день летнего солнцестояния (22 июня) Солнце в полдень освещает дно глубоких колодцев. Следовательно, в это время Солнце находится в зените. Но в Александрии в этот момент Солнце не бывает в зените, а отстоит от него на 7,2°. Такой результат Эратосфен получил, изменяя зенитное расстояние Солнца с помощью своего несложного угломерного инструмента - скафиса. Это просто вертикальный шест - гномон, укрепленный на дне чаши (полусферы). Скафис устанавливают так, чтобы гномон принимал строго вертикальное положение (направлен в зенит) Освещенный солнцем шест отбрасывает тень на разделенную на градусы внутреннюю поверхность скафиса. Так вот в полдень 22 июня в Сиене гномон тень не отбрасывает (Солнце в зените, его зенитное расстояние равно 0°), а в Александрии тень от гномона, как видно по шкале скафиса, отмечала деление 7,2°. Во времена Эратосфена расстояние от Александрии до Сиена считали равным 5000 греческих стадий (примерно 800 км). Зная все это, Эратосфен сопоставил дугу в 7,2° со всей окружностью в 360° градусов, а расстояние 5000 стадий - со всей окружностью земного шара (обозначим ее буквой X) в километрах. Тогда из пропорции

получилось, что Х = 250 000 стадий, или примерно 40 000 км (представьте себе, это так и есть!).

Если вам известно, что длина окружности равна 2πR, где R - радиус окружности (а π ~ 3,14), зная длину окружности земного шара, легко найти его радиус (R):

Замечательно, что Эратосфену удалось очень точно измерить Землю (ведь и сегодня считают, что средний радиус Земли 6371 км!).

Но почему здесь упомянут средний радиус Земли, разве у шара не все радиусы одинаковы? Дело в том, что фигура Земли отличается от шара. Об этом ученые стали догадываться еще в XVIII веке, но какова в действительности Земля - сжата она у полюсов или у экватора - выяснить было трудно. Чтобы разобраться в этом, Французской академии наук пришлось снарядить две экспедиции. В 1735 году одна из них отправилась проводить астрономические и геодезические работы в Перу и занималась этим в экваториальном районе Земли около 10 лет, а другая, лапландская, трудилась в 1736-1737 годах вблизи Северного полярного круга. В результате выяснилось, что длина дуги одного градуса меридиана неодинакова у полюсов Земли и у ее экватора. Градус меридиана оказался у экватора длиннее, чем в высоких широтах (111,9 км и 110,6 км). Так может быть лишь в том случае, если Земля сжата у полюсов и представляет собой не шар, а тело, близкое по форме к сфероиду. У сфероида полярный радиус меньше экваториального (у земного сфероида полярный радиус короче экваториального почти на 21 км).

Полезно знать, что великий Исаак Ньютон (1643-1727) предвосхитил результаты экспедиций: он сделал правильный вывод о том, что Земля сжата, потому наша планета вращается вокруг оси. Вообще, чем быстрее вращается планета, тем больше должно быть ее сжатие. Поэтому, например, сжатие Юпитера больше, чем Земли (Юпитер успевает сделать оборот вокруг оси по отношению к звездам за 9 ч 50 мин, а Земля только за 23 ч 56 мин).

И еще. Истинная фигура Земли очень сложна и отличается не только от шара, но и от сфероида вращения. Правда, в данном случае речь идет о разнице не в километры, а ...метры! Подобным тщательным уточнением фигуры Земли ученые занимаются по сей день, используя для этой цели специально проводимые наблюдения с искусственных спутников Земли. Так что вполне возможно, что в решении задачи, за которую давным-давно взялся Эратосфен, когда-нибудь и вам придется принять участие. Это очень нужное людям дело.

Какой же лучше всего запомнить вам фигуру нашей планеты? Думаю, что пока достаточно, если вы будете представлять Землю в виде шара с надетым на него "дополнительным поясом", своего рода "нашлепкой" на область экватора. Такое искажение фигуры Земли, превращающее ее из шара в сфероид, имеет немалые последствия. В частности, из-за притяжения Луной "дополнительного пояса" земная ось примерно за 26 000 лет описывает в пространстве конус. Это движение земной оси называется прецессионным. В результате роль Полярной звезды, которая сейчас принадлежит α Малой Медведицы, поочередно играют некоторые другие звезды (ею в будущем станет, например, α Лиры - Вега). Кроме того, из-за такого (прецессионного) движения земной оси знаки Зодиака все больше и больше не совпадают с соответствующими созвездиями. Другими словами, через 2000 лет после эпохи Птолемея "знак Рака", например, уже не совпадает с "созвездием Рака" и т. д. Впрочем, современные астрологи стараются не обращать на это внимания...

Смотрите также:

aif.ru

Эратосфен - это... Что такое Эратосфен?

Эратосфе́н Кире́нский (Ἐρατοσθένης ὁ Κυρηναῖος; 276 год до н. э.—194 год до н. э.) — греческий математик, астроном, географ и поэт. Ученик Каллимаха, с 235 г. до н. э. — глава Александрийской библиотеки.

Биография

Сын Эглаоса, уроженец Кирены.

Начальное образование Эратосфен получил в Александрии под руководством своего учёного земляка Каллимаха. Другим учителем Эратосфена в Александрии был философ Лизний. Перебравшись затем в Афины, он так тесно сблизился со школой Платона, что обыкновенно называл себя платоником. Результатом изучения наук в этих двух центрах была энциклопедическая эрудиция Эратосфена; кроме сочинений по математическим наукам, он писал ещё трактаты «о добре и зле», о комедии и др. Из всех своих сочинений Эратосфен придавал особенное значение литературным и грамматическим, как это можно заключить из того, что он любил называть себя филологом.

Царь Птолемей III Эвергет после смерти Каллимаха вызвал Эратосфена из Афин и поручил ему заведование Александрийской библиотекой. Удалённый в старости от этой должности, Эратосфен впал в крайнюю нищету и, страдая болезнью глаз или даже совсем ослепнув, уморил себя голодом.

Отголоски призвания обширной учёности Эратосфена звучат и в прозвищах, которые он получил от современников. Называя его «бета», они, по предположению многих исследователей, желали выразить свой взгляд на него, как на второго Платона, или вообще как на учёного, который только потому занимает второе место, что первое должно быть удержано за предками. Другим прозвищем Эратосфена было «пентатл» — пятиборец.

В честь Эратосфена назван кратер на Луне.

Работы и сочинения Эратосфена

Работы по математике

Из сочинений Эратосфена по математике до нашего времени дошло только написанное к царю Птолемею письмо об удвоении куба. Это письмо сохранилось в комментарии Евтокия к трактату Архимеда О шаре и цилиндре. В письме содержатся некоторые исторические сведения о делийской задаче, а также описание прибора, изобретённого самим автором и известного под именем мезолябия.

Сведения о других математических сочинениях Эратосфена отличаются крайней неполнотой. Папп в двух местах своего Собрания называет сочинение Эратосфена О средних величинах, замечая при этом, что оно во всех своих предположениях стоит в связи с линейными местами.

О сочинении Эратосфена Платоник, посвящённом пропорциям, говорит Теон Смирнский. Возможно, что именно к Эратосфену восходит алгоритм «разворачивания всех рациональных отношений из отношения равенства», описанный Теоном Смирнским и Никомахом Герасским.

Отрывок из ещё одного сочинения Эратосфена приводит во Введении в арифметику Никомах Герасский. То же делает и Ямвлих в своём комментарии к этому сочинению Никомаха. Предмет этого отрывка состоит в изложении найденного Эратосфеном способа определения произвольного количества последовательных простых чисел (так называемое решето Эратосфена).

Работы по астрономии

Из сочинений Эратосфена по астрономии до нашего времени дошло только одно, Катастеризмы — перечисление созвездий и заключающихся в них звёзд, числом до 700. Определения положений этих звезд сочинение не даёт.

Для своих астрономических наблюдений Эратосфен установил под портиком здания Мусейона большие армиллярные сферы.

Эратосфен определил угловое расстояние от экватора до тропика: он нашёл его равным 11/83 от 180°.

Работы по геодезии и географии

В тесной связи с астрономией находится работа Эратосфена, состоящая в измерении длины земного меридиана. Краткое изложение этой работы известно нам по трактату Клеомеда «О круговращении небесного свода»:

Измерение Земли по Эратосфену

«Эратосфен говорит, что Сиена и Александрия лежат на одном меридиане. И поскольку меридианы в космосе являются большими кругами, такими же большими кругами обязательно будут и меридианы на Земле. И поскольку таков солнечный круг между Сиеной и Александрией, то и путь между ними на Земле с необходимостью идёт по большому кругу. Теперь он говорит, что Сиена лежит на круге летнего тропика. И если бы летнее солнцестояние в созвездии Рака происходило ровно в полдень, то солнечные часы в этот момент времени с необходимостью не отбрасывали бы тени, поскольку Солнце находилось бы точно в зените; дела и в самом деле обстоят таким образом в [полосе шириной] в 300 стадиев. А в Александрии в этот же час солнечные часы отбрасывают тень, поскольку этот город лежит к северу от Сиены. Эти города лежат на одним меридиане и на большом круге. На солнечных часах в Александрии проведём дугу, проходящую через конец тени гномона и основание гномона, и этот отрезок дуги произведёт большой круг на чаше, поскольку чаша солнечных часов расположена на большом круге. Далее, вообразим две прямые, опускающиеся под Землю от каждого гномона и встречающиеся в центре Земли. Солнечные часы в Сиене находятся отвесно под Солнцем, и воображаемая прямая проходит от Солнца через вершину гномона солнечных часов, производя одну прямую от Солнца до центра Земли. Вообразим ещё одну прямую, проведённую от конца тени гномона через вершину гномона к Солнцу на чаше в Александрии; и она будет параллельна уже названной прямой, поскольку уже сказано, что прямые от разных частей Солнца к разным частям Земли параллельны. Прямая, проведённая от центра Земли к гномону в Александрии, образует с этими параллельными равные накрестлежащие углы. Один из них — с вершиной в центре Земли, при встрече прямых, проведённых от солнечных часов к центру Земли, а другой — с вершиной на конце гномона в Александрии, при встрече с прямой, идущей от этого конца к концу его же тени от Солнца, там где эти прямые встречаются наверху. Первый угол опирается на дугу от конца тени гномона до его основания, а второй — на дугу с центром в центре Земли, проведённую от Сиены до Александрии. Эти дуги подобны между собой, поскольку на них опираются равные углы. И какое отношение имеет дуга на чаше к своему кругу, такое же отношение имеет и дуга от Сиены до Александрии [к своему кругу]. Но найдено, что на чаше она составляет пятидесятую часть своего круга. Поэтому и расстояние от Сиены до Александрии с необходимостью будет составлять пятидесятую часть большого круга Земли. Но оно равно 5.000 стадиев. Поэтому весь круг будет равен 250.000 стадиям. Таков метод Эратосфена.»

Карта Эратосфена

Позднее полученное Эратосфеном число было увеличено до 252000 стадиев. Определить, насколько эти оценки близки к реальности, трудно, поскольку неизвестно, каким именно стадием пользовался Эратосфен. Но если предположить что речь идёт о греческом (178 метров), то его радиус земли равнялся 7,082 км, если египетским (157,5), то 6,287 км. Современные измерения дают для усреднённого радиуса Земли величину 6,371 км. Что делает выше описанный расчёт выдающимся достижением и первым достаточно точным расчётом размеров нашей планеты.

В сравнительно больших отрывках дошло до настоящего времени сочинение Эратосфена о географии. В полном своём составе оно делилось, по свидетельству Страбона, на три книги. В первой автор дал критический обзор истории географии, от первого появления географических понятий у Гомера до своих непосредственных предшественников, то есть до историков и географов, воспользовавшихся походами Александра Македонского и их описаниями. Вторая книга излагает основы географии по взглядам самого автора. Предмет третьей книги составляет суша.

Другие работы Эратосфена

Эратосфен является основателем научной хронологии. В своих Хронографиях он пытался установить даты, связанные с историей Эллады, составил список победителей Олимпийских игр.

Сохранились отрывки из сочинения Эратосфена О древней комедии и из двух его поэм; в одной он вкладывает в уста Гермеса рассказ о строении неба, светил и гармонии сфер, в другой передаётся легенда об Эригоне, дочери Икара.

См. также

Издания и переводы

Литература

  • Античная география. М., 1953.
На иностранных языках
  • Aujac G. Eratosthène de Cyrène, le pionier de la geographie. – Paris: Édition du CTHS, 2001. – 224p.
  • Cameron McPhail. Reconstructing Eratosthenes' Map of the World: a Study in Source Analysis. A Thesis Submitted for the Degree of Master of Arts at the University of Otago. — Dunedin, New Zealand, 2011.
  • Dicks D.R. Eratosthenes // Dictionary of Scientific Biography. – Vol. IV. – New York: C. Schribner’s Sons, 1971. – P. 388–393.
  • Diller A. Geographical Latitudes in Eratosthenes, Hipparchus and Posidonius // Klio. – 1934. – Bd. 27. – Heft 3. – S. 258–269.
  • Dutka J. Eratosthenes' measurement of the Earth reconsidered. Archive for History of Exact Sciences, 46, 1993, p. 55-64.
  • Fischer I. Another look at Eratosthenes' and Posidonius' determinations of the Earth’s circumference. // Quarterly Journal of the Royal Astronomical Society. — Vol. 16. — 1975. — P. 152—167.
  • Fraser P. M. Ptolemaic Alexandria. – Oxford: Clarendon Press, 1972.
  • Geus K. Eratosthenes von Kyrene. Studien zur hellenistischen Kultur- und Wissenschaftgeschichte. – München: Verlag C.H. Beck, 2002. (Münchener Beiträge zur Papyrusforschung und antiken Rechtsgeschichte. – Bd. 92) – X, 412 S.
  • Goldstein B. R. Eratosthenes on the measurement of the Earth // Historia Mathematica. — Vol. 11. — 1984. — P. 411—416.
  • Rawlins D. Eratosthenes' geodesy unraveled: was there a high-accuracy Hellenistic astronomy, Isis, 73, 1982, p. 259—265.
  • Rawlins D. The Eratosthenes — Strabo Nile map. Is it the earliest surviving instance of spherical cartography? Did it supply the 5000 stades arc for Eratosthenes' experiment?, Arch. Hist. Exact Sci, 26 (3), 1982, p. 211—219.
  • Rawlins D. Eratothenes’s large earth and tiny universe. DIO, 14, 2008.
  • Shcheglov D.A. Ptolemy’s System of Seven Climata and Eratosthenes’ Geography // Geographia Antiqua. — Vol. 13. — 2004 (2006). — P. 21–37.
  • Shcheglov D.A. Eratosthenes’ Parallel of Rhodes and the History of the System of Climata // Klio. — Bd. 88. — 2006. — P. 351–359.
  • Thalamas A. La géographe d’Ératosthène. — Versailles, 1921.
  • Wolfer E.P. Eratosthenes von Kyrene als Mathematiker und Philosoph. — Groningen-Djakarta, 1954.

Ссылки

dic.academic.ru

В этот день греческий ученый Эратосфен Киренский впервые в мире вычислил радиус Земли - Русские Афины

Эратосфен Киренский (276 год до н.э.— 194 год до н.э.) — греческий математик, астроном, географ и поэт. С раннего возраста он жил в Александрии, здесь он и получил образование под руководством своего учёного земляка Каллимаха, стоявшего во главе александрийской библиотеки.

Неудовлетворенный познаниями, приобретёнными в Александрии, Эратосфен отправился в Афины, где так тесно сблизился со школой Платона, что обыкновенно называл себя платоником. Результатом изучения наук в этих обоих центрах древнегреческого просвещения была очень разносторонняя, почти энциклопедическая эрудиция Эратосфена; он писал, кроме сочинений по математике, астрономии, геодезии, географии и хронологии, ещё трактаты «о добре и зле», о комедии и др.

Царь Птолемей III Эвергет тотчас же после смерти Каллимаха вызвал Эратосфена из Афин и поручил ему заведование великой Александрийской библиотекой. Эрастофен — автор многих трудов по математике, астрономии, геодезии, географии.

Эратосфен определил угловое расстояние от экватора до тропика: он нашёл его равным 11/83 от 180°. Из сочинений Эратосфена по астрономии до нашего времени дошло только одно: «Катастеризмы» — перечисление созвездий и заключающихся в них звёзд, где указывается до 700 объектов. Определения положений этих звёзд сочинение не даёт. Для своих астрономических наблюдений Эратосфен установил под портиком здания Мусейона большие армиллярные сферы.

Начальное образование Эратосфен получил в Александрии под руководством своего учёного земляка Каллимаха. Другим учителем Эратосфена в Александрии был философ Лизний. Перебравшись затем в Афины, он так тесно сблизился со школой Платона, что обыкновенно называл себя платоником. Результатом изучения наук в этих двух центрах была энциклопедическая эрудиция Эратосфена; кроме сочинений по математическим наукам, он писал ещё трактаты «о добре и зле», о комедии и др. Из всех своих сочинений Эратосфен придавал особенное значение литературным и грамматическим, как это можно заключить из того, что он любил называть себя филологом.

В 245 году до н.э. царь Птолемей III Эвергет пригласил Эратосфена приехать из Афин чтобы работать в Александрийской библиотеке, где уже трудились его учитель Каллимах и Аполлоний Родосский. Эратосфен откликнулся на приглашение, в возрасте около тридцати лет он приехал в Александрию, где и остался до самой смерти. Через пять лет после приезда он сменил Аполлония Родосского на посту главы Александрийской библиотеки. Как глава библиотеки, Эратосфен занимался обучением детей монарха — будущего правителя Птолемея IV и его сестры (а впоследствии и жены) Арсинои.

В тесной связи с астрономией находится работа Эратосфена, состоящая в измерении длины земного меридиана. Краткое изложение этой работы известно нам по трактату Клеомеда «О круговращении небесного свода»:

 

Измерение Земли по Эратосфену

Эратосфен говорит, что Сиена и Александрия лежат на одном меридиане. И поскольку меридианы в космосе являются большими кругами, такими же большими кругами обязательно будут и меридианы на Земле. И поскольку таков солнечный круг между Сиеной и Александрией, то и путь между ними на Земле с необходимостью идёт по большому кругу. Теперь он говорит, что Сиена лежит на круге летнего тропика. И если бы летнее солнцестояние в созвездии Рака происходило ровно в полдень, то солнечные часы в этот момент времени с необходимостью не отбрасывали бы тени, поскольку Солнце находилось бы точно в зените; дела и в самом деле обстоят таким образом в [полосе шириной] в 300 стадиев. А в Александрии в этот же час солнечные часы отбрасывают тень, поскольку этот город лежит к северу от Сиены. Эти города лежат на одном меридиане и на большом круге. На солнечных часах в Александрии проведём дугу, проходящую через конец тени гномона и основание гномона, и этот отрезок дуги произведёт большой круг на чаше, поскольку чаша солнечных часов расположена на большом круге. Далее, вообразим две прямые, опускающиеся под Землю от каждого гномона и встречающиеся в центре Земли. Солнечные часы в Сиене находятся отвесно под Солнцем, и воображаемая прямая проходит от Солнца через вершину гномона солнечных часов, производя одну прямую от Солнца до центра Земли. Вообразим ещё одну прямую, проведённую от конца тени гномона через вершину гномона к Солнцу на чаше в Александрии; и она будет параллельна уже названной прямой, поскольку уже сказано, что прямые от разных частей Солнца к разным частям Земли параллельны. Прямая, проведённая от центра Земли к гномону в Александрии, образует с этими параллельными равные накрестлежащие углы. Один из них — с вершиной в центре Земли, при встрече прямых, проведённых от солнечных часов к центру Земли, а другой — с вершиной на конце гномона в Александрии, при встрече с прямой, идущей от этого конца к концу его же тени от Солнца, там где эти прямые встречаются наверху. Первый угол опирается на дугу от конца тени гномона до его основания, а второй — на дугу с центром в центре Земли, проведённую от Сиены до Александрии. Эти дуги подобны между собой, поскольку на них опираются равные углы. И какое отношение имеет дуга на чаше к своему кругу, такое же отношение имеет и дуга от Сиены до Александрии [к своему кругу]. Но найдено, что на чаше она составляет пятидесятую часть своего круга. Поэтому и расстояние от Сиены до Александрии с необходимостью будет составлять пятидесятую часть большого круга Земли. Но оно равно 5 000 стадиев. Поэтому весь круг будет равен 250 000 стадиям. Таков метод Эратосфена.


  Карта мира по Эратосфену (ок. 194 года до н. э.). Реконструкция XIX века

Позднее полученное Эратосфеном число было увеличено до 252 000 стадиев. Определить, насколько эти оценки близки к реальности, трудно, поскольку неизвестно, каким именно стадием пользовался Эратосфен. Но если предположить, что речь идёт о греческом (178 метров), то его радиус земли равнялся 7 082 км, если египетским (157,5), то 6 287 км. Современные измерения дают для усреднённого радиуса Земли величину 6 371 км, что делает вышеописанный расчёт выдающимся достижением и первым достаточно точным расчётом размеров нашей планеты.

Считается, что именно Эратосфен создал первую карту мира, которая давала примерное представление о взаимной удаленности городов и стран. Он утверждал, что точное отображение мира, даже в двух измерениях, зависит только от установления точных линейных размеров. Его великие достижения в области картографии сразу стали использоваться в качестве новой методики для построения карт с меридианами, и параллелями. Эти осевые линии были размещены на карту Земли из места своего происхождения — Родоса, и с тех пор мир стал разделен на сектора. Затем Эратосфен стал использовать эти участки земли для определения мест на карте.

В сравнительно больших отрывках дошло до настоящего времени сочинение Эратосфена о географии. В полном своём составе оно делилось, по свидетельству Страбона, на три книги. В первой автор дал критический обзор истории географии, от первого появления географических понятий у Гомера до своих непосредственных предшественников, то есть до историков и географов, воспользовавшихся походами Александра Македонского и их описаниями. Вторая книга излагает основы географии по взглядам самого автора. Предмет третьей книги составляет суша.

Эратосфена называют «отцом географии» за его заслуги в развитии географических идей, а также за то, что ему принадлежит и сам термин «география» (землеописание).

***

На посту главы библиотеки активно занимался её расширением и развитием, стремясь поддержать репутацию библиотеки в соперничестве с Пергамской библиотекой. По его просьбе александрийские портовые власти изымали все книги с приходящих кораблей для изучения и копирования. Эратосфен приобретал аутентичные копии трагедий великих греческих авторов — Эсхила, Софокла и Эврипида, а также учредил в библиотеке целый отдел, занимавшийся изучением творчества Гомера.

В старости у Эратосфена воспалились глаза, что, в дальнейшем, привело к слепоте. Невозможность читать и наблюдать за природой сильно угнетала его и в 194 год до н. э. он принял решение уморить себя голодом.

Отголоски призвания обширной учёности Эратосфена звучат и в прозвищах, которые он получил от современников. Называя его «бета», они, по предположению многих исследователей, желали выразить свой взгляд на него, как на второго Платона, или вообще как на учёного, который только потому занимает второе место, что первое должно быть удержано за предками. Другим прозвищем Эратосфена было «пентатлос» (греч. Πένταθλος) — пятиборец, т.е. всесторонне развитый человек, оно было ему дано за одарённость в самых разных областях знания.

В честь Эратосфена назван кратер на Луне, один из периодов геологической истории Луны, а также подводная гора в Средиземном море, близ Кипра.

rua.gr

Эратосфен Википедия

Эратосфе́н Кире́нский
др.-греч. Ἐρατοσθένης ὁ Κυρηναῖος
Eratosthenes.jpg
Дата рождения 276 до н. э.[1][2]
Место рождения Кирена
Дата смерти 194 до н. э.[2][3]
Место смерти Александрия
Научная сфера математика, астрономия, география, поэзия
Место работы глава Александрийской библиотеки
Альма-матер Александрия, школа Платона
Научный руководитель Каллимах из Кирены
Известные ученики Птолемей IV Филопатор
Известен как основатель научной хронологии, автор работ по измерению окружности Земли
Логотип Викитеки Произведения в Викитеке
Commons-logo.svg Медиафайлы на Викискладе

Эратосфе́н Кире́нский (др.-греч. Ἐρατοσθένης ὁ Κυρηναῖος; 276 год до н. э.—194 год до н. э.) — греческий математик, астроном, географ, филолог и поэт. Ученик Каллимаха, с 235 г. до н. э. — глава Александрийской библиотеки. Первый известный учёный, вычисливший размеры Земли.

Содержание

  • 1 Биография
  • 2 Работы и сочинения
    • 2.1 По математике
    • 2.2 По астрономии
    • 2.3 По геодезии и географии
    • 2.4 Литературные сочинения
    • 2.5 Прочие труды
  • 3 См. также
  • 4 Примечания
  • 5 Издания и переводы
  • 6 Литература
  • 7 Ссылки

Биография[ | ]

Сын Эглаоса, уроженец Кирены.

Начальное образование Эратосфен получил в Александрии под руководством своего учёного земляка

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *