Дроби со степенью – Возведение дроби в степень

Содержание

Возведение алгебраической дроби в степень: правило, примеры

Тема сводится  к тому, что нам необходимо производить умножение одинаковых дробей. Данная статья расскажет, какое необходимо использовать правило, чтобы верно возводить алгебраические дроби в  натуральную степень.

Правило возведения алгебраической дроби в степень, его доказательство

Перед тем, как начать возводить  в степень, необходимо углубить знания при помощи статьи  про степень с натуральным показателем, где имеется произведение одинаковых множителей, которые находятся в основании степени, причем их количество определено показателем. К примеру,  число 23=2·2·2=8.

При возведении в степень чаще всего используем правило. Для этого в отдельности возводят в степень числитель и отдельно знаменатель. Рассмотрим на примере 232=2232=49. Правило применимо для возведения дроби в натуральную степень.

При возведении алгебраической дроби в натуральную степень получаем новую, где числитель имеет степень исходной дроби, а знаменатель – степень знаменателя. Это все имеет вид abn=anbn , где а и b являются произвольными многочленами, b является ненулевым, а n натуральным числом.

Доказательство данного правила записывается в виде дроби, которую необходимо возвести в степень, основываясь на самом определении с натуральным показателем. Тогда получаем умножение дробей вида abn=ab·ab·…·ab=a·a·…·ab·b·…·b=anbn

Примеры, решения

Правило возведения алгебраической дроби в степень производится последовательно: сначала числитель , потом знаменатель. Когда в числителе и знаменателе имеется многочлен, тогда само задание сведется к возведению заданного многочлена в степень. После чего будет указана новая дробь, которая равна исходной.

Пример 1

Произвести возведение дроби x23·y·z3 в квадрат.

Решение

Необходимо зафиксировать степень x23·y·z32.  По правилу возведения алгебраической дроби в степень получаем равенство вида x23·y·z32=x223·y·z32 . Теперь необходимо произвести преобразование полученной дроби к виду алгебраической, выполняя возведение в степень. Тогда получим выражение вида

x223·

zaochnik.com

Возведение дроби в степень ☑️ правило, как возвести алгебраическую дробь в степень, калькулятор примеров, свойства дробных степеней, как решать примеры со степенью

Возведение дроби в степень

Понятие степени

Представления о степени сложились ещё во времена существования Древнего Египта. Впервые упоминание о её вычислении встречается в знаменитом учебнике по математике Диофанта Александрийского «Арифметика». В своих трудах он описывает понятие как некоторое количество единиц, из которых состоят любые числа, увеличивающиеся до бесконечности. Он выделяет:

  • квадраты, образующиеся при произведении чисел или цифр самих на себя;
  • кубы, получающиеся при умножении квадрата на сторону;
  • биквадраты, произведение квадрата на квадрат;
  • квадрато-кубы, возникающие при умножении квадратов на кубы;
  • бикубы, произведение кубов на самих себя.
Математик Рене Декарт.

Французский учёный Никола Шюке дополнил этот степенной ряд, введя отрицательный параметр. Современное же обозначение степени предложил Рене Декарт. В «Геометрии» он использовал верхний надстрочный знак для указания величины степени. Что интересно, квадрат математик продолжал обозначать как произведение чисел, то есть в виде n * n. И только потом Лейбниц настоял на универсальной записи для любого возведения в степень.

Под операцией возведения понимается бинарное действие, определяемое в результате умножения числа на себя. То есть справедлива следующая запись: di = d * d* d *… * dk, где k — число, обозначающее количество перемножаемых чисел, равное n. Например, 112 = 11 * 11 = 121. Степень, присущая числу, может быть отрицательной, рациональной, десятичной, вещественной и даже комплексной. Фактически получается, что для того, чтобы посчитать степень числа, его нужно умножить на себя столько раз, сколько указано в степенном показателе.

Но при этом существует нюанс возведения в нулевую степень. Любое число, вне зависимости от вида, в нулевой степени даст единицу. Например, (2/32)0 = 1, -1420 = 1. Выражение же ноль в нулевой степени не имеет смысла, поэтому ответ считается неопределённым.

Правило возведения дроби

В основе правила возведения дроби в степень лежит её определение с дробным показателем. Согласно ему, для решения задачи нужно отдельно возвести сначала числитель выражения, а затем знаменатель, не меняя занимаемые ими позиции. Например, дробь три шестых во второй степени будет равна: (3/6)

2 = 9/36. Используя свойства сокращения дробей, числитель и знаменатель можно разделить на девять. В итоге получится равенство: (3/6)2 = 1/4.

Доказать это правило можно выполнив элементарные алгебраические действия. Для рассмотренного примера, согласно правилу арифметики, сначала необходимо выполнить деление, а после возведение в степень. Так, три разделить на шесть будет равно: 3/6 = 1/2 = 0,5. Затем полученное число следует возвести в квадрат: 0,52 = 0,5 * 0,5 = 0,25. Найденный ответ можно переписать в виде дроби 1/4, которая при сравнении полностью совпадает с ранее вычисленной.

Утверждение справедливо для любого вида дроби с произвольной степенной функцией. Например, (11 / 14)3. Используя закон, можно записать следующее: (11 / 14)3 = 113 / 143 = (11 * 11 * 11) / (14 * 14 * 14) = 1331 / 2744. Эту дробь сократить, то есть упростить, нельзя. Если нужно получить численное значение, то следует просто разделить числитель на знаменатель: 1331 : 2744 = 0,485.

Правило возведения дроби

Чтобы убедиться в истинности правила, можно и тут выполнить проверку. Дробь три разделить на пять в степени три можно решить, выполнив сначала деление, а после полученное число возвести в кубическую степень: (11 / 14)3 = (0,78)3 = 0,78 * 0,78 * 0,78 = 0,485. Ответ идентичен предыдущему, что и следовало доказать.

Таким образом, алгоритм возведения будет следующим:

Показатель степени
  1. Выполнить арифметические действия в скобках, соблюдая первоочерёдность знаков.
  2. Упростить полученное выражение, которое необходимо возвести в степень.
  3. Числитель умножить на себя столько раз, сколько показывает определитель.
  4. Значение, стоящее в знаменателе, умножить на такое количество раз само на себя, которое показывает степень.
  5. Полученную дробь упростить или выполнить деление.

Если показатель степени небольшой, то возведение можно выполнить просто умножив дробь на саму себя необходимое число раз. Например, (2/32)3 = (2/32) * (2/32) *(2/32) = 1/4096. Алгоритм обыкновенного расчёта обычно не вызывает трудности, но часто приходиться иметь дело не только с обыкновенными дробями. При этом степень может быть даже отрицательной.

Но в любом случае нужно помнить, что если верхнюю и нижнюю часть дроби умножить или разделить на одно и то же число, то количественный показатель полученного выражения не изменится. Это важно, так как при возведении приходится часто выполнять преобразования.

Нулевая и отрицательная степень

Нулевая и отрицательная степень

При вычислении дроби, в показателе которой стоит ноль, исходят из свойств частного степеней с одинаковым основанием.

Так, согласно алгебраическим правилам, для простых чисел a и b, при условии, что a < b, справедливо выражение: ca / cb = ca — b. Тут нужно отметить, что основание не должно быть равным нулю, иначе получится недопустимое деление на ноль. Если a = b, то равенство можно переписать в виде: ca / cb = ca — a = c0. Так как c другой стороны частное ca / сa = 1, то можно утверждать, что с0 = 1.

Для нулевой степени такой подход использовать будет некорректно. При основании, которое равно нулю, применяя предыдущее равенство, можно записать, что ноль в степени a умноженный на ноль в степени ноль, равняется нулю с показателем a. То есть выражение может быт переписано как 0 = 0. Оно будет правильным при любом натуральном показателе, при этом не будет зависеть от того, чему равно выражение 0

0.

Ответ на 00 может быть любым. Поэтому для избежания путаницы считают, что решение записи 00 не имеет смысла, так же как и деление на ноль. Например, (12 / 34)0 = 120 / 340 = 1 / 1 = 1 или (-3 / 4)0 = 1, а вот для (0 / 23)0 ответ будет не определён.

Чтобы знать, как возвести дробь в отрицательную степень, нужно вспомнить свойство произведения с равными основаниями: ca * cb = ca+ b. Предположив, a = -b, при условии, что основание не равняется нулю, можно записать: c−a * ca = c

-a+a = a0 = 1. Несложно сделать вывод о том, что положительный и отрицательный показатель взаимно обратный. Отсюда выходит, что если число нужно возвести в отрицательную степень, то его можно представить в виде дроби: ca = 1 / ca.

Получается, что для минусового показателя ответ определяется дробью, при условии, что основание отлично от нуля и показатель — натуральное число. Фактически необходимо перевернуть дробь и возвести её по правилу, при этом знак показателя изменить на положительный. Например, (23 / 37)-2 = 1 / (11 / 37)2 = (37 / 22)2 или (1 / 5)-2 = (5 / 1)2 = 52 = 25.

Рациональный показатель

Рациональный показатель

В состав рациональных чисел входят все целые и дробные значения. По сути, ими называют значения, которые можно представить в виде обыкновенной или отрицательной дроби, как цифру ноль. При этом в числителе находится целое число, а в знаменателе – натуральное. Для того чтобы определить степень, нужно выяснить, что же представляет собой число с показателем в дробной форме.

Пусть имеется число n, которое необходимо возвести в степень a / b. Необходимо будет извлечь корень из n. Чтобы выражение соответствовало таблицам степени, должна выполняться формула: n(a / b) * b = na * b / b = na.

Используя полученное выражение, логично предположить, что ca / b = a√cb, но это лишь справедливо, когда показатель степени целый. Можно сделать вывод о том, что если выражение a√cb справедливо, что степенью числа c дробным показателем b / a является корень из c в степени b.

Если принять, что основание больше либо равно нулю, когда b является положительным числом, то буде справедливым равенство: сa / b = a√cb. При этом можно утверждать, что если основание будет равным нулю, то ответом будет тоже ноль: 0a / b = a√0b = 0.

Тут нужно оговориться, что для некоторых одночленов приведённое правило не работает. Например, для 3√ (-12 /3)2 или 4√ -122 оно верное, а для (-1 / 3)-2 / 3 или (-3 / 2)2 / 5 не имеет смысла, так как основание не может быть отрицательным. Поэтому вводится условие, по которому выражение a√ cb имеет смысл, при любых значениях неотрицательного основания.

Что же касается минусовой величины в показателе корней, оно в основании должно отличаться от нуля. Иными словами, если в любом уравнении или равенстве выражение a / b нельзя упростить (сократить), то a * i / b * I = ca i / b , причём степень можно заменить на ca / b.

Примеры решения

Для того чтобы понять и усвоить теорию, нужно попрактиковаться. Начинать необходимо с простых заданий, постепенно переходя к более сложным примерам. Возвести дробь в степень можно и на онлайн-калькуляторах, но желательно уметь выполнять это действие самостоятельно. Из наиболее типичных примеров, охватывающих все возможные ситуации, можно выделить следующие:

Возведение дроби с простым показателем
  1. Возведение дроби с простым показателем. Пусть дан многочлен (11 / 21)2 + (9 / 10)3 , необходимо вычислить ответ. Согласно правилу, сначала следует убрать скобки, а после выполнить сложение. Решение задания будет следующим: ( 11 * 11 ) / (21 * 21 ) + ( 9 * 9 * 9 ) / ( 10 * 10 * 10) = 121 / 441 + 729 / 100 = (121 * 1000) / (441 * 1000) + (729 * 441) / (1000 * 441) = 442489/441000.
  1. Решение смешанной дроби с отрицательным показателем. Определить ответ в задании вида: (2 11/12)-1 = ((2 * 12 + 11) / 12)-1 = (35 / 12)-1 = (12 / 35 )1 = 12 1 / 351 =12 / 35.
  1. Многоэтажные дроби . Решать их нужно после выполнения упрощения. Так, выражение вида 5 * (2 / 4) * (7 / 11 / 2))-2, решается следующим образом: 5 * (2 / 4 * (7 / 11 / 2))-2 = (((2 * 6 / 10 * 3)) / 3)-2 = (2 / 15)-2 = (15 / 2)2 = 152 / 22 = 225 / 4 = 56 1/4.
  1. Вычисление сложных уравнений. Определить верность выражения: (16 / 11)0 – (2 / 8)-1 + 4 *(-3 / 2)1/2 > e-3. Сначала следует раскрыть все скобки, а уже после выполнить алгебраические операции: (16 / 11 )0 – (2 / 8)-1 + 4 *(-3 / 2)2 = 1 – 8 / 2 + 4 * (9 / 4) = 1 – 4 + (-3 * (-3 ) ) / (4 * 4) = -3 + 9/16 = 9/16 – 3/1 = (9 * 1) / (16 * 1)) – (3 * 16) / (1 * 16) = 9 /16 – 48 /16 = (9 -48) / 16 = — 39 / 16 = — 2,43. Так как буквой e обозначают экспоненту, то e3 = 2,718-3 = 0,049. Отсюда можно сделать вывод, что знак в неравенстве неверный: -2,43 < 0,049

Таким образом, чтобы возвести в степень дробь необходимо знать: правило, свойства степеней, порядок выполнения арифметических операций. А также учитывать знак показателя и вид основания.

Расчёт на онлайн-калькуляторе

В сети существуют сервисы, автоматически выполняющие арифметические операции. Воспользоваться этими сайтами может каждый, имеющий доступ к интернету. Порталы предлагают свои услуги бесплатно. С их помощью можно находить функции, рассчитывать градусы и углы, решать уравнения и неравенства, вычислять дроби и степени.

Для решения дробей со степенями на онлайн-калькуляторах не нужно обладать какими-то особыми знаниями. Всё что требуется от пользователя — вести в предложенную форму задание и нажать кнопку «Рассчитать». Весь процесс вычисления занимает несколько секунд.

Расчёт на онлайн-калькуляторе

Полезной особенностью таких сайтов является и возможность обучиться правилам расчёта, узнать, как должны обозначаться те или иные операции и действия. Из различных калькуляторов можно выделить три наиболее популярных:

  1. Webmath.
  2. Onlinemschool.
  3. Сalc.by.

Сайты отличаются удобным и понятным интерфейсом. На их страницах содержится кратко изложенная теория, использующаяся для расчётов и типовые примеры.

nauka.club

Дробная степень числа

Дробный показатель

Число с дробным показателем степени равно корню с показателем, равным знаменателю, и подкоренным числом в степени, равной числителю.

Чтобы разобраться, почему число в дробной степени равно корню, надо вспомнить правило извлечения корня из степени:

Чтобы извлечь корень из степени, надо показатель степени разделить на показатель корня:

Следовательно, если показатель степени не делится на показатель корня, то получается дробная степень:

Поэтому извлечение корня всегда может быть заменено возведением в степень.

Действия над степенями с дробными показателями

Действия над степенями с дробными показателями совершаются по тем же правилам, которые установлены для степеней с целым показателем.

При доказательстве этого положения, будем сначала предполагать, что члены дробей: и , служащих показателями степеней, положительны.

В частном случае n или q могут равняться единице.

При умножении дробных степеней с одинаковыми основаниями их показатели складываются:


При делении дробных степеней с одинаковыми основаниями из показателя делимого вычитается показатель делителя:


Чтобы возвести степень в другую степень в случае дробных показателей, достаточно перемножить показатели степеней:


Чтобы извлечь корень из дробной степени, достаточно показатель степени разделить на показатель корня:

Правила действий применимы не только к положительным дробным показателям, но и к отрицательным.

naobumium.info

Возведение дроби в степень. Онлайн калькулятор

Данный калькулятор может возвести любую дробь в положительную, отрицательную и дробную степень и дать подробное решение. Если у дроби нет целой части оставьте это поле пустым, если дробь отрицательна, задайте ее знак при помощи кнопки (+/-). Чтобы записать дробную степень, воспользуйтесь знаком “/”, например, 3/5 или -3/5

Правила возведения дроби в степень

Чтобы возвести дробь в степень n, необходимо числитель и знаменатель дроби возвести в степень n. Например,

Чтобы возвести дробь в степень -n с отрицательным показателем, необходимо числитель и знаменатель дроби поменять местами, при этом знак степени заменить на противоположенный. Затем необходимо возвести в степень числитель и знаменатель дроби. Например,

Для того чтобы возвести дробь в степень с дробным показателем необходимо числитель и знаменатель дроби представить в виде подкоренного числа, возведенного в степень равную числителю степени и в качестве показателя корня записать знаменатель степени. Например,

Для того чтобы возвести дробь в степень с отрицательным дробным показателем необходимо числитель и знаменатель дроби поменять местами, при этом знак степени измениться на противоположенный. Затем числитель и знаменатель дроби представить в виде подкоренного числа, возведенного в степень равную числителю степени и в качестве показателя корня записать знаменатель степени. Например,

matematika-club.ru

С1 ГИА по математике — сокращение дробей.

2014-07-06 | Автор: Анна


Задания этого типа – совсем несложные, если вы знаете правила работы со степенями – то есть свойства степени. Если что-то оказалось подзабыто – ничего страшного, как раз и повторим.

Свойства степени:

1.          a^{0}=1

2.          a^n*a^m=a^{n+m}

3.          a^n/a^m=a^{n-m}

4.          (a/b)^n={a^n}/b^n

5.          (a/b)^{-n}={b^n}/a^n

6.          (a^n)^m=a^{n*m}

7.          (a*b)^n={a^n}*b^n

8.          a^{-n}=1/{a^n}

9.          a^{1/n}=root{n}{a} 

10.        a^{n/m}=root{m}{a^n} 

 

Примеры:

1. Сократите дробь: 6^12/{3^11*4^5}

Чтобы решить пример такого типа, надо разложить основания степеней на “кирпичики” – найти такие числа, которые присутствовали бы и в числителе, и в знаменателе, и представить все в виде степеней этих чисел. В данном случае это числа 2 и 3: 2*3=62^2=4.

Тогда:

2^12*3^12/{3^11*(2^2)^5}=2^12*3^12/{3^11*2^10}=2^{12-10}*3^{12-11}=2^2*3=12

Ответ: 12

2.  Сократите дробь:  20^5/{2^7*5^3}

Решение:

(4*5)^5/{2^7*5^3}=4^5*5^5/{2^7*5^3}=(2^2)^5*5^5/{2^7*5^3}=2^10*5^5/{2^7*5^3}=2^{10-7}*5^{5-3}=8*25=200

Ответ: 200

3.   Сократите дробь: 33^3/{9*11^2}

Решение:

3^3*11^3/{3^2*11^2}=3^{3-2}*11^{3-2}=3*11=33

Ответ: 33

Теперь разберем задание, в котором степени представлены в буквенном виде:

4.   Сократите дробь: 2^n*5^n/{10*10^n}

Решение:

(2*5)^n/{10*10^n}=10^n/{10*10^n}=1/10=0,1

Ответ: 0,1 (обязательно через запятую)

5.  Сократите дробь: 2^{2n}*6^n/{2^2*24^n}

В этом примере можно приводить все как к степени двойки, так и к степени четверки:

Решение:

4^n*6^n/{4*24^n}=(4*6)^n/{4*24^n}=24^n/4*24^n=1/4=0,25

Ответ: 0,25

6.  Сократите дробь: 100^{n+1}/{2^{2n+1}*25^{n+2}}

Сначала преобразуем суммы и разности в степенях:

Решение:

{100^n*100}/{2^{2n}*2*25^n*25^2}={100^n*100}/{4^n*2*25^n*25^2}={100^n*100}/{(4*25)^n*2*25^2}={100^n*100}/{100^n*2*25^2}=100/2*25^2=4*25/{2*25*25}=4/{2*25}=4/50=8/100=0,08

Ответ: 0,08

easy-physic.ru

Дробная степень | Алгебра

Какими свойствами обладает степень с дробным показателем (дробная степень)? Как выполнить возведение числа в дробную степень?

Определение.

1) Степенью числа a (a>0) с рациональным показателем r

   

где m — целое число, n — натуральное число (n>1), называется число

   

2) При a=0 и r>0 

   

В частности,

   

При a<0 степень с дробным показателем не определяется.

Все свойства степеней из курса алгебры 7 класса выполняются и для степеней с рациональными показателями.

Для упрощения вычислений при возведении числа в дробную степень удобно использовать таблицу степеней и следующее свойство корня:

   

Примеры.

Выполнить возведение в дробную степень:

   

   

Если показатель степени — десятичная дробь, нужно предварительно перевести ее в обыкновенную.

   

   

   

   

Смешанное число нужно предварительно перевести в неправильную дробь:

   

   

   

   

www.algebraclass.ru

Онлайн калькулятор дробей с решением со степенями со скобками с буквами

Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей. А так же дробей с целой частью и  десятичных дробей.
Основные возможности:

  1. Сложение, вычитание, деление и умножение дробей.
  2. Расчет дробей с подробнейшим решением.
  3. Расчет дробей со степенями, скобками и буквами.
  4. Сокращение дробей.
  5. Поддержка до трех дробей онлайн.

На данном калькуляторе можно посчитать сложение вычитание деление или умножение дробей.
Калькулятор умеет:

  1. Вносить целую часть дроби в числитель для смешанных дробей.
  2. Расчет дробей со скобками- поддержка до двух уровней вложенности скобок.
  3. Расчет дробей со степенями — степенью может быть только число.
  4. Расчет дробей с буквами — любые анг. буквы или символы.
  5. Сокращение дробей — только для дробей без букв.

Основные символы:

  1. * символ звездочки интерпретируется как умножение.
  2. / слеш интерпретируется как деление.
  3. + и — интерпретируются как сложение и вычитание.
  4. ^ символ интерпретируется как степень.
  5. ( ) символы интерпретируются как открывающаяся и закрывающаяся скобки.

Подробности:

  1. Между двумя буквами необязательно ставить знак умножения (если они умножаются). Пример вместо x*x можно написать xx.
  2. После знака степени ^ должно стоять число степени. Если оно отрицательно необходимо заключить его в скобки. Пример x^2+1 или x^(-2) +1.
  3. При сложении дробей состоящих только из чисел калькулятор вычисляет НОД и НОК.
  4. При расчете сразу трех дробей сначала выполняется операция умножение(деления), затем сложения(вычитания). Для изменения этого порядка поставьте галочку в поле «Большие скобки» и выберите нужный порядок расчета. В этом случае первой будет выполняться операция в больших скобках.

binary2hex.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *