Электролиты это примеры – Урок №3. Электролиты и неэлектролиты. Электролитическая диссоциация веществ в водных растворах

Содержание

Электролит (химия) - это... Что такое Электролит (химия)?


Электролит (химия)

Электроли́т — химический термин, обозначающий вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы. Примерами электролитов могут служить кислоты, соли и основания. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладающие вследствие этого ионной проводимостью.

Степень диссоциации

В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[1].

Классификация

Исходя из степени диссоциации все электролиты делятся на две группы

  1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты.
  2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот, основания p-, d-, и f-элементов.

Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

Использование термина "Электролит"

В естественных науках

Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., "всасывание электролитов" в кишечнике).

Электролиты в технике

Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

Электролит в электрохимии

Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например, электролит золочения).

Электролит аккумуляторный

Обиходное название раствора серной кислоты для свинцовых аккумуляторов

Электролитический конденсатор

относящийся к типу «Электролитический», в котором в качестве одной из обкладок используется электролит. Конденсаторы данного типа, в отличии от других типов, обладают несколькими отличительными особенностями

  1. при очень маленьких габаритных размерах обладают на несколько порядков большей ёмкостью
  2. при проектировании электрических схем и при монтаже электролитов необходимо соблюдать полярность подключения, в противном случае они обязательно взрываются (в худшем случае) или просто вздуваются и вытекают (в лучшем)[2]
  3. работают на существенно низких частотах, в пределах всего лишь нескольких десятков кГц, конденсаторы большинства других типов могут работать на частотах до десятков, сотен, тысяч мГц и выше.

Примечания

  1. Степень дисссоциации (α) — отношение числа молекул, диссоциировавших на ионы к общему числу молекул растворенного электролита.
  2. Исключением являются специальные неполярные электролитические конденсаторы, которые представляют из себя два электролитических конденсатора в одном корпусе, включённые последовательно и обязательно встречной друг другу полярностью (плюс к плюсу или минус к минусу)

См. также

Wikimedia Foundation. 2010.

  • Электролиния Экибастуз-Кокчетав
  • Электролиты

Смотреть что такое "Электролит (химия)" в других словарях:

  • электролит — – вещество, водный раствор или расплав которого проводит электрический ток. Общая химия : учебник / А. В. Жолнин [1] …   Химические термины

  • Электролит — Электролит  вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы, однако само вещество электрический ток не проводит. Примерами электролитов могут служить растворы кислот, солей и оснований.… …   Википедия

  • Наводороживание ПТК при катодной поляризации (i=1500 А/м2, электролит: 250±5 г/л K2CO3 +35±3 г/л) — Толщина платинового покрытия, мкм Длительность катодной поляризации, ч Температура, °С Содержание h3, мл/100 г металла 2,7 45 …   Химический справочник

  • Числа переноса катионов в водных растворах при 25 °С — Электролит Эквивалентная концентрация, моль/л 0 0,01 0,02 0,05 0,1 0,2 …   Химический справочник

  • Электрофоретическое поведение ионов CrO42-, Cu(II), Al(III), Fe(III), Cr(III) в 0,5 М растворах сульфатов — Электролит Движение, мм CrO42 Cu(II) Al(III) Fe(III) Cr(III) Na2SO4 …   Химический справочник

  • Электрохимия — Электрохимия  раздел химической науки, в котором рассматриваются системы и межфазные границы при протекании через них электрического тока, исследуются процессы в проводниках, на электродах (из металлов или полупроводников, включая графит) и… …   Википедия

  • КОЛЛОИДЫ — КОЛЛОИДЫ, КОЛЛОИДНАЯ ХИМИЯ. Коллоиды (от греч. ко 11а клей, желатина), название, данное Грэмом (Graham) группе веществ, типичными представителями которых являются желатина или гум ми арабик. Коллоидная химия является наиболее молодой хим.… …   Большая медицинская энциклопедия

  • Тетрахлороаурат(III) водорода — Общие Т …   Википедия

  • Цезий — 55 Ксенон ← Цезий → Барий …   Википедия

  • Литий — Запрос «Lithium» перенаправляется сюда; см. также другие значения. Эта статья  о химическом элементе. О применении в медицине см. Препараты лития. 3 Гелий ← Литий …   Википедия

Книги

  • Неорганическая химия. Часть I. Поверхностные явления на границе оксид/электролит в кислых средах, Горичев Игорь Георгиевич, Атанасян Т. К., Якушева Е. А.. В данном пособии детально рассматриваются особенности кинетики растворения оксидов кобальта в кислых средах, адсорбция оксидов кобальта, причины возникновения двойного электрического слоя на… Подробнее  Купить за 483 грн (только Украина)
  • Неорганическая химия. Часть I. Поверхностные явления на границе оксид/электролит в кислых средах, Горичев Игорь Георгиевич, Атанасян Т. К., Якушева Е. А.. В данном пособии детально рассматриваются особенности кинетики растворения оксидов кобальта в кислых средах, адсорбция оксидов кобальта, причины возникновения двойного электрического слоя на… Подробнее  Купить за 377 руб
  • Неорганическая химия Часть I Поверхностные явления на границе оксид электролит в кислых средах Учебное пособие, Атанасян Т., Гричев И., Якушева Е.. В данном пособии детально рассматриваются особенности кинетики растворения оксидов кобальта в кислых средах, адсорбция оксидов кобальта, причины возникновения двойного электрического слоя на… Подробнее  Купить за 262 руб
Другие книги по запросу «Электролит (химия)» >>

dic.academic.ru

Растворы электролитов

Электролит– это вещество, которое при определенных условиях способно распадаться на заряженные частицы, называемые ионами.

Под определенными условиями может подразумеваться раствор, расплав, распад на ионы под действием температуры (термодиссоциация CaCO3CaO+CO2), в плазме и фотодиссоциация – разложение веществ под действием ионизирующего излучения (Cl22Cl).

Раствор электролита– это раствор, который способен проводить электрический ток.

КЛАССИФИКАЦИЯ ЭЛЕКТРОЛИТОВ

Сильные

Электролиты, которые полностью диссоциируют в растворе

АВА++ В-

Слабые

Электролиты, которые не диссоциируют полностью

АВА++ В-

1) соли (NaCl, KCl, MgSO4, CH3COONa)

1) соли (Hg2Cl2)

2) щелочи (NaOH, KOH, Ca(OH)2)

2) основания(NH3)

3) кислоты (HNO3, H2SO4, HCl, HClO4)

3) кислоты (H2CO3, H3BO3, CH3COOH, C6H5COOH)

4) органические соединения (C6H4

(OH)2(гидрохинон),C6H5NH2(анилин))

Диссоциация электролитов наблюдается в полярных растворителях и зависит от их диэлектрической проницаемости . Чем выше значение диэлектрической проницаемости, тем полнее диссоциация.

Большая диэлектрическая проницаемость наблюдается для воды (при 25 0С=78,3). Лишь незначительное количество неводных растворов, например, формамид, имеют диэлектрическую проницаемость выше, чем у воды. Растворы электролитов в подобных растворителях обладают высокой электрической проводимостью.

В неполярных растворителях, таких как четыреххлористый углерод (=2,238), электролитической диссоциации практически не происходит.

В зависимости от числа образующихся в результате электролитической диссоциации катионов и анионов различают симметричные и несимметричные электролиты.

ЭЛЕКТРОЛИТЫ

Симметричные

число катионов = числу анионов

Несимметричные

число катионов числу анионов

1) NaCl,KBr,HCl

1,1 – зарядные (одно-одно-зарядные)

1) K2SO4, H2SO4

1,2 - зарядные

2) MgSO4,ZnSO4

2,2 - зарядные (двух-двух-зарядные)

2) MgCl2, CaBr2

2,1 - зарядные

ТЕОРИЯ СЛАБЫХ ЭЛЕКТРОЛИТОВ.

СТЕПЕНЬ И КОНСТАНТА ДИССОЦИАЦИИ

Первая количественная теория растворов электролитов (теория электролитической диссоциации) была высказана Аррениусом. По этой теории молекулы электролитов при растворении распадаются на противоположно заряженные ионы. Процесс диссоциации слабого электролита обратим, т.е. наряду с диссоциацией молекул происходит образование молекул из ионов и, таким образом, в растворе наряду с ионами существуют и молекулы.

Доля молекул, распадающихся на ионы, оценивается

степенью электролитической диссоциации, которую обычно обозначают.Степень диссоциации– это отношение числа молекул, распавшихся на ионы, к числу молекул растворенного вещества.

Степень диссоциации является характеристикой электролита:

Для неэлектролитов (сахароза) = 0;

Для сильных электролитов ≥ 1;

Для слабых электролитов 0 < < 1.

Рассмотрим диссоциацию уксусной кислоты: СН3СООНН++ СН3СОО-

Так как процесс диссоциации слабого электролита обратим, то он характеризуется константой равновесия. Константа равновесия для процесса диссоциации есть константа диссоциации. Т.е. все закономерности, характерные для константы равновесия, справедливы и для константы диссоциации.

.

Константа диссоциации зависит от природы растворителя и температуры (=f(Т)), но не зависит от концентрации электролита в растворе (f(С)).

Зависимость константы диссоциации от температуры описывается уравнением изобары Вант-Гоффа: .

Пусть концентрация растворенной уксусной кислоты будет С, а степень диссоциации равна . Тогда,;;.

Подставим эти значения в выражение константы диссоциации:

;- аналитическое выражение закона разбавления Оствальда, где С – общая концентрация электролита [моль/дм3].

Рассмотрим очень слабый электролит, степень диссоциации которого намного меньше единицы (<<1). Тогда закон разбавления Оствальда преобразуется:.

Как видно, степень диссоциации обратно пропорциональна корню квадратному из концентрации электролита. Чем больше концентрации, тем меньше степень диссоциации. В связи с этим вводится понятие бесконечно разбавленного раствора, в котором даже слабые электролиты полностью диссоциируют на ионы и отсутствуют силы электростатического взаимодействия.

ПРИЧИНЫ И МЕХАНИЗМ ИОНИЗАЦИИ

В ВОДНЫХ РАСТВОРАХ

studfile.net

примеры. Состав и свойства электролитов. Сильные и слабые электролиты

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

сильные и слабые электролиты

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик Сванте Аррениус и русско-немецкий химик Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. Степень диссоциации электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

сколько электролита в аккумуляторе

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - это ионы или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

какой электролит в аккумуляторе

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

как поднять плотность электролита

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на свойства веществ. Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c)1/2. Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

диссоциация слабых электролитов

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO2 + SO42-+ 4H+ + 2e- = PbSO4 + 2H2O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO42- - 2e- = PbSO4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом химическом источнике тока эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

степень диссоциации электролита

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется плотностью серной кислоты, то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

концентрация электролита

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.

fb.ru

Электролиты

Проводниками электрического тока являются не только металлы и полупроводники. Электрический ток проводят растворы многих веществ в воде. Чистая вода не проводит электрический ток, то есть, в ней нет свободных носителей электрических зарядов. Не проводят электрический ток и кристаллы поваренной соли (хлорида натрия). Но если растворить соль в воде, раствор будет хорошим проводником электрического тока. Растворы солей, кислот и оснований, которые способны проводить электрический ток называются электролитами.

ЭлектролитыПрохождение электрического тока через электролиты обязательно сопровождается выделением вещества в твёрдом или газообразном состоянии на поверхности электродов. Выделение вещества на электродах показывает, что в электролитах электрические заряды переносят заряженные атомы вещества – ионы.

По степени диссоциации (способности распадаться на ионы) электролиты можно разделить на сильные и слабые. Степень диссоциации сильных электролитов в растворах равна единице: они полностью диссоциируют, не зависимо от концентрации раствора (щёлочи, соли, некоторые кислоты). Степень диссоциации слабых электролитов в растворах меньше единицы: они диссоциируют не полностью. И с ростом концентрации раствора степень диссоциации уменьшается (вода, ряд кислот и оснований).

Четкой границы между этими двумя группами нет: одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом – слабого.

Закон электролиза. Электрохимический эквивалент вещества

Электролизом называют физико-химический процесс, протекающий на электродах, погруженных в электролит, под действием электрического тока: на электродах выделяются составные части растворённых веществ или других веществ, которые являются результатом вторичных реакций.

В проводящих жидкостях упорядоченное движение ионов происходит в электрическом поле, созданном электродами – проводниками, которые соединены с полюсами источника электрической энергии. При электролизе положительный электрод называется анодом, а отрицательный – катодом. Отрицательные ионы – анионы – движутся к аноду, положительные ионы – катионы – к катоду. На аноде отрицательные ионы отдают лишние электроны (окислительная реакция). На катоде положительные ионы получают недостающие электроны (восстановительная реакция).

М. Фарадей на основе экспериментов с различными электролитами установил, что при электролизе масса m выделившегося вещества пропорциональна прошедшему через электролит заряду ∆q  или силе тока I и времени ∆t прохождения тока:

m = k∆q = kI∆t

Данное уравнение называется законом электролиза, коэффициент k, зависящий от выделяющегося вещества, называется электрохимическим эквивалентом вещества.

Проводимость жидких электролитов объясняется тем, что при растворении в воде нейтральные молекулы солей, кислот и оснований распадаются на отрицательные и положительные ионы. В электрическом поле ионы приходят в движение и создают электрический ток.

Электролиты

Существуют не только жидкие, но и твёрдые электролиты. Примером твёрдого электролита может служить стекло. В составе стекла имеются положительные и отрицательные ионы. В твёрдом состоянии стекло не проводит электрический ток, так как ионы не могут двигаться в твёрдом теле. При нагревании стекла ионы получают возможность перемещаться под действием электрического поля и стекло становится проводником.

Явление электролиза применяется на практике для получения многих металлов из раствора солей. С помощью электролиза для защиты от окисления или для украшения производится покрытие различных предметов и деталей машин тонкими слоями таких металлов, как хром, никель, серебро, золото.

Остались вопросы? Не знаете, что такое электролиты?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Электролиты - это... Что такое Электролиты?

Электроли́т — химический термин, обозначающий вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы. Примерами электролитов могут служить кислоты, соли и основания. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладающие вследствие этого ионной проводимостью.

Степень диссоциации

В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[1].

Классификация

Исходя из степени диссоциации все электролиты делятся на две группы

  1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты.
  2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот, основания p-, d-, и f-элементов.

Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

Использование термина "Электролит"

В естественных науках

Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., "всасывание электролитов" в кишечнике).

Электролиты в технике

Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

Электролит в электрохимии

Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например, электролит золочения).

Электролит аккумуляторный

Обиходное название раствора серной кислоты для свинцовых аккумуляторов

Электролитический конденсатор

относящийся к типу «Электролитический», в котором в качестве одной из обкладок используется электролит. Конденсаторы данного типа, в отличии от других типов, обладают несколькими отличительными особенностями

  1. при очень маленьких габаритных размерах обладают на несколько порядков большей ёмкостью
  2. при проектировании электрических схем и при монтаже электролитов необходимо соблюдать полярность подключения, в противном случае они обязательно взрываются (в худшем случае) или просто вздуваются и вытекают (в лучшем)[2]
  3. работают на существенно низких частотах, в пределах всего лишь нескольких десятков кГц, конденсаторы большинства других типов могут работать на частотах до десятков, сотен, тысяч мГц и выше.

Примечания

  1. Степень дисссоциации (α) — отношение числа молекул, диссоциировавших на ионы к общему числу молекул растворенного электролита.
  2. Исключением являются специальные неполярные электролитические конденсаторы, которые представляют из себя два электролитических конденсатора в одном корпусе, включённые последовательно и обязательно встречной друг другу полярностью (плюс к плюсу или минус к минусу)

См. также

Wikimedia Foundation. 2010.

dik.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *