Энергия определение физика – История термина «энергия» — это… Что такое История термина «энергия»?

Содержание

Энергия — Википедия

Эне́ргия (др.-греч. ἐνέργεια — действие, деятельность, сила, мощь) — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.

С фундаментальной точки зрения, энергия представляет собой один из трёх (энергия, импульс, момент импульса) аддитивных интегралов движения (то есть сохраняющихся при движении величин), связанный, согласно теореме Нётер, с однородностью времени.

Слово «энергия» введено Аристотелем в трактате «Физика», однако там оно обозначало деятельность человека.

Используемые обозначения

Обычно обозначается символом Е — от лат. energīa (действие, деятельность, мощь).

Для обозначения тепловой энергии обычно используется символ Q — от англ. quantity of heat (количество теплоты).

Для обозначения внутренней энергии тела обычно используется символ U (происхождение символа подлежит уточнению).

В отдельных случаях может использоваться символ W — от англ. work (работа, труд), как способность выполнять работу.

Видео по теме

История термина

Термин «энергия» происходит от греческого слова ἐνέργεια, которое впервые появилось в работах Аристотеля и обозначало действие или действительность (т.е. действительное осуществление действия в противоположность его возможности), праиндоевропейский корень werg обозначал работу или деятельность (ср. англ. work, нем. Werk) и в виде οργ/ουργ присутствует в таких греческих словах, как оргия или теургия и т.п.

Томас Юнг первым использовал понятие «энергия» в современном смысле слова

Лейбниц в своих трактатах 1686 и 1695 годов ввёл понятие «живой силы» (

vis viva), которую он определил как произведение массы объекта и квадрата его скорости (в современной терминологии — кинетическая энергия, только удвоенная). Кроме того, Лейбниц верил в сохранение общей «живой силы». Для объяснения уменьшения скорости тел из-за трения, он предположил, что утраченная часть «живой силы» переходит к атомам.

Маркиза Эмили дю Шатле в книге «Учебник физики» (фр. Institutions de Physique, 1740), объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда.

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия «живая сила»[1]. Гаспар-Гюстав Кориолис раскрыл связь между работой и кинетической энергией в 1829 году. Уильям Томсон (будущий лорд Кельвин) впервые использовал термин «кинетическая энергия» не позже 1851 года, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль, Эмиль Клапейрон и Герман Гельмгольц), математики — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии»[1]. Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия»

[1]. В 1881 году Уильям Томсон заявил перед слушателями[2]:

Само слово энергия, хотя и было впервые употреблено в современном смысле доктором Томасом Юнгом приблизительно в начале этого века, только сейчас входит в употребление практически после того, как теория, которая дала определение энергии, … развилась от просто формулы математической динамики до принципа, пронизывающего всю природу и направляющего исследователя в области науки.

Оригинальный текст (англ.)

The very name energy, though first used in its present sense by Dr Thomas Young about the beginning of this century, has only come into use practically after the doctrine which defines it had … been raised from mere formula of mathematical dynamics to the position it now holds of a principle pervading all nature and guiding the investigator in the field of science.

В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat) и «энергетика» (англ. energetics). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии.

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.

В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства).

В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии[3]:

Существует факт, или, если угодно, закон, управляющий всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечённо. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним.

Оригинальный текст (англ.)

There is a fact, or if you wish, a law, governing natural phenomena that are known to date. There is no known exception to this law—it is exact so far we know. The law is called conservation of energy; it states that there is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity, which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number, and when we finish watching nature go through her tricks and calculate the number again, it is the same.

Виды энергии

Механика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией.

Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную (тяготения) и атомную (ядерную) энергии (также может быть разделена на энергию слабого и сильного взаимодействий).

Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.

В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества. См. также: химический потенциал.

Энергия взрыва иногда измеряется в тротиловом эквиваленте.

Кинетическая

Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в СИ — джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

Потенциальная

Потенциальная энергия U(r→){\displaystyle U({\vec {r}})} — скалярная физическая величина, характеризует запас энергии некоего тела (или материальной точки), находящегося в потенциальном силовом поле, который идет на приобретение (изменение) кинетической энергии тела за счет работы сил поля. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[5].

Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется

нормировкой потенциальной энергии.

Электромагнитная

Гравитационная

Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационная энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.

Ядерная

Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.

Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента.

Внутренняя

Внутренняя энергия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекул. Внутреннюю энергию тела нельзя измерить напрямую. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между её значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Химический потенциал

Химический потенциал μ{\displaystyle \mu } — один из термодинамических параметров системы, а именно энергия добавления одной частицы в систему без совершения работы.

Энергия взрыва

Взрыв — физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов.

При химическом взрыве, кроме газов, могут образовываться и твёрдые высокодисперсные частицы, взвесь которых называют продуктами взрыва. Энергию взрыва иногда измеряют в тротиловом эквиваленте — мере энерговыделения высокоэнергетических событий, выраженной в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.

Энергия вакуума

Энергия вакуума — энергия, равномерно распределённая в вакууме и вызывающая отталкивание между любыми материальными объектами во Вселенной с силой, прямо пропорциональной их массе и расстоянию между ними. Обладает крайне низкой плотностью.

Осмотическая энергия

Осмотическая энергия — работа, которую надо произвести, чтобы повысить концентрацию молекул или ионов в растворе.

Энергия и работа

Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах.

В специальной теории относительности

Энергия и масса

Согласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна

E=mc2,{\displaystyle E=mc^{2},}

где E{\displaystyle E} — энергия системы, m{\displaystyle m} — её масса, c{\displaystyle c} — скорость света в вакууме. Несмотря на то, что исторически предпринимались попытки трактовать это выражение как полную эквивалентность понятия энергии и массы, что, в частности, привело к появлению такого понятия как релятивистская масса, в современной физике принято сужать смысл этого уравнения, понимая под массой массу тела в состоянии покоя (так называемая масса покоя), а под энергией — только внутреннюю энергию, заключённую в системе.

Энергия тела, согласно законам классической механики, зависит от системы отсчета, то есть неодинакова для разных наблюдателей. Если тело движется со скоростью v относительно некоего наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно будет казаться неподвижным. Соответственно, для первого наблюдателя кинетическая энергия тела будет равна, mv2/2{\displaystyle mv^{2}/2}, где m{\displaystyle m} — масса тела, а для другого наблюдателя — нулю.

Эта зависимость энергии от системы отсчета сохраняется также в теории относительности. Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса.

Зависимость энергии тела от скорости рассматривается уже не так, как в ньютоновской физике, а согласно вышеназванной формуле Эйнштейна:

E=mc21−v2/c2,{\displaystyle E={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}},}

где m{\displaystyle m} — инвариантная масса. В системе отсчета, связанной с телом, его скорость равна нулю, а энергия, которую называют энергией покоя, выражается формулой:

E0=mc2.{\displaystyle E_{0}=mc^{2}.}

Это минимальная энергия, которую может иметь массивное тело. Значение формулы Эйнштейна также в том, что до неё энергия определялась с точностью до произвольной постоянной, а формула Эйнштейна находит абсолютное значение этой постоянной.

Энергия и импульс

Специальная теория относительности рассматривает энергию как компоненту 4-импульса (4-вектора энергии-импульса), в который наравне с энергией входят три пространственные компоненты импульса. Таким образом энергия и импульс оказываются связанными и оказывают взаимное влияние друг на друга при переходе из одной системы отсчёта в другую.

В квантовой механике

В квантовой механике энергия E{\displaystyle E} свободной частицы связана с круговой частотой ω{\displaystyle \omega } соответствующей волны де Бройля соотношением E=ℏω{\displaystyle E=\hbar \omega }, где ℏ{\displaystyle \hbar } — постоянная Планка. [6][7] Это уравнение является математическим выражением принципа корпускулярно-волнового дуализма волн и частиц для случая энергии.[8] В квантовой механике энергия двойственна времени. В частности, в силу фундаментальных причин принципиально невозможно измерить абсолютно точно энергию системы в каком-либо процессе, время протекания которого конечно. При проведении серии измерений одного и того же процесса значения измеренной энергии будут флуктуировать, однако среднее значение всегда определяется законом сохранения энергии. Это приводит к тому, что иногда говорят, что в квантовой механике сохраняется средняя энергия.

В общей теории относительности

В общей теории относительности время не является однородным, поэтому возникают определённые проблемы при попытке введения понятия энергии. В частности, оказывается невозможным определить энергию гравитационного поля как тензор относительно общих преобразований координат.

Энергия и энтропия

Внутренняя энергия (или энергия хаотического движения молекул) является самым «деградированным» видом энергии — она не может превращаться в другие виды энергии без потерь (см.: энтропия).

Физическая размерность

В системе физических величин LMT энергия имеет размерность ML2T−2{\displaystyle ML^{2}T^{-2}}.

Соотношения между единицами энергии.
ЕдиницаЭквивалент
в Джв эргв межд. калв эВ
1 Дж11070,2388460,624146·1019
1 эрг10−712,38846·10−80,624146·1012
1 межд. Дж[9]1,000201,00020·1070,2388910,624332·1019
1 кгс·м9,806659,80665·1072,342276,12078·1019
1 кВт·ч3,60000·1063,60000·10138,5985·1052,24693·1025
1 л·атм101,32781,013278·10924,201763,24333·1019
1 межд. кал (calIT)4,18684,1868·10712,58287·1019
1 термохим. кал (калТХ)4,184004,18400·1070,999332,58143·1019
1 электронвольт (эВ)1,60219·10−191,60219·10−123,92677·10−201

Источники энергии

Условно источники энергии можно поделить на два типа: невозобновляемые и постоянные. К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, неэкологична, и многие из них истощаются. К постоянным источникам можно отнести энергию солнца, энергию, получаемую на ГЭС и т. д.

Невозобновляемые ресурсы энергии и их величина (Дж)[10]

Вид ресурсаЗапасы
Термоядерная энергия3,6*1026
Ядерная энергия2*1024
Химическая энергия нефти и газа2*1023
Внутреннее тепло Земли5*1020

Возобновляемые ресурсы энергии и их годовая величина (Дж)[10]

Вид ресурсаЗапасы
Солнечная энергия2*1024
Энергия морских приливов2,5*1023
Энергия ветра6*1021
Энергия рек6,5*1019

Потребление энергии

Существует довольно много форм энергии, большинство из которых[11] так или иначе используются в энергетике и различных современных технологиях.

Темпы энергопотребления растут во всем мире, поэтому на современном этапе развития цивилизации наиболее актуальна проблема энергоэффективности и энергосбережения.

См. также

Примечания

  1. 1 2 3 Смит, Кросби. The science of energy: a cultural history of energy physics in Victorian Britain. — The University of Chicago Press, 1998. — ISBN 0-226-76421-4.
  2. Томсон, Уильям. Об источниках энергии, доступных человеку для совершения механических эффектов = On the sources of energy available to man for the production of mechanical effect. — BAAS Rep, 1881. С. 513
  3. Richard Feynman. The Feynman Lectures on Physics. — США: Addison Wesley, 1964. — Vol. 1. — ISBN 0-201-02115-3.
  4. Фейнман, Ричард. Фейнмановские лекции по физике = The Feynman Lectures on Physics. — Т. 1.
  5. Ландау, Л. Д., Лифшиц, Е. М. Теоретическая физика. — 5-е изд. — М.: Физматлит, 2004. — Т. I. Механика. — 224 с. — ISBN 5-9221-0055-6.
  6. ↑ Паули, 1947, с. 11.
  7. ↑ Широков, 1972, с. 18.
  8. ↑ Широков, 1972, с. 19.
  9. Джоуль (единица энергии и работы) — статья из Большой советской энциклопедии. Г. Д. Бурдун. 
  10. 1 2 Алексеев, 1978, с. 134.
  11. ↑ http://profbeckman.narod.ru/InformLekc.files/Inf03.pdf

Литература

Ссылки

Понятие энергии в физике.Энергетические системы

Понятие Энергия (от греч. ενεργός — деятельный) — общая количественная мера движения и взаимодействия всех видов материи .

Энергия не возникает из ничего и никуда не исчезает, она может только переходить из одного вида в
другой (закон сохранения энергии ). Понятие энергии связывает все явления природы в одно целое, является
общей характеристикой состояния физических тел и физических полей .
Вследствие существования закона сохранения энергии понятия «энергия» связывает все явления природы .
В физике понятие энергия обычно обозначается латинской буквой Е.
В системе СИ энергия измеряется в джоулях . Кроме этих основных единиц измерения на практике используется
очень много других удобных при конкретном использовании единиц. В атомной и ядерной физики а также в физике элементарных частиц понятие энергию измеряют электрон-вольтами , в химии калориями , в физике твердого тела градусами Кельвина , в оптике обращенными сантиметрами , в квантовой химии в самосогласованного .

Виды энергии.Энергетические системы

Согласно различных форм движения материи, различают несколько типов энергии: механическая , электромагнитная , химическая , ядерная ,тепловая , гравитационная и др. Это деление достаточно условно. Так химическая энергия состоит из кинетической энергии движения электронов , их взаимодействия и взаимодействия с атомами .
Кроме того,по понятию различают энергию внутреннюю и энергию в поле внешних сил. Внутренняя энергия равна сумме кинетической энергии движения молекул и потенциальной энергии взаимодействия молекул между собой. Внутренняя энергия изолированной системы является постоянной.
В ризномантнитних физических процессах различные виды энергии могут превращаться друг в другой. Например, ядерная энергия в атомных электростанциях превращается сначала во внутреннюю тепловую энергию пара , вращающего турбины (механическая энергия), что в свою очередь индуцируют электрический ток в генераторах (электрическая энергия), который используется для освещения (энергия электромагнитного поля ) и т.д .
Энергия системы однозначно зависит от параметров, характеризующих ее состояние. В случае непрерывного среды вводят понятие плотности.

История развития понятие энергии

Понятие энергии состояло в физике на протяжении многих веков. Его понимание все время менялось. Впервые термин энергия в современном физическом смысле применил в 1808 году Томас Янг. К тому употреблялся термин «жизненная сила» (лат. vis viva), который еще в 17-м веке ввел в обращение Лейбниц , определив его как произведение массы на квадрат скорости .
В 1829 году Кориолиса впервые применил термин кинетическая энергия в современном смысле, а срок потенциальная энергия был введен Уильямом Рэнкин в 1853 году. К тому времени получены в исследованиях в различных областях науки данные начали складываться в общую картину. Благодаря опытам Джоуля , Майера , Гельмгольца прояснилось вопросы преобразования механической энергии в тепловую. В одной из первых работ «О сохранении силы» (1847) Гельмгольц, следуя идее единства природы, математически обосновал закон сохранения энергии
и положение о том, что живой организм является физико-химическим средой, в которой указанный закон точно выполняется. Гельмгольц сформулировал «принцип сохранения силы» и невозможность Perpetuum Mobile . Эти открытия позволили сформулировать первый закон термодинамики или понятие сохранения энергии . Понятие энергии стало центральным в понимании физических процессов. Вскоре естественным образом в понятие энергии вписалась термодинамика химических реакций и теория электрических и электромагнитных явлений.
С построением теории относительности к понятию энергии добалося новое понимание. Если раньше
потенциальная энергия определялась с точностью до произвольной постоянной, то теория Эйнштейна установила
связь энергии с массой .

Квантовая механика обогатила понятие энергии квантованием — для определенных физических систем энергия
может принимать лишь дискретные значения. Кроме того принцип неопределенности установил границы точности
измерения энергии и ее взаимосвязь с тем . Теорема Нетер продемонстрировала, что закон сохранения энергии
следует из принципа однородности времени, по которому физические процессы в одинаковых системах протекают
одинаково, даже если они начинаются в разные моменты времени.

Теория относительности.Энергетические системы

Энергия тела зависит от системы отсчета , т.е. неодинакова для разных наблюдателей . Если тело движется со
скоростью v относительно какого наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно
покажется неподвижным. Соответственно, для первого  кинетическая энергия тела будет равна
(исходя из законов классической механики) т v2/2′ где m — масса тела, а для другого — нулю.
Эта зависимость энергии от системы отсчета сохраняется также в теории относительности . Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса .
Энергия тела зависит от скорости уже не так как в ньютоновской физике, а иначе:
квантовая механика
Тогда, как в классической физике понятие энергия любой системы меняется непервно и может принимать произвольных значений, Квантовая теория утверждает, что энергия микрочастиц, привязанных силой взаимодействия с другими микрочастицами в ограниченных областей пространства, может приобретать только определенных дискретных значений.
Так, атомы излучают энергию в виде дискретных порций — световых квантов , или фотонов .
Оператором энергии в квантовой механике является гамильтониан . В стационарных состояниях квантовых систем энергия может иметь только те значения, которые соответствуют собственным значением гамильтониана. Для локализованных состояний энергия может иметь только определенные дискретные.

Понравилось это:

Нравится Загрузка…

Похожее

Энергия (значения) — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 октября 2018; проверки требуют 28 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 октября 2018; проверки требуют 28 правок. Перейти к навигации Перейти к поиску

Эне́ргия:

  • «Энергия» — гандбольный клуб из Воронежа.
  • «Энергия» — мини-футбольный клуб из Львова.
  • «Энергия» — мини-футбольный клуб из Чернигова.
  • «Энергия» — женский футбольный клуб из Воронежа.
  • «Энергия» — мужской футбольный клуб из Воронежа.
  • «Энергия» — бывший футбольный клуб из Николаева, Украина.
  • «Энергия» — футбольный клуб из города Новая Каховка Херсонской области.
  • «Энергия» — футбольный клуб из Новгорода.
  • «Энергия» — футбольный клуб из Северодвинска.
  • «Энергия» — футбольный клуб из города Чайковский, Пермский край.
  • «Энергия» — футбольный клуб из Ульяновска.
  • «Энергия» — футбольный клуб из Южноукраинска, Николаевская область.
  • «Энергия» — название футбольного клуба «Светотехника» из Риги в 1968—1986 гг.
  • «Энергия» — название футбольного клуба «Тилигул-Тирас» в 1967 году.
  • «Энергия» — профессиональный хоккейный клуб из Карловых Вар (Чехия).
  • «Энергия» — бывший хоккейный клуб из Кемерово.
  • «Энергия» — хоккейный клуб из Электреная, Литва.
  • «Энергия» — название хоккейного клуба «Кристалл» (Саратов) в 1965—1969 гг.
  • «Энергия» — название футбольного клуба «Текстильщик» из города Камышин в 1997 году (в 1996 году — «Энергия-Текстильщик»).
  • «Энергия» — название футбольного клуба «Машук-КМВ» из города Пятигорск в 1994—1997 годах.
  • «Энергия» — название футбольного клуба «Торпедо» из города Волжский в 1954—1976 и 2008—2014 годах.
  • «Энергия» — название футбольного клуба «Азамат» из Чебоксар в 1965—1977 годах.
  • «Энергия» — название футбольного клуба «Сибиряк» из Братска в 1976—1978 годах.
  • «Энергия»[en] — название футбольного клуба «Дачия» из города Брэила (Румыния) в 1956—1957 годах.
  • «Динамо-Энергия»— женский баскетбольный клуб из Иванова.
  • «Энергия-НЭВЗ-ТМХ» — российский футбольный клуб из Новочеркасска.
  • «Энергия-КДЮСШ» — прежнее название футбольного клуба «КДЮСШ» из Шатуры Московской области.
  • «Байкал-Энергия» — иркутский клуб хоккея с мячом.
  • «Динамо-Энергия» — команда по хоккею с шайбой из города Екатеринбурга.
  • «Луки-Энергия» — футбольный клуб из Великих Лук (в 1996—2000 — «Энергия»).
  • «ЛуТЭК-Энергия» — футбольный клуб из Лучегорска.
  • «Луч-Энергия» — название футбольного клуба «Луч» из Владивостока в 2003—2018 годах.
  • «СКА-Энергия» — название футбольного клуба «СКА-Хабаровск» в 1949—2016 годах.
  • «Салют-Энергия» — название футбольного клуба «Салют» из Белгорода в 2000—2009 годах.
  • «Амур-Энергия» — название футбольного клуба «Амур» из Благовещенска в 1997—2001 годах.
  • «Лада-Энергия» — название тольяттинского футбольного клуба «Академия» в 2000—2002 годах (представлял Димитровград).
Скрытые категории:

Тёмная энергия — Википедия

Тёмная эне́ргия (англ. dark energy) в космологии — гипотетический вид энергии, введённый в математическую модель Вселенной ради объяснения наблюдаемого её расширения с ускорением[1].

Существует три варианта объяснения сущности тёмной энергии:

По состоянию на 2020 год надёжные наблюдательные данные, такие как измерения реликтового излучения, подтверждают существование тёмной энергии, Модель Лямбда-CDM принимается в космологии как стандартная[3].

Окончательный выбор между вариантами требует очень длительных и высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния. Разрешение уравнения состояния для тёмной энергии является одной из самых насущных задач современной наблюдательной космологии[3].

Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», общая масса-энергия наблюдаемой Вселенной состоит из тёмной энергии на 68,3 % и тёмной материи на 26,8 %[4][5][6].

На основании проведённых в конце 1990-х годов наблюдений сверхновых звёзд типа Ia был сделан вывод, что расширение Вселенной ускоряется со временем. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва. Все полученные данные хорошо вписываются в лямбда-CDM модель.

Расстояния до других галактик определяются измерением их красного смещения. По закону Хаббла, величина красного смещения света удалённых галактик прямо пропорциональна расстоянию до этих галактик. Соотношение между расстоянием и величиной красного смещения называется параметром Хаббла (или, не совсем точно, постоянной Хаббла).

Однако само значение параметра Хаббла требуется сначала каким-нибудь способом установить, а для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами. Для этого в астрономии применяются «стандартные свечи», то есть объекты, светимость которых известна. Лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia (все вспыхивающие Ia, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость; при этом желательно делать поправки на вращение и состав исходной звезды). Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.

В конце 1990-х годов было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые типа Ia имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч» (сверхновых Ia), оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Был сделан вывод, что Вселенная не просто расширяется, она расширяется с ускорением.

Гипотеза о тёмной энергии и скрытой массе[править | править код]

Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было постулировано существование неизвестного вида энергии с отрицательным давлением (см. уравнения состояния). Её назвали «тёмной энергией».

Гипотеза о существовании тёмной энергии (чем бы она ни являлась) решает и так называемую «проблему невидимой массы». Теория нуклеосинтеза Большого Взрыва объясняет формирование в молодой Вселенной лёгких химических элементов, таких как гелий, дейтерий и литий. Теория крупномасштабной структуры Вселенной объясняет формирование структуры Вселенной: образование звёзд, квазаров, галактик и скоплений галактик. Обе эти теории предполагают, что плотность барионной материи и тёмной материи составляет около 30 % от критической плотности, требуемой для образования «закрытой» Вселенной, то есть соответствует плотности, необходимой, чтобы форма Вселенной была плоской. Измерения реликтового излучения Вселенной, недавно проведённые спутником WMAP, показывают, что пространство-время во Вселенной действительно имеет глобальную кривизну, очень близкую к нулевой. Следовательно, некая ранее неизвестная форма невидимой энергии должна давать отсутствующие 70 % плотности Вселенной.

Сущность тёмной энергии является предметом споров. Известно, что она очень равномерно распределена, имеет низкую плотность и не взаимодействует сколько-нибудь заметно с обычной материей посредством известных фундаментальных типов взаимодействия — за исключением гравитации. Поскольку гипотетическая плотность тёмной энергии невелика (порядка 10−29 г/см³), её вряд ли удастся обнаружить лабораторным экспериментом. Тёмная энергия может оказывать такое глубокое влияние на Вселенную (составляя 70 % всей энергии) только потому, что она однородно наполняет пустое (в иных отношениях) пространство.

Космологическая постоянная[править | править код]

Диаграмма, представляющая ускоренное расширение Вселенной из-за тёмной энергии.

Самое простое объяснение заключается в том, что тёмная энергия — это просто «стоимость существования пространства»: то есть, любой объём пространства имеет некую фундаментальную, неотъемлемо присущую ему энергию. Её ещё иногда называют энергией вакуума, поскольку она является энергетической плотностью чистого вакуума. Это и есть космологическая постоянная, иногда называемая «лямбда-член» (от названия греческой буквы Λ{\displaystyle \Lambda }, используемой для её обозначения в уравнениях общей теории относительности)[7]. Введение космологической константы в стандартную космологическую модель, основанную на метрике Фридмана — Лемэтра — Робертсона — Уокера, привело к появлению современной модели космологии, известной как лямбда-CDM модель. Эта модель хорошо соответствует имеющимся космологическим наблюдениям.

Многие физические теории элементарных частиц предсказывают существование вакуумных флуктуаций, то есть наделяют вакуум именно таким видом энергии. Значение космологической константы оценивается в порядке 10−29 г/см³, или около 1.03 кэВ/см³ (около 10−123 в Планковских единицах)[8].

Космологическая константа имеет отрицательное давление, равное её энергетической плотности. Причины, по которым космологическая константа имеет отрицательное давление, вытекают из классической термодинамики. Количество энергии, заключённое в «коробке с вакуумом» объёма V{\displaystyle V}, равняется ρV{\displaystyle \rho V}, где ρ{\displaystyle \rho } — энергетическая плотность космологической константы. Увеличение объёма «коробки» (dV{\displaystyle dV} положительно) приводит к возрастанию её внутренней энергии, а это означает выполнение ею отрицательной работы. Так как работа, выполняемая изменением объёма dV{\displaystyle dV}, равняется pdV{\displaystyle pdV}, где p{\displaystyle p} — давление, то p{\displaystyle p} — отрицательно и, фактически, p=−ρ{\displaystyle p=-\rho } (коэффициент c2{\displaystyle c^{2}}, связывающий массу и энергию, приравнен 1)[2].

Согласно общей теории относительности, гравитация зависит не только от массы (плотности), но и от давления, причём давление имеет бо́льший коэффициент, чем плотность. Отрицательное давление должно порождать отталкивание, антигравитацию, и поэтому вызывает ускорение расширения Вселенной[9].

Важнейшая нерешённая проблема современной физики состоит в том, что большинство квантовых теорий поля, основываясь на энергии квантового вакуума, предсказывают громадное значение космологической константы — на многие порядки превосходящее допустимое по космологическим представлениям. Обычная формула квантовой теории поля для суммирования вакуумных нулевых колебаний поля (с обрезанием по волновому числу колебательных мод, соответствующему планковской длине), даёт огромную плотность энергии вакуума[10][11]. Это значение, следовательно, должно быть скомпенсировано неким действием, почти равным (но не точно равным) по модулю, но имеющим противоположный знак. Некоторые теории суперсимметрии (SATHISH) требуют, чтобы космологическая константа в точности равнялась нулю, что также не способствует разрешению проблемы. Такова сущность «проблемы космологической константы», труднейшей проблемы «тонкой настройки» в современной физике: не найдено ни одного способа вывести из физики элементарных частиц чрезвычайно малое значение космологической константы, определённое в космологии. Некоторые физики, включая Стивена Вайнберга, считают т. н. «антропный принцип» наилучшим объяснением наблюдаемого тонкого баланса энергии квантового вакуума.

Несмотря на эти проблемы, космологическая константа — это во многих отношениях самое экономное решение проблемы ускоряющейся Вселенной. Единственное числовое значение объясняет множество наблюдений. Поэтому нынешняя общепринятая космологическая модель (лямбда-CDM модель) включает в себя космологическую константу как существенный элемент.

Квинтэссенция[править | править код]

Альтернативный подход был предложен в 1987 году немецким физиком-теоретиком Кристофом Веттерихом[12][13]. Веттерих исходил из предположения, что тёмная энергия — это своего рода частицеподобные возбуждения некоего динамического скалярного поля, называемого «квинтэссенцией»[14]. Отличие от космологической константы в том, что плотность квинтэссенции может варьироваться в пространстве и времени. Чтобы квинтэссенция не могла «собираться» и формировать крупномасштабные структуры по примеру обычной материи (звёзды и т. п.), она должна быть очень лёгкой, то есть иметь большую комптоновскую длину волны.

Никаких свидетельств существования квинтэссенции пока не обнаружено, но исключить такое существование нельзя. Гипотеза квинтэссенции предсказывает чуть более медленное ускорение Вселенной, в сравнении с гипотезой космологической константы. Некоторые учёные полагают, что наилучшим свидетельством в пользу квинтэссенции явились бы нарушения принципа эквивалентности Эйнштейна и вариации фундаментальных констант в пространстве или времени. Существование скалярных полей предсказывается стандартной моделью и теорией струн, но при этом возникает проблема, аналогичная варианту с космологической константой: теория ренормализации предсказывает, что скалярные поля должны приобретать значительную массу.

Проблема космического совпадения ставит вопрос, почему ускорение Вселенной началось именно в определённый момент времени. Если бы ускорение во Вселенной началось раньше этого момента, звёзды и галактики просто не успели бы сформироваться, и у жизни не было бы никаких шансов на возникновение, по крайней мере, в известной нам форме. Сторонники «антропного принципа» считают этот факт наилучшим аргументом в пользу своих построений. Впрочем, многие модели квинтэссенции предусматривают так называемое «следящее поведение», которое решает эту проблему. В этих моделях поле квинтэссенции имеет плотность, которая подстраивается к плотности излучения (не достигая её) до того момента развития Большого Взрыва, когда складывается равновесие вещества и излучения. После этого момента квинтэссенция начинает вести себя как искомая «тёмная энергия» и в конце концов господствует во Вселенной. Такое развитие естественным образом устанавливает низкое значение уровня тёмной энергии.

Уравнение состояния (зависимость давления от плотности энергии) для квинтэссенции: p=w⋅ε,{\displaystyle p=w\cdot \varepsilon ,} где −1<w<−1/3{\displaystyle -1<w<-1/3} (для вакуума w=−1{\displaystyle w=-1}).

Были предложены и другие возможные виды тёмной энергии: фантомная энергия, для которой энергетическая плотность возрастает со временем (в уравнении состояния этого типа тёмной энергии w<−1{\displaystyle w<-1}), и так называемая «кинетическая квинтэссенция», имеющая форму нестандартной кинетической энергии. Они имеют необычные свойства: например, фантомная энергия может привести к Большому Разрыву[15] Вселенной.

В 2014 году данные проекта BOSS (Baryon Oscillation Spectroscopic Survey) показали, что с высокой степенью точности значение тёмной энергии является константой[16].

Проявление неизвестных свойств гравитации[править | править код]

Имеется гипотеза, что тёмной энергии нет вообще, а ускоренное расширение Вселенной объясняется неизвестными свойствами сил гравитации, которые начинают проявляться на расстояниях порядка размера видимой части Вселенной[3].

По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной — в варианте с космологической константой).

Если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света. Это не является нарушением специальной теории относительности. На самом деле невозможно даже определить «относительную скорость» в искривлённом пространстве-времени. Относительная скорость имеет смысл и может быть определена только в плоском пространстве-времени, или на достаточно малом (стремящемся к нулю) участке искривлённого пространства-времени. Любая форма коммуникации далее пределов горизонта событий становится невозможной, и всякий контакт между объектами теряется. Земля, Солнечная система, наша Галактика, и наше Сверхскопление будут видны друг другу и в принципе достижимы путём космических полётов, в то время как вся остальная Вселенная исчезнет вдали. Со временем наше Сверхскопление придёт в состояние тепловой смерти, то есть осуществится сценарий, предполагавшийся для предыдущей, плоской модели Вселенной с преобладанием материи.

Существуют и более экзотические гипотезы о будущем Вселенной. Одна из них предполагает, что фантомная энергия приведёт к т. н. «расходящемуся» расширению. Это подразумевает, что расширяющая сила действия тёмной энергии продолжит неограниченно увеличиваться, пока не превзойдёт все остальные силы во Вселенной. По этому сценарию, тёмная энергия со временем разорвёт все гравитационно связанные структуры Вселенной, затем превзойдёт силы электростатических и внутриядерных взаимодействий, разорвёт атомы, ядра и нуклоны и уничтожит Вселенную в Большом Разрыве.

С другой стороны, тёмная энергия может со временем рассеяться или даже сменить отталкивающее действие на притягивающее. В этом случае гравитация возобладает и приведёт Вселенную к «Большому Сжатию». Некоторые сценарии предполагают «циклическую модель» Вселенной. Хотя эти гипотезы пока не подтверждаются наблюдениями, они и не отвергаются полностью. Решающую роль в установлении конечной судьбы Вселенной (развивающейся по теории Большого Взрыва) должны сыграть точные измерения темпа ускорения.

Ускоренное расширение Вселенной было открыто в 1998 году при наблюдениях за сверхновыми типа Ia[17][18]. За это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шао по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год.

Было обнаружено, что сверхновые типа Ia, которые считались одинаковыми, на самом деле различны; кроме того, форма сверхновой типа Ia, которая является относительно редкой сегодня, была гораздо более распространенной ранее в истории вселенной. Это может иметь далеко идущее космологическое значение и может привести к пересмотру оценки скорости расширения Вселенной и распространенности темной энергии.

В 2010 году Том Шэнкс из Даремского университета поставил под сомнение результаты WMAP, подтверждающие существование тёмной энергии, в связи с эффектом размытия реликтового излучения.[19]

В 2015 году команда во главе с исследователями из Аризонского университета установила что сверхновые типа Ia делятся на две группы с разными светимостями, что уменьшило оценку скорости разлетания галактик во вселенной.[20]

В 2016 году Якоб Нильсен выпустил работу, в которой утверждал что вселенная расширяется не ускорено.[21]

В 2020 году астрономы из университета Ёнсе совместно с коллегами из Лионского университета и KASI[en] завершили анализ, который показал, по мнению исследователей, что само предположение о существовании тёмной энергии было сделано на основе, вероятно, ошибочной оценки светимости «стандартных свечей».[22][23]

  1. ↑ Тёмная энергия вблизи нас // Астронет
  2. 1 2 Астронет > Тёмная энергия вблизи нас
  3. 1 2 3 4 Марио Ливио, Адам Рисс. Ребус тёмной энергии // В мире науки. — 2016. — № 5—6. — С. 50—57.
  4. Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; et al. (Planck Collaboration). Planck 2013 results. I. Overview of products and scientific results – Table 9 (англ.) // Astronomy and Astrophysics (submitted) : journal. — 2013. — 22 March. — Bibcode: 2013arXiv1303.5062P. — arXiv:1303.5062. Архивировано 23 марта 2013 года.
  5. Francis, Matthew. First Planck results: the Universe is still weird and interesting (неопр.). Arstechnica (22 марта 2013).
  6. ↑ Planck captures portrait of the young Universe, revealing earliest light (неопр.). University of Cambridge (21 марта 2013). Дата обращения 21 марта 2013.
  7. ↑ Игнатьев, 2016, с. 10.
  8. ↑ Игнатьев, 2016, с. 48.
  9. ↑ Астронет > Тёмная энергия вблизи нас
  10. С. Вайнберг «Проблема космологической постоянной», Успехи физических наук, август 1989 г., т. 158, вып. 4, стр. 640—678
  11. Я. Б. Зельдович «Теория вакуума, быть может, решает загадку космологии», Успехи физических наук, март 1981 г., т. 133, вып. 3, стр. 479—503
  12. Cosmology and the Fate of Dilatation Symmetry, C. Wetterich, Nucl. Phys. B 302, 668 (1988)
  13. The Cosmon Model for an Asymptotically Vanishing Time Dependent Cosmological «Constant», C. Wetterich, Astron. Astrophys. 301, 321 (1995), arXiv: hep-th/9408025v1
  14. ↑ Caldwell R. R., Steinhardt P. J. Phys.Rev. D 57, 6057 (1998).
  15. ↑ Разрыв Вселенной
  16. ↑ Точная карта космоса подтверждает идею бесконечной плоской Вселенной
  17. ↑ Riess, A. et al. 1998, Astronomical Journal, 116, 1009
  18. ↑ Perlmutter, S. et al. 1999, Astrophysical Journal, 517, 565
  19. Clara Moskowitz. Dark Energy and Dark Matter Might Not Exist, Scientists Allege (англ.). space.com (13 June 2010). Дата обращения 16 января 2020.
  20. ↑ Accelerating universe? Not so fast (англ.). Phys.org. University of Arizona (10 April 2015). Дата обращения 16 января 2020.
  21. Nielsen, J. T.; Guffanti, A.; Sarkar, S. Marginal evidence for cosmic acceleration from Type Ia supernovae (англ.) // Scientific Reports (англ.)русск. : journal. — 2015. — Vol. 6. — P. 35596. — DOI:10.1038/srep35596. — Bibcode: 2016NatSR…635596N. — arXiv:1506.01354. — PMID 27767125.
  22. ↑ New evidence shows that the key assumption made in the discovery of dark energy is in error (англ.). Phys.org. Yonsei University (6 January 2020). Дата обращения 16 января 2020.
  23. ↑ Yijung Kang, Young-Wook Lee, Young-Lo Kim, Chul Chung, Chang Hee Ree Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology arXiv:1912.04903

Книги[править | править код]

  • Игнатьев Ю.Г. Классическая космология и тёмная энергия. — Казань: Изд-во Казанского ун-та, 2016. — 248 с. — ISBN 978-5-00019-692-2.
  • Amendola L., Tsujikawa S. Dark Energy: Theory and Observations. — Cambridge University Press, 2010. — 491 p.
  • Dark Energy: Observational and Theoretical Approaches / ed. P. Ruiz-Lapuente. — Cambridge University Press, 2010. — 339 p.
  • Kragh H.S., Overduin J.M. The Weight of the Vacuum: A Scientific History of Dark Energy. — Springer, 2014. — 113 p.
  • Li M., Li X., Wang S., Wang Y. Dark Energy. — Singapore: World Scientific, 2015. — 254 p.
  • Эйнасто Я., Чернин А. Д. Тёмная материя и тёмная энергия. — М: Век-2, 2018. — 176 с. — ISBN 978-5-85099-197-5.

Статьи[править | править код]

Что такое энергия в физике?

ЭНЕРГИЯ (в физике) ЭНЕРГИЯ (от греч. energeia — действие, деятельность) , общая количественная мера различных форм движения материи. В физике различным физическим процессам соответствует тот или иной вид энергии: механическая, тепловая, электромагнитная, гравитационная, ядерная и т. д. Вследствие существования закона сохранения энергии понятие энергии связывает воедино все явления природы.

Эне&#769;ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие.

бывают 2-ве энергии. 1) Энергия Движения-кинетическая энергия (Ек) . 2)Энергия взаимодействия-потенциальная Энергия (Еп).

Энергия связи — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 августа 2016; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 августа 2016; проверки требуют 2 правки.

Энергия связи (для данного состояния системы) — разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в состоянии активного покоя и полной энергией связанного состояния системы:

ΔE=∑i=1NEi−E,{\displaystyle \Delta E=\sum _{i=1}^{N}E_{i}-E,}

где ΔE{\displaystyle \Delta E} — энергия связи компонентов в системе из N компонентов (частиц), Ei{\displaystyle E_{i}} — полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и E{\displaystyle E} — полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, то есть при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы. Она характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов — со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации, которая составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется в основном сильным взаимодействием. Для большинства ядер она составляет ~8 МэВ на нуклон.

История термина «энергия» — это… Что такое История термина «энергия»?

История термина «энергия»

Термин «энергия» происходит от слова energeia, которое впервые появилась в работах Аристотеля.

Томас Юнг первым использовал понятие «энергия» в современном смысле слова.

Маркиза Эмили дю Шатле в книге Уроки физики (Institutions de Physique), опубликованной в 1740 году, объединила идею Лейбница с практическими наблюдениями Виллема Гравесена (Willem Jacob ‘s Gravesande), чтобы показать: энергия движущегося объекта пропорциональна его массе и квадрату его скорости (не скорости самой по себе как полагал Ньютон).

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила[1]. Гюстав Гаспар Кориоли́с впервые использовал термин «кинетическая энергия» в 1829 году, а в 1853 году Уильям Ренкин впервые ввел понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический коэффициенты полезного действия своих систем. Инженеры такие как Сади Карно, физики такие как Джеймс Джоуль, математики такие как Эмиль Клапейрон и Герман Гельмгольц — все развивали идею, что способность совершать определенные действия, называемая работой, была как-то связана с энергией системы. В 1850х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии»[2]. Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввел математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввел закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия»[2]. В 1881 Уильям Томсон заявил перед слушателями:[3]

Само слово энергия, хотя и было впервые употреблено в современном смысле доктором Томасом Юнгом приблизительно в начале этого века, только сейчас входит в употребление практически после того, как теория, которая дала определение энергии, … развилась от просто формулы математической динамики до принципа, пронизывающего всю природу и направляющего исследователя в области науки.

Оригинальный текст (англ.)  

The very name energy, though first used in its present sense by Dr Thomas Young about the beginning of this century, has only come into use practically after the doctrine which defines it had … been raised from mere formula of mathematical dynamics to the position it now holds of a principle pervading all nature and guiding the investigator in the field of science.

Приблизительно в течение следующих тридцати лет эта новая наука имела несколько названий, например динамическая теория тепла (dynamical theory of heat) или энергетика (energetics). В 1920х годах общепринятым стал термин «Термодинамика», наука о преобразовании энергии.

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.

В 1918 было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряженной энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства).

В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях[4] так выразился о концепции энергии:

Существует факт, или, если угодно, закон, управляющей всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечено. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним.

Оригинальный текст (англ.)  

There is a fact, or if you wish, a law, governing natural phenomena that are known to date. There is no known exception to this law—it is exact so far we know. The law is called conservation of energy; it states that there is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity, which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number, and when we finish watching nature go through her tricks and calculate the number again, it is the same.

Фейнмановские лекции по физике[5]

Примечания

  1. Смит, Кросби Наука об Энергии — История Физики Энергии в Викторианской Британии = The Science of Energy — a Cultural History of Energy Physics in Victorian Britain. — The University of Chicago Press, 1998. — ISBN 0-226-76420-6
  2. 1 2 Смит, Кросби Наука об Энергии — История Физики Энергии в Викторианской Британии = The Science of Energy — a Cultural History of Energy Physics in Victorian Britain. — The University of Chicago Press, 1998. — ISBN 0-226-76421-4
  3. Томсон, Уильям. Об источниках энергии, доступных человеку для совершения механических эффектов = On the sources of energy available to man for the production of mechanical effect. — BAAS Rep, 1881. (Цитата: стр. 513)
  4. Richard Feynman The Feynman Lectures on Physics; Volume 1. — U.S.A: Addison Wesley. — ISBN 0-201-02115-3
  5. Фейнман, Ричард Фейнмановские лекции по физике = The Feynman Lectures on Physics; Volume 1 Т. 1.

См. также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *