Ферриты: применение, свойства, проницаемость
Феррит – материал, представляющий собой соединение оксида железа и оксидов ферримагнетиков. Он имеет формулу MFe2O4. Это химическое соединение обладает кубической кристаллической решеткой и активно используется в радиоэлектронике, благодаря большому удельному сопротивлению и наличию магнитных свойств.
Основные свойства
Феррит обладает следующими физическими характеристиками:
- Плотность: 4000 до 5000 кг/м3 (параметр определяется маркой железного сплава).Теплоемкость вещества: до 890 Дж/кг×К.
- Средний модуль упругости: 5500 МПа.
- Предел прочности на сжатие равняется 850 МПа, на растяжение – 110 МПа.
- Коэффициент Пуансона: до 0,4.
- Модуль Юнга: до 21 000 000 кПа.
Одним из основных физических свойств феррита является высокое электрическое сопротивление и магнитная проницаемость, что обуславливает низкие энергетические потери в высокочастотных зонах. Основным фактором, влияющим на этот параметр, является большая концентрация двухвалентных ионов железа. При повышенном количестве частиц Fe2+ увеличивается проводимость железного сплава и понижается его энергия активации. Высокое содержание двухвалентных ионов железа также приводит к снижению зависимости металла от различных свойств среды и состояния намагниченности.
Выделяют следующие механические свойства феррита:
- Металлы склеиваются при помощи клея марки БФ-4 и нарезаются инструментами, изготовленными из алмаза.
- Материал поддается полировке и шлифовке.
- При больших механических нагрузках (соударениях, вибрациях) появляются дополнительные напряжения в сердечниках, что приводит к возникновению трещин и иных внешних дефектов.
Главными отличительными особенностями феррита являются его магнитные свойства. Они зависят от величины магнитной проницаемости железной модификации и тангенса угла потерь. На эти характеристики оказывают влияние интенсивность резонансных явлений и механические напряжения. Для сохранения магнитных свойств материала нужно ограничить величину физических нагрузок на поверхность металла.
На магнитные свойства феррита воздействуют следующие факторы:
- Влияния высоких или низких температур: при термообработке железного сплава также могут произойти изменения магнитной проницаемости.
- Увлажнение металла: на средних и высоких частотах увеличиваются магнитные потери металла, что связано с изменением электропроводности материала. По этой причине рекомендуется герметизировать металл во время работы с влажными поверхностями.
- Радиационное облучение: воздействие интегральных потоков нейтронов с высокой интенсивностью приводит к изменению электромагнитных характеристик железного сплава.
- Слияние двух магнитных полей: происходит наложение частот, что повышает вероятность возникновения явления резонанса.
Для большей части железных модификаций характерна нестабильность магнитной проницаемости при длительном хранении металла в теплых или холодных помещениях.
Ферриты являются полупроводниками и диэлектриками. Их электрические свойства зависят от процессов ионного обмена и температурного режима. При высоких температурах возрастает подвижность отрицательных зарядов химического соединения, что приводит к изменению электропроводности и удельного сопротивления феррита.Электрические свойства могут также изменяться при разных концентрациях ионов железа.
В процессе теплового движения частицы Fe2+ оказывают влияние на проводимость материала и энергию активации электропроводности. В результате снижается толщина энергетических барьеров, препятствующих перемещению отрицательных частиц из 1 иона в другой.
На многие параметры феррита влияют условия изготовления. Выделяют следующие способы производства этого материала:
- При помощи ферритовых порошков: железный сплав изготавливается из специальных химических соединений. Растворы железа осаждают из специальных солей. Полученное вещество смешивают с гидратами щелочей. Смесь сушится и ферритизируется. Этот метод изготовления чаще всего используется в металлургии, что связано с большим эксплуатационным сроком ферритовых порошков.
- Окисная технология: представляет собой смешение и помол окислов металлов. Главными преимуществами этого способа являются безотходность и экономичность. В этом случае для изготовления феррита необходимо минимальное количество сырья. Во время смешивания окисей металлов в атмосферу не выделяются вредные химические соединения. Недостатком этой технологии является трудность измельчения окислов при получении однородных смесей.
- Химические методы: предоставляют возможность изготавливать высокочастотные ферриты без применения этанола и иных соединений с высокой воспроизводимостью структурных параметров.
- Термическое разложение: требуется сернокислые соли, где содержится кристаллизационная вода. В них добавляется небольшое количество H2O. Полученная смесь разлагается на окислы (их температура составляет не менее 900°С. Преимуществом этого способа является однородность распределения всех компонентов при термообработке.
- Бездиффузионный(шенитный) способ: для изготовления железных модификаций необходимы ферритные порошки, состоящие из растворов шенита. Для предельной гомогенизации вещества проходят процесс кристаллизации и ферритизации. Стабильность протекания этих процессов обуславливается состоянием поверхностных частиц шенита и доли полиморфных модификаций.
Для производства качественного феррита необходимо соблюдать основные условия изготовления и использовать высокоактивные ферритовые соединения или порошки.
Химический состав
Ферриты являются смесью оксидов железа и иных легирующих металлов, включающих в себя медь, цинк, магний, ниобий, кобальт, никель, литий и марганец. Средняя молярная масса вещества зависит от процентного содержания химических элементов в растворе. Она равняется 152 – 160 г/моль. В зависимости от химического состава и структуры выделяют следующие разновидности феррита:
- Никель-цинковые: отличаются высоким электрическим сопротивлением и чаще всего используются при высоких диапазонах частот: 500 КГц до 200 МГц.
- Магний-марганцевые: характеризуются низкой магнитной проницаемостью и чаще всего применяются для работы с частотами звука.
- Марганцево-цинковые: имеют низкие потери на вихревых токах и располагают высокими показателями диэлектрической проницаемости.
- Иттриевые: обладают небольшими диэлектрическими потерями. Они устойчивы к ферромагнитному резонансу.
- Литиевые: располагают высокими показателями намагниченности насыщения и термической стабильности.
Химический состав феррита определяется эксплуатационными характеристиками материала и сферой его применения.
Классификация ферритов
Ферриты подразделяются на 3 основных класса:
- Железные сплавы с гарантированными потерями и высокой магнитной проницаемостью.
- Материалы с гистерезисом (зависимости намагниченности от напряжений внешнего поля) в виде прямоугольной петли.
- Модификации железа с уникальными свойствами.
В зависимости от основных параметров металла были созданы марки ферритов:
- 2000 H: никель-цинковый феррит с магнитной проницаемостью 2000 Гн/м;
- 100 ВНП: железный сплав с магнитной проницаемостью 100 Гн/м, состоящий из никеля, цинка и меди;
- 6000 HM1: материал из магния и цинка, магнитная проницаемость составляет 6000 Гн/м;
- 300 П: железная модификация с магнитной проницаемостью 300 Гн/м, состоящий из магния, марганца и калия.
В соответствии с марками металлов была создана классификация ферритов, демонстрирующая виды применения данной модификации железа:
- Общепромышленные: отличаются высокой магнитной проницаемостью и применяются при частоте до 25 МГц. При его изготовлении применяют чистый феррит, представляющий собой частицы ферритовой пыли. Используются в большинстве отраслей радиоэлектроники.
- Термостойкие: металлы с устойчивой магнитной проницаемостью, не изменяющейся при резком перепаде температур. Они используются при производстве антенных и сердечников.
- Высокопроницаемые: благодаря повышенной магнитной проницаемости, они применяются при низких частотах. Используются при изготовлении комплектующих для статических преобразователей.
Отдельные марки ферритов могут применяться для производства определенной аппаратуры. В ионных аккумуляторах может использоваться только феррит цинка, являющийся магнитомягким металлом. Для магнитных головок изготавливают железные сплавы на основе никель-цинковых материалов. При сборке датчиков и специальных детекторов используют ферриты с высокой термочувствительностью. Ферриты, способные работать при импульсном намагничивании, используются во время производства трансформаторов. Модификации железа, имеющие низкие потери при частоте, могут применяться в телевизионных приборах.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
stankiexpert.ru
3. 1. Магнитные характеристики ферромагнетиков
В настоящее время известно, что магнитные свойства вещества обусловлены спиновым и орбитальным магнитными моментами электронов, а также магнитными моментами ядер атомов. Опыты показали, что у некоторых металлов спиновый магнитный момент играет основную роль в создании магнитного момента атома. Чтобы атом в целом имел магнитный момент, спиновые магнитные моменты должны быть нескомпенсированы. Это возможно в атомах с незаполненными оболочками. К ним относятся элементы переходной группы, редкоземельные элементы и некоторые другие. Однако наличие незаполненных оболочек в атоме еще не является достаточным условием для существования ферромагнетизма. Между спинами соседних атомов должно существовать еще сильное электрическое взаимодействие квантовомеханической природы (обменное взаимодействие). Это приводит к возникновению самопроизвольной намагниченности, когда магнитные моменты атомов ориентируются в очень малых объемах (доменах) в одном направлении, как, например, у железа (Fe), никеля (Ni), кобальта (Co), самария (Sm) и некоторых других веществ, называемых ферромагнетиками.
Существуют вещества, для которых энергетически выгодной является антипараллельная ориентация спинов (отрицательное значение обменной энергии). Эти вещества называют антиферромагнетиками. Кристаллическая решетка этих материалов состоит из двух подрешеток, каждая из которых обладает своим магнитным моментом. Магнитные моменты подрешеток направлены антипараллельно. Различают скомпенсированный (суммарный магнитный момент материала равен нулю) и нескомпенсированный антиферромагнетизм (самопроизвольная намагниченность отлична от нуля). Последние материалы носят название ферримагнетиков или ферритов. Многие свойства ферритов (доменная структура, поведение во внешних магнитных полях и т. д.) аналогичны свойствам ферромагнетиков.
Для всех веществ между намагниченностью M и внешним магнитным полем H имеется связь вида:
, (1.1)
где – магнитная восприимчивость. Величина восприимчивости диа- и парамагнитных веществ очень мала (10-2 — 10-6), причем у диамагнитных веществ она отрицательна. Для ферро- и ферримагнетиков соотношение (1) является нелинейным, так как существует сильная зависимость от напряженности магнитного поля, при этом восприимчивость этих веществ достигает очень больших (до 106
, (1.2)
где – магнитная проницаемость вакуума (=410-7 Гн/м). Величина
называется магнитной проницаемостью вещества.3. 1. 1. Поведение ферромагнетиков и ферритов во внешних магнитных полях
При отсутствии внешнего магнитного поля в зависимости от магнитной предыстории ферромагнетики могут находиться как в размагниченном состоянии (М = 0, Н=0), так и в состоянии с некоторой остаточной намагниченностью (М 0, Н = 0). Размагниченное состояние характеризуется тем, что магнитные моменты доменов распределены совершенно хаотично. Его можно получить, например, нагреванием вещества выше точки Кюри (то есть температуры, при которой ферромагнетик становится парамагнетиком) и последующим охлаждением в отсутствии магнитного поля или помещением в переменное магнитное поле с плавно убывающей амплитудой.
При увеличении внешнего магнитного поля H магнитное состояние предварительно размагниченного ферромагнетика меняется по кривой намагничивания (см. рис. 1. 1).
области происходит в основном за счет обратимых процессов, которые обусловлены упругим смещением границ между доменами, и описывается выражением:
, (1.3)
где – начальная магнитная восприимчивость.
Рис. 1. 1. Кривая намагничивания ферромагнетика
Вторая область кривой намагничивания (область Релея) характеризуется тем, что в этой области наряду с обратимым смещением доменных границ существенную роль начинают играть необратимые процессы смещения. В этой области зависимость намагниченности от поля подчиняется закону Рэлея:
, (1.4)
где – коэффициент Рэлея.
Третья область кривой соответствует быстрому возрастанию намагниченности, изменение которой имеет здесь ступенчатый вид (скачки Баркгаузена), что связано с преимущественно необратимым смещением границ между областями самопроизвольной намагниченности.
В области 4 (область приближения к насыщению) изменение намагниченности объясняется главным образом процессами вращения, когда направление вектора самопроизвольной намагниченности доменов приближается к направлению внешнего поля. Процессы вращения могут носить как обратимый, так и необратимый характер.
На последнем участке (5) кривой намагничивания значение намагниченности практически равно намагниченности насыщения . Слабое увеличение намагниченности здесь происходит в результате ориентации спиновых моментов отдельных электронов, находящихся внутри областей самопроизвольной намагниченности.
Если после получения основной кривой намагничивания уменьшать постепенно значение магнитного поля, то кривая намагничивания не будет совпадать с основной кривой (см. рис. 1. 2). Для одних и тех же значений напряженности магнитного поля получаются различные значения намагниченности. Это явление называется магнитным гистерезисом.
Значение намагниченности, получаемое при напряженности поля, равной нулю, называется остаточной намагниченностью . Она обычно меньше значения насыщения. Если с этого момента опять увеличивать поле, но уже в другом направлении, то величина намагниченности будет уменьшаться и при некотором значении обратного поляона будет равна нулю. Это значение напряженности магнитного поля называется коэрцитивной силой. Дальнейшее увеличение напряженности обратного поля изменит значение намагниченности до величины —. Таким образом, пройдя полный цикл изменения намагниченности от +
Аналогичная петля гистерезиса получается и в координатах Н, В (магнитное поле, магнитная индукция). Однако, как видно из формулы (2), в высоких полях индукция продолжает возрастать вместе с ростом поля благодаря росту слагаемого .
Рис. 1. 2. Петля магнитного гистерезиса ферромагнетиков и ферритов
Рис. 1. 3. Зависимость полной , дифференциальной и обратимой проницаемостей от поля на кривой намагничивания
Динамика процессов намагничивания при различных значениях поля может быть охарактеризована величинами проницаемостей (см. рис. 1.3).
Участок 1 кривой намагничивания характеризуется начальной проницаемостью , которая определяется как:
. (1.5)
Полная проницаемость определяется отношением величины индукции В к соответствующему значению магнитного поля в данной точке кривой индукции:
. (1.6)
Как видно из рисунка 1. 3, полная проницаемость при определенном значении магнитного поля достигает максимальной величины. Эту величину легко найти, проведя касательную к кривой намагничивания из начала координат. Угол наклона этой касательной определяет значение максимальной проницаемости . Соответствующее значение поля называется полем максимальной проницаемости. Если магнитное состояние вещества фиксируется какой-либо точкой на кривой намагничивания, то при увеличении магнитного поля на величинувозрастает и индукция на величинуи, соответственно, смещается точка на кривой намагничивания. Величина:
(1.7)
называется дифференциальной проницаемостью. При уменьшении магнитного поля индукция уменьшается не по кривой намагничивания, а несколько медленнее. Если затем опять увеличить поле, то магнитная индукция возвратится к исходному состоянию, но уже по новому пути (то есть будет описана узкая петля). Наклон полученной петли называется обратимой проницаемостью и описывается выражением:
. (1.8)
Все сказанное выше о поведении и характеристиках ферромагнетиков в полной мере относится и к ферритам.
studfile.net
41. Магнитные свойства вещества. Пара-, диа-, ферро-, ферри- и антиферромагнетики.
Магнитные свойства вещества
Опыт показывает, что все вещества, помещенные в магнитное поле, намагничиваются.
Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладает орбитальным магнитным моментом (см. (109.2)) pm=ISn, модуль которого
где I=e — сила тока, — частота вращения электрона по орбите, S — площадь орбиты. Если электрон движется по часовой стрелке, то ток направлен против часовой стрелки и вектор рm (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке.
С другой стороны, движущийся по орбите электрон обладает механическим моментом импульса Le, модуль которого
где v = 2, r2= S. Вектор Le (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона.
Из рис. 187 следует, что направления рm и Le, противоположны, поэтому, учитывая оба выражения, получим
где величина
называется гиромагнитным отношением орбитальных моментов.
Диа-, пара-,ферро-,ферри- и антиферромагнетики
Всякое вещество является магнетиком, т. е. оно способно под действием магнитного поля приобретать магнитный момент (намагничиваться).
электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движение, которое эквивалентно круговому току. у атома появляется составляющая магнитного поля, направленная противоположно внешнему полю. Наведенные составляющие магнитных полей атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле. Этот эффект получил название диамагнитного эффекта, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.
В отсутствие внешнего магнитного поля диамагнетик немагнитен,. К диамагнетикам относятся многие металлы (например, Bi, Ag, Au, Сu), большинство органических соединений, смолы, углерод и т. д.
парамагнитные — вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.
вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослаблении внешнего магнитного поля да нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. К парамагнетикам относятся редкоземельные элементы, Pt, Аl и т.д.
ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля.
При отсутствии внешнего магнитного поля магнитные моменты отдельных доменов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю и ферромагнетик не намагничен. с ростом Н намагниченность J (см. рис. 192) и магнитная индукции В (см. рис. 193) уже в довольно слабых полях растут очень быстро. Этим объясняется также увеличение ферромагнетиков до максимального значения в слабых полях (см. рис. 194). При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса (рис. 195). Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную силу; размагничиванию способствуют также встряхивание и нагревание ферромагнетика. Существуют вещества, в которых обменные силы вызывают антипараллельную ориентацию спиновых магнитных моментов электронов. Такие тела называются антиферромагнетиками. В последнее время большое значение приобрели полупроводниковые ферромагнетики — ферриты, химические соединения типа МeОFе2О3, где Me — ион двухвалентного металла (Mn, Co, Ni, Сu, Mg, Zn, Cd, Fe). Они отличаются заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллиарды раз большим, чем у металлов). Ферриты применяются для изготовления постоянных магнитов, ферритовых антенн и т.д.
studfile.net
В чем отличие феррОмагнетиков от феррИмагнетиков ?
«Варвар» подробно и точно оветил на Ваш основной вопрос, повторяться не буду. А вот на вопрос — «сердечник — ферромагнетик. Подойдет ли ферритовый сердечник? » ответ — ДА, ПОДОЙДЁТ. Поскольку ФЕРРИТОВЫЙ сердечник — именно ФЕРРОМАГНЕТИК. Слово феррит имеет смысл не обозначения типа магнитного упорядочения, а — химический, феррОмагнитные соединения типа Fe2O3+МеОх точнее керамика из таких оксидов… . Но обратите внимание — ферромагнетики-то отличаются коэцертивной силой и формой петли. Как железо, так и феррит. Они могут бфть как магнитожёсткими — постоянные магниты, так и магнитомягкими, и вообще, с прямоугольной петлёй гистерезиса. Смотрте, что Вам нужно.
Ферромагнетизм — это магнетизм кооперативного типа (см. раздел 2.2), заключающийся в установлении коллинеарного дальнего порядка всех магнитных моментов в системе (рис. 7). Намагниченность существует, таким образом, даже в отсутствие внешнего поля (спонтанная намагниченность) . В идеальном ферромагнетике все ионы обладают идентичными спонтанными магнитными моментами и занимают идентичные кристаллографические позиции. Ферримагнетизм отличается тем, что в его создании участвуют посители магнитного момента двух (или более) видов, различающиеся по химическим свойствам (они изображены на рис. 9 незаштрихованными и заштрихованными кружочками) . Этомогут быть либо ионы одного и того же вещества, но с разной валентностью (например, Fe2 + и Fe3 + ) , либо ионы двух разных элементов (например, Gd и Со) . Картинки смотрите в этой книге : К. М. Хёрд — Многообразие видов магнитного упорядочения в твёрдых телах скачать pdf — <a rel=»nofollow» href=»http://ufn.ru/ufn84/ufn84_2/Russian/r842e.pdf» target=»_blank»>http://ufn.ru/ufn84/ufn84_2/Russian/r842e.pdf</a>
touch.otvet.mail.ru
1. Ферромагнетики. Основные свойства.
К ферромагнетикам (ferrum – железо) относятся вещества, магнитная восприимчивость которых положительна и достигает значений . Намагниченностьи магнитная индукцияферромагнетиков растут с увеличением напряженности магнитного полянелинейно, и в поляхнамагниченность ферромагнетиков достигает предельного значения, а вектор магнитной индукции растет линейно с:
Ферромагнитные свойства материалов проявляются только у веществ в твердом состоянии, атомы которых обладают постоянным спиновым, или орбитальным, магнитным моментом, в частности у атомов с недостроенными внутренними электронными оболочками. Типичными ферромагнетиками являются переходные металлы. В ферромагнетиках происходит резкое усиление внешних магнитных полей. Причем для ферромагнетиков сложным образом зависит от величины магнитного поля. Типичными ферромагнетиками являются Fe, Co, Ni, Gd, Tb, Dy, Ho, Er, Tm, а также соединения ферромагнитных материалов с неферромагнитными:,,и др.
Существенным отличием ферромагнетиков от диа- и парамагнетиков является наличие у ферромагнетиков самопроизвольной (спонтанной) намагниченности в отсутствие внешнего магнитного поля. Наличие у ферромагнетиков самопроизвольного магнитного момента в отсутствие внешнего магнитного поля означает, что электронные спины и магнитные моменты атомных носителей магнетизма ориентированы в веществе упорядоченным образом.
Ферромагнетики – это вещества, обладающие самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, температуры.
Ферромагнетики, в отличие от слабо магнитных диа- и парамагнетиков, являются сильно магнитными веществами: внутреннее магнитное поле в них может в сотни раз превосходить внешнее поле.
Основные отличия магнитных свойств ферромагнетиков.
1. Нелинейная зависимость намагниченности от напряженности магнитного поля Н (рис. 1).
Как видно из рис. 1, при наблюдается магнитное насыщение.
2. При зависимость магнитной индукции В от Н нелинейная, а при– линейная (рис. 2).
Рис. 1 Рис. 2
3. Зависимость относительной магнитной проницаемости от Н имеет сложный характер (рис. 3), причем максимальные значения μ очень велики ().
Рис. 3 Рис. 4
Впервые систематические исследования μ от Н были проведены в 1872 г. А.Г. Столетовым (1839–1896) – выдающимся русским физиком, организатором физической лаборатории в Московском университете. На рис. 4 изображена зависимость магнитной проницаемости некоторых ферромагнетиков от напряженности магнитного поля – кривая Столетова.
4. У каждого ферромагнетика имеется такая температура, называемая точкой Кюри (), выше которой это вещество теряет свои особые магнитные свойства.
Наличие температуры Кюри связано с разрушением при упорядоченного состояния в магнитной подсистеме кристалла – параллельной ориентации магнитных моментов. Для никеля температура Кюри равна 360 °С. Если подвесить образец никеля вблизи пламени горелки так, чтобы он находился в поле сильного постоянного магнита, то не нагретый образец может располагаться горизонтально, сильно притягиваясь к магниту (рис. 5). По мере нагрева образца и достижения температурыферромагнитные свойства у никеля исчезают и образец никеля падает. Остыв до температуры ниже точки Кюри, образец вновь притянется к магниту. Нагревшись, вновь падает и т.д., колебания будут продолжаться все время, пока горит свеча.
Рис. 5
5. Существование магнитного гистерезиса.
На рисунке 6 показана петля гистерезиса – график зависимости намагниченности вещества от напряженности магнитного поля Н.
Рис. 6
Намагниченность приназывается намагниченностью насыщения.
Намагниченность приназывается остаточной намагниченностью (что необходимо для создания постоянных магнитов).
Напряженность магнитного поля, полностью размагниченного ферромагнетика, называется коэрцитивной силой. Она характеризует способность ферромагнетика сохранять намагниченное состояние.
Большой коэрцитивной силой (широкой петлей гистерезиса) обладают магнитотвердые материалы. Малую коэрцитивную силу имеют магнитомягкие материалы.
Измерение гиромагнитного отношения для ферромагнетиков показали, что элементарными носителями магнетизма в них являются спиновые магнитные моменты электронов.
Самопроизвольно, при , намагничиваются лишь очень маленькие монокристаллы ферромагнитных материалов, например никеля или железа. Для того чтобы постоянным магнитом стал большой кусок железа, необходимо его намагнитить, т.е. поместить в сильное магнитное поле, а затем это поле убрать. Оказывается, что прибольшой исходный кусок железа разбит на множество очень маленьких (), полностью намагниченных областей – доменов. Векторы намагниченности доменов в отсутствие внешнего магнитного поля ориентированы таким образом, что полный магнитный момент ферромагнитного материала равен нулю. Если бы в отсутствие поля кристалл железа был бы единым доменом, то это привело бы к возникновению значительного внешнего магнитного поля, содержащего значительную энергию (рис. 7, a). Разбиваясь на домены, ферромагнитный кристалл уменьшает энергию магнитного поля. При этом, разбиваясь на косоугольные области (рис. 7, г), можно легко получить состояние ферромагнитного кристалла, из которого магнитное поле вообще не выходит. В целом в монокристалле реализуется такое разбиение на доменные структуры, которое соответствует минимуму свободной энергии ферромагнетика. Если поместить ферромагнетик, разбитый на домены, во внешнее магнитное поле, то в нем начинается движение доменных стенок. Они перемещаются таким образом, чтобы областей с ориентацией вектора намагниченности по полю стало больше, чем областей с противоположной ориентацией (рис. 7, б, в, г). Такое движение доменных стенок понижает энергию ферромагнетика во внешнем магнитном поле. По мере нарастания магнитного поля весь кристалл превращается в один большой домен с магнитным моментом, ориентированным по полю (рис. 7, а).
Рис. 7
Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнитомягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнитожесткие материалы применяют при изготовлении постоянных магнитов.
studfile.net
ФЕРРИМАГНЕТИЗМ И МАТЕРИАЛЫ ТИПА ФЕРРИТОВ
МАГНИТНЫЕ МАТЕРИАЛЫ
В § 2 было указано, что для ферромагнетиков характерно параллельное расположение спинов и положительное значение обменного интеграла. Советский ученый J1. Д. Ландау теоретически предсказал [10] существование веществ, для которых энергетически более выгодным является антипараллельная ориентация спинов, чему соответствует отрицательное значение интеграла обменной энергии. Это явление было названо антиферромагнетизмом. В дальнейшем антиферромагнетизм был подтвержден опытом[11].
Различают скомпенсированные и нескомпенсированные антиферромагнетики. Первые являются-собственно антиферромагнетиками и имеют суммарный магнитный момент, равный нулю, у вторых этот момент отличен от нуля. Нескомпенсированный антиферромагнетизм называют ферримагнетизмом. Многие свойства ферримагнетиков, например зависимости / = f (Я), качественно аналогичны свойствам ферромагнетиков. Однако между этими двумя группами веществ имеются и принципиальные различия.
Для иллюстрации этого положения обратимся, например, к рассмотрению зависимости намагниченности насыщения ферро — и ферримагнетиков от температуры. Для ферромагнетиков в этом отношении наиболее характерным является существование точки Кюри, т. е. температуры, выше которой вещество становится парамагнитным. Для некоторых ферримагнетиков при повышении температуры интенсивность насыщения постепенно уменьшается, переходит через нуль, начинает возрастать и далее снова падает до нуля. При дальнейшем нагреве ферримагнетик остается немагнитным, т. е. температура второго обращения интенсивности насыщения в нуль является точкой Кюри. Температура первого перехода через «уль называется точкой компенсации [12]. Объяснить появление точки компенсации и ряда других явлений, возникающих в ферримагнетиках, с позиций ферромагнетизма невозможно. Потребовалось создание теории ферри — магнетизма.
Теория ферримагнетизма пока еще полностью не разработана. В настоящее время наибольшее признание в этой области имеет теория, созданная французским ученым Неелем.
Чтобы понять основные положения теории Нееля, рассмотрим некоторые особенности кристаллической структуры и свойств ферритов, широко применяемых в технике группы ферримагнетиков.
Ферриты представляют собой двойные окислы, образуемые окисью железа Fe203 с окислами двухвалентных металлов[13], и имеют химическую формулу Me0-Fe203, где Me — двухвалентный металл (железо, никель, марганец, цинк, кобальт, медь, кадмий, магний). Это так называемые простые, или однокомпонент- ные ферриты (моноферриты). Некоторые из них, например никелевый NiO • Fe203 или марганцевый МпО • Fe203, являются магнитными; другие, такие, как Zn • Fe203 и CdO • Fe203,— немагнитными. Широкое применение имеют в технике также смешанные ферриты, представляющие собой твердые растворы двух или нескольких простых ферритов.
Ферромагнитные свойства ферритов были открыты еще в 1878 г. В 1909 г. немецкий ученый Хильперт получил патент на их изготовление. Одновременно с ним в России исследованиями ферритов как магнитного материала занимался В. П. Вологдин. Однако в то время ферриты не получили практического применения. Начиная с 1935 г., крупные работы в этой области проводила голландская фирма «Филипс». В дальнейшем, особенно в послевоенные годы, проблема ферритов получила широкое развитие.
Свойства ферритов в значительной степени определяются их кристаллической структурой. В настоящее время находят применение ферриты, имеющие кристаллическую структуру, подобную структуре природных минералов, — шпинели, магнетоплумбита, граната, а также некоторые другие. Наиболее изученным является феррит со структурой шпинели.
Рис. 7. Схематическое
Изображение элементарной ячейки шпинельной структуры
Рис. 8. Схематическое изображение тетраэдри — ческого (а) и октаэдрического (б) узлов (светлыми кружками обозначены ионы кислорода, черными — ионы металлов)
Элементарная ячейка шпинели представляет собой куб с реб-
О
Ром а ~ 8,5 А. Для удобства рассмотрения этот куб можно разделить на восемь более мелких кубиков с ребрами а/2, называемых октантами (рис. 7). Структура заштрихованных и оставленных светлыми на рис. 7 октантов различна.
Всего элементарная ячейка шпинели содержит восемь «молекул» MeFe204, т. е. 32 иона кислорода, 16 ионов железа и 8 ионов двухвалентного металла Me. Ионы кислорода образуют гранецентрированную кубическую решетку. В промежутках между ионами кислорода находятся ионы металлов, причем эти ионы окружены четырьмя или шестью ионами кислорода так, как это показано на рис. 8, а и б. Первое расположение называется тетраэдрическим, второе — октаэдрическим.
Неель рассматривал кристаллическую решетку шпинели, состоящую из двух подрешеток: одна состоит из магнитных ионов металлов, находящихся в тетраэдрических промежутках (под — решетка А), и другая — из ионов в октаэдрических промежутках (подрешетка В).
В элементарной ячейке шпинели имеется всего 64 тетраэдри- ческих и 32 октаэдрических места (пустот). Из них заняты 8 тет — раэдрических (Л-узлы) и 16 октаэдрических (В-узлы) мест; 72 места остаются свободными. Отметим также, что ближайшие соседи какого-либо иона в подрешетке А принадлежат к подрешетке В.
Неель распространил теорию молекулярного поля Вейсса на кристаллическую решетку шпинели. При этом он предположил, что между магнитными ионами подрешеток Л и В имеет место сильное отрицательное взаимодействие типа АВ, приводящее к антипараллельному расположению’спинов (магнитных моментов) подрешеток. Взаимодействие типов АА и ВВ по сравнению с АВ мало. При равенстве магнитных моментов подрешеток Л и В имеет место антиферромагнетизм. Если магнитные моменты Л и В не равны между собой, существует ферримагнетизм.
Ионы двухвалентного металла Ме++ и трехвалентного железа Fe+++ в решетке ферритов МеО • Fe203 могут быть расположены различным образом, образуя при этом один из двух типов шпинели: прямую (нормальную) или обращенную.
В прямой шпинели Ме++ занимает тетраэдрические пустоты Л, a Fe+++ — октаэдрические пустоты В. В форме прямой шпинели кристаллизуются ферриты цинка и кадмия. Прямые шпинели неферромагнитны.
В обращенной шпинели в тетраэдрических промежутках находится половина ионов Fe+++, в октаэдрических — вторая половина ионов Fe+++ и ионы Ме++. В форме обращенной шпинели кристаллизуются ферриты никеля, марганца, магния, меди, кобальта и некоторых других элементов. Обращенные шпинели ферромагнитны.
Условно два указанных типа шпинелей обозначают следующим образом: Me++[Fe2+++]04 — прямая шпинель, Fe+++[Me++Fe+++]04 — обращенная шпинель. Ионы, занимающие тетраэдрические узлы, написаны перед квадратными скобками, а ионы, занимающие октаэдрические узлы, — в скобках.
Расчеты, проведенные в соответствии с теорией Нееля, объясняют многие, неясные ранее положения, встречающиеся на практике. Покажем это на примере.
По данным Вейсса магнитный момент М молекулы феррита железа Fe0-Fe203 (магнетита), определенный опытным путем, равен 4,08 |лв *. Если бы все некомпенсированные моменты молекулы магнетита были расположены параллельно друг другу, то М должен был бы равняться 14 ц, в, так как Мре+++ = 5цв, а MFe++ = 4 (л в. Магнетит кристаллизуется в форме обращенной шпинели, т. е. его структурная формула имеет вид: Fe+++ [Fe++Fe+++] 04,
* Единица магнитного момента (магнетон Бора), численно равная магнитному моменту спина электрона (0,927-Ю-20 СГСМ).
А суммарный момент определится так:
М = Мокт — Л[14]Тетр = (4jiB + 5цв ) — 5jiB = ,
Что хорошо согласуется с данными опыта.
Становится понятным также аномальный характер зависимости Js=f (Т) и наличие точки компенсации для некоторых ферритов, о чем было упомянуто в начале настоящего параграфа. На рис. 9 дано схематическое изображение температурной зависимости намагниченности насыщения для подрешеток. Л, В и результирующая кривая для феррита с точкой компенсации, представляющая разность (алгебраическую сумму) двух первых кривых. Точка Тк является точкой компенсации, а в — точкой Кюри.
Из приведенных кривых и общих положений теории’ Нееля следует также, что намагниченность насыщения ферритов не может быть большой. Действительно, Js ферритов в несколько раз меньше Js ферромагнитных материалов, у которых имеет место параллельное расположение спинов.
Теория ферримагнетизма значительно сложнее, чем это было рассмотрено нами. Например, взаимодействие ионов подрешеток Л и В в ферритах происходит не непосредственно, а через немагнитные ионы кислорода, электронные оболочки которых «возбуждаются» и принимают участие в «сверхобмене»; не учитывалось взаимодействие типов АА и ВВ и т. д. Теория Нееля не отвечает пока еще требованиям научной строгости и завершенности и встречает по этим причинам возражения со стороны некоторых ученых *. Однако ее данные хорошо согласуются с опытом, и поэтому можно ожидать, что в дальнейшем она получит углубленное развитие.
, Октаэдр (подрешеткав)
Результирующая намагниченность
. Тетраэдр (подрешетка А)
J / в Температура
Рис. 9. Схематическое изображение зависимости Js — f(T) подрешеток А, В и результирующая кривая для феррита с точкой компенсации
Мы рассмотрели только простые ферриты со структурой шпинели. Аналогичным образом можно подойти и к исследованию ферритов с другой структурой.
В электрическом отношении ферриты относятся к классу полупроводников и имеют удельное электрическое сопротивление, в миллиарды раз превышающее сопротивление металлических ферромагнетиков. Это практически исключает возникновение в ферритах вихревых токов при воздействии на них переменных магнитных полей, что позволяет расширить область применения фер-
ригов как магнитного материала до сотен мегагерц вместо нескольких десятков килогерц для металлических материалов.
Применение ферритов в радиоэлектронике по своему значению сравнивают с введением полноводной техники, т. е. оценивают как принципиальный, крупный скачок вперед.
Простые ферриты во многих отношениях уступают смешанным ферритам. Например, в настоящее время большое применение имеют никельцинковые ферриты, представляющие собой твердый раствор магнитного никелевого и немагнитного цинкового ферритов. На рис. 10 представлена тройная диаграмма такого смешанного феррита, показывающая зависимость начальной проницаемости ца от состава. Весьма широко применяемыми и перспективными являются многокомпонентные ферриты.
В настоящее время получили широкое применение магнитномяг- кие и магнитнотвердые ферриты, ферриты с прямоугольной петлей гистерезиса, ферриты для устройств СВЧ, ферриты с высокой магнитострикцией.
Области и объем применения ферритов непрерывно расширяются.
Сплавы на основе Fe — Ni — Al являются важнейшими современными материалами для постоянных магнитов. Они были открыты в 1932 г. и с тех пор интенсивно изучаются и совершенствуются. Большой …
МАГНИТНЫЕ МАТЕРИАЛЫ Л. Л.ПРЕ06РЛЖЕНСКИН. ВЕЛИЧИНЫ, ХАРАКТЕРИЗУЮЩИЕ ПОВЕДЕНИЕ ТЕЛ В МАГНИТНОМ ПОЛЕ, И ЕДИНИЦЫ ИЗМЕРЕНИЯ ЛЛ агнитное поле возникает при изменении электрического поля, в частности, в результате движения электрических зарядов. Движение …
Основными технологическими операциями, выполняемыми при изготовлении магнитопроводов из лент или листов являются: резка ленты или штамповка пластин, электроизоляция витков или пластин между собой, навивка сердечников или сборка пакетов. Во всех …
msd.com.ua
Ферромагнетики. Основные свойства ферромагнетиков. Магнитный гистерезис. Точка Кюри. Доменная структура
К ферромагнетикам (ferrum – железо) относятся вещества, магнитная восприимчивость которых положительна и достигает значений . Намагниченность и магнитная индукция ферромагнетиков растут с увеличением напряженности магнитного поля нелинейно, и в полях намагниченность ферромагнетиков достигает предельного значения , а вектор магнитной индукции растет линейно с :
Ферромагнитные свойства материалов проявляются только у веществ в твердом состоянии, атомы которых обладают постоянным спиновым, или орбитальным, магнитным моментом, в частности у атомов с недостроенными внутренними электронными оболочками. Типичными ферромагнетиками являются переходные металлы. В ферромагнетиках происходит резкое усиление внешних магнитных полей. Причем для ферромагнетиков сложным образом зависит от величины магнитного поля. Типичными ферромагнетиками являются Fe, Co, Ni, Gd, Tb, Dy, Ho, Er, Tm,а также соединения ферромагнитных материалов с неферромагнитными: , , и др.
Существенным отличием ферромагнетиков от диа- и парамагнетиков является наличие у ферромагнетиков самопроизвольной (спонтанной) намагниченности в отсутствие внешнего магнитного поля. Наличие у ферромагнетиков самопроизвольного магнитного момента в отсутствие внешнего магнитного поля означает, что электронные спины и магнитные моменты атомных носителей магнетизма ориентированы в веществе упорядоченным образом.
Ферромагнетики – это вещества, обладающие самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, температуры.
Ферромагнетики, в отличие от слабо магнитных диа- и парамагнетиков, являются сильно магнитными веществами: внутреннее магнитное поле в них может в сотни раз превосходить внешнее поле.
Основные отличия магнитных свойств ферромагнетиков.
1. Нелинейная зависимость намагниченности от напряженности магнитного поля Н (рис. 6.5).
Как видно из рис. 6.5, при наблюдается магнитное насыщение.
2. При зависимость магнитной индукции В от Н нелинейная, а при – линейная (рис. 6.6).
Рис. 6.5 Рис. 6.6
3. Зависимость относительной магнитной проницаемости от Н имеет сложный характер (рис. 6.7), причем максимальные значения μ очень велики ( ).
Рис. 6.7 Рис. 6.8
Впервые систематические исследования μ от Н были проведены в 1872 г. А.Г. Столетовым (1839–1896) – выдающимся русским физиком, организатором физической лаборатории в Московском университете. На рис. 6.8. изображена зависимость магнитной проницаемости некоторых ферромагнетиков от напряженности магнитного поля – кривая Столетова.
4. У каждого ферромагнетика имеется такая температура, называемая точкой Кюри( ),выше которой это вещество теряет свои особые магнитные свойства.
Наличие температуры Кюри связано с разрушением при упорядоченного состояния в магнитной подсистеме кристалла – параллельной ориентации магнитных моментов. Для никеля температура Кюри равна 360 °С. Если подвесить образец никеля вблизи пламени горелки так, чтобы он находился в поле сильного постоянного магнита, то не нагретый образец может располагаться горизонтально, сильно притягиваясь к магниту (рис. 6.9). По мере нагрева образца и достижения температуры ферромагнитные свойства у никеля исчезают и образец никеля падает. Остыв до температуры ниже точки Кюри, образец вновь притянется к магниту. Нагревшись, вновь падает и т.д., колебания будут продолжаться все время, пока горит свеча.
Рис. 6.9
5. Существование магнитного гистерезиса.
На рисунке 6.10 показана петля гистерезиса – график зависимости намагниченности вещества от напряженности магнитного поля Н.
Рис. 6.10
Намагниченность при называется намагниченностью насыщения.
Намагниченность при называется остаточной намагниченностью (что необходимо для создания постоянных магнитов).
Напряженность магнитного поля, полностью размагниченного ферромагнетика, называется коэрцитивной силой. Она характеризует способность ферромагнетика сохранять намагниченное состояние.
Большой коэрцитивной силой (широкой петлей гистерезиса) обладают магнитотвердые материалы. Малую коэрцитивную силу имеют магнитомягкие материалы.
Измерение гиромагнитного отношения для ферромагнетиков показали, что элементарными носителями магнетизма в них являются спиновые магнитные моменты электронов.
Самопроизвольно, при , намагничиваются лишь очень маленькие монокристаллы ферромагнитных материалов, например никеля или железа. Для того чтобы постоянным магнитом стал большой кусок железа, необходимо его намагнитить, т.е. поместить в сильное магнитное поле, а затем это поле убрать. Оказывается, что при большой исходный кусок железа разбит на множество очень маленьких ( ), полностью намагниченных областей – доменов. Векторы намагниченности доменов в отсутствие внешнего магнитного поля ориентированы таким образом, что полный магнитный момент ферромагнитного материала равен нулю. Если бы в отсутствие поля кристалл железа был бы единым доменом, то это привело бы к возникновению значительного внешнего магнитного поля, содержащего значительную энергию (рис. 6.11, a). Разбиваясь на домены, ферромагнитный кристалл уменьшает энергию магнитного поля. При этом, разбиваясь на косоугольные области (рис. 6.11, г), можно легко получить состояние ферромагнитного кристалла, из которого магнитное поле вообще не выходит. В целом в монокристалле реализуется такое разбиение на доменные структуры, которое соответствует минимуму свободной энергии ферромагнетика. Если поместить ферромагнетик, разбитый на домены, во внешнее магнитное поле, то в нем начинается движение доменных стенок. Они перемещаются таким образом, чтобы областей с ориентацией вектора намагниченности по полю стало больше, чем областей с противоположной ориентацией (рис. 6.11, б, в, г). Такое движение доменных стенок понижает энергию ферромагнетика во внешнем магнитном поле. По мере нарастания магнитного поля весь кристалл превращается в один большой домен с магнитным моментом, ориентированным по полю (рис. 6.11, а).
Рис. 6.11
Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнитомягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнитожесткие материалы применяют при изготовлении постоянных магнитов.
Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты ( ) сочетающие ферромагнитные и полупроводниковые свойства.
Магнитные материалы широко используются в традиционной технологии записи информации в винчестере (рис. 6.12).
Рис. 6.12 Рис. 6.13
Магнитное вещество 2 (рис. 6.13) нанесено тонким слоем на основу твердого диска 3. Каждый бит информации представлен группой магнитных доменов (в идеальном случае – одним доменом). Для перемагничивания домена (изменения направления вектора его намагниченности) используется поле записывающей головки 4 (5 – считывающая головка). Наличие дополнительных стабилизирующих слоев, препятствует самопроизвольной потере информации. Записью на вертикально ориентированные домены достигается плотность до 450 Гбайт/см2.
megaobuchalka.ru