Физика диэлектриков – Урок 26. Лекция 26. Проводники и диэлектрики в электрическом поле. Конденсаторы.

Содержание

5. Физические свойства диэлектриков

Диэлектриками называют материалы, основным электрическим свойствами которых является способность к поляризации и в которых возможно существование электрического поля. Поляризация это – процесс смещения и упорядочения связанных зарядов под действием внешнего электрического поля. К диэлектрикам относятся материалы, у которых ширина запрещенной зоны превышает 3 эВ.

К пассивным диэлектрическим материалам относятся материалы, в которых диэлектрическая проницаемость не зависит от напряженности внешнего электрического поля. Эти диэлектрики применяются в качестве электроизоляционных материалов и диэлектриков в конденсаторах.

Активные диэлектрики – это диэлектрики, в которых наблюдается заметная нелинейная зависимость диэлектрической проницаемости от напряженности внешнего электрического поля. Поэтому активными называют диэлектрики, свойствами которых можно управлять с помощью внешних энергетических воздействий. Активные диэлектрики позволяют осуществлять генерацию, усиление, модуляцию электрических и оптических сигналов, преобразование информации.

К числу активных диэлектриков относятся сегнето-, пьезо- и пироэлектрики; электреты и материалы квантовой электроники, жидкие кристаллы и др.

Основными параметрами и характеристиками диэлектрических материалов являются диэлектрическая проницаемость ε, удельное сопротивление ρ, тангенс угла диэлектрических потерь tgδ, электрическая прочность Eпр.

5.1. Диэлектрическая проницаемость и виды поляризации диэлектриков

Для характеристики способности различных материалов поляризоваться в электрическом поле служит относительная диэлектрическая проницаемость ε. Эта величина представляет собой отношение заряда Q, полученного при некотором напряжении на конденсаторе, содержащим данный диэлектрик, к заряду Q0, который можно было бы получить, если бы между электродами находился вакуум

, (5.1)

где Qg – заряд, который обусловлен поляризацией диэлектрика.

Из выражения следует, что ε любого вещества больше единицы и равно единице только в вакууме.

Относительную диэлектрическую проницаемость можно определить как отношение емкости конденсатора с диэлектриком Сq к емкости конденсатора в вакууме С0 ε = Сq/ С0.

При этом емкость конденсатора С определяется из выражения

С = ε0. ε . S/h , (5.2)

где S – площадь электродов конденсатора; h – расстояние между электродами; εо – электрическая постоянная, равная 8,854 . 10-12ф/м.

Величина емкости конденсатора с диэлектриком и накопленный в нем электрический заряд, а значит, и диэлектрическая проницаемость обусловливаются различными видами поляризации, которые в зависимости от структуры диэлектрика разделяются на два вида:

- поляризации, совершающиеся в диэлектрике под действием электрического поля мгновенно, без рассеивания энергии, т.е. без выделения тепла – это электронная и ионная поляризации;

- поляризации, совершающиеся под действием электрического поля не мгновенно, а нарастают и убывают замедленно и сопровождаются рассеиванием энергии – это дипольно-ре-лаксационная, ионно-релаксационная, электронно-релак-сационная, миграционная (структурная) и спонтанная поляризации.

Электронная поляризация представляет собой упругое смещение электронных оболочек атомов и ионов. Электронная поляризация наблюдается у всех видов диэлектриков на всех частотах, вплоть до 1014-1016 Гц. Этот вид поляризации характерен для неполярных органических диэлектриков. Диэлектрическая проницаемость материалов с чисто электронной поляризацией численно равна квадрату показателя преломления света ε = n2.

Ионная поляризация обусловлена смещением упруго связанных ионов на расстояние, меньше периода решетки. Этот вид, поляризации характерен для твердых тел с ионной структурой.

Дипольно-релаксационная поляризация обусловлена тем, что дипольные молекулы, находящиеся в хаотическом тепловом движении, ориентируются под действием внешнего электрического поля. Поворот диполей в направлении поля требует некоторого сопротивления, поэтому этот вид поляризации связан с потерями энергии и нагревом материала. Процесс установления дипольной поляризации после включения электрического напряжения и процесс ее исчезновения после снятия напряжения требует определенного времени.

После снятия электрического поля ориентация частиц постепенно ослабевает. Поляризованность диэлектрика ρдр от времени t выражается по формуле

Pдр(t) = Pдр(0)exp(-t/τ), (5.3)

где t – время, прошедшее после выключения электрического поля; τ – постоянная времени (время релаксации).

Время релаксации – это промежуток времени, в течение которого упорядоченность ориентированных диполей уменьшается в 2,7 раз от первоначального состояния после снятия электрического поля. Дипольно-релаксационная поляризация характерна для полярных жидкостей и твердых полярных органических диэлектриков. Но в последних поляризация обусловлена поворотом не самой молекулы, а полярных радикалов по отношению к молекуле или смещением отдельных фрагментов макромолекулы.

Ионно-релаксационная поляризация обусловлена смещением слабо связанных ионов под действием электрического поля на расстояние, превышающее постоянную решетки. После выключения электрического напряжения ионы постепенно возвращаются в исходное состояние к центрам равновесия в течение определенного времени. Поэтому этот вид поляризации можно отнести к релаксационной. На преодоление взаимодействия ионов при их ориентации расходуется энергия электрического поля, которая рассеивается в виде тепла. Ионно-релаксационная поляризация проявляется в диэлектриках с ионной структурой с неплотной упаковкой ионов, например в неорганических стеклах, и в некоторых кристаллических материалах.

Электронно-релаксационная поляризация возникает за счет возбуждения тепловой энергией избыточных дефектных электронов и дырок. При этом наблюдается относительно высокое значение диэлектрической проницаемости на частотах 1014- 1015 Гц.

Резонансная поляризация наблюдается в диэлектриках в области световых частот. Этот вид поляризации зависит от структурных особенностей материалов и относится к собственной частоте электронов или ионов. При резонансе сильно увеличивается поглощение энергии.

Миграционная поляризация – неупругое перемещение слабо связанных примесных ионов на расстояние, превышающее параметр решетки, часто до границ зерен. Причинами возникновения такой поляризации являются проводящие или полупроводящие механические включения и примеси в технических диэлектриках, наличие слоев с различной проводимостью. Этот вид поляризации проявляется на очень низких частотах (1-104 Гц).

Спонтанная поляризация – это поляризация, которая проявляется самопроизвольно без каких-либо внешних воздействий. Она проявляется у группы твердых диэлектриков, получивших название сегнетоэлектриков.

Диэлектрическая проницаемость  при всех видах поляризации изменяется с частотой внешнего электрического поля. При увеличении частоты диэлектрическая проницаемость снижается, поскольку проявляется инерционность процесса ориентации. Изменение  с изменением частоты называют диэлектрической дисперсией. Поэтому при характеристике диэлектриков всегда указывают, на какой частоте измерена диэлектрическая проницаемость . На рис. 5.1 представлена частотная зависимость диэлектрической проницаемости  при различных видах поляризации.

Из рисунка видно, что каждый вид поляризации и диэлектрическая проницаемость, характерная для этого вида поляризации, существуют в определенной области частот.

Резонансные явления

Рис. 5.1. Частотная зависимость диэлектрической проницаемости  при различных видах поляризации: м – миграционной; р - дипольно- и ионно-релаксационных; и, э – резонансных видов поляризаций

Диэлектрическая проницаемость при любом виде поляризации зависит от температуры и характеризуется температурным коэффициентом диэлектрической проницаемости , выраженной в К-1

. (5.4)

На рис. 5.2 приведены графики изменения  при электронной, ионно-релаксационной и дипольно-релаксационной поляризациях

Рис. 5.2. Кривые температурной зависимости диэлектрической проницаемости при электронной (э), дипольно-релаксационной (εдр) и ионно-релаксационной (εир) поляризациях

Из рисунка видно, что при электронной поляризации  почти не изменяется при нахождении вещества в одном агрегатном состоянии, но резко снижается при переходе из одного агрегатного состояния в другое. При замедленных видах поляризации диэлектрическая проницаемость возрастает с ростом температуры в твердом состоянии материала, что обусловлено увеличением подвижности поляризуемых частиц. В жидком состоянии диэлектрическая проницаемость уменьшается, так как превалирующее значение приобретает движение молекул, а не ориентирующее действие поля.

В зависимости от влияния электрического напряжения на относительную диэлектрическую проницаемость все диэлектрические материалы подразделяют на линейные и нелинейные. На рис. 5.3 приведена зависимость заряда конденсатора Q от напряжения U

и и диэлектрической проницаемости  от Е (Е=U/n) для линейных диэлектриков с малыми потерями и для нелинейных диэлектриков. Емкость конденсатора с линейным диэлектриком зависит только от его геометрических размеров, а в нелинейных она становится управляемой электрическим полем. Поэтому в классификации диэлектриков линейные диэлектрики относят к пассивным диэлектрикам, а нелинейные к активным (управляемым).

Рис. 5.3. Зависимость заряда конденсатора от напряжения и диэлектрической проницаемости от напряженности поля (Е=U/n) для линейных диэлектриков (а) и нелинейных диэлектриков (сегнетоэлектриков)

Линейные диэлектрики в зависимости от механизма поляризации можно подразделить на:

  • неполярные диэлектрики – газы, жидкости и твердые вещества в кристаллическом и аморфном состоянии, обладающие в основном электронной поляризацией; к ним относятся водород, бензол, парафин, полиэтилен, полистирол, политетрафторэтилен и др.;

  • полярные (дипольные) диэлектрики – органические жидкие, полужидкие и твердые вещества, имеющие одновременно дипольно-релаксационную и электронную поляризацию; к ним относятся канифольные компаунды, феноло-формальдегидные и эпоксидные смолы, поливинилхлорид, целлюлоза, капрон и др.;

  • ионные соединения – это твердые неорганические диэлектрики с ионной, электронной, ионно-релаксационной поляризациями (стекла, керамика).

Ввиду существенного различия электрических характеристик ионных соединений их целесообразно разделить на две подгруппы материалов:

- диэлектрики с ионной и электронной поляризацией. К ним относятся кристаллические вещества с плотной упаковкой ионов – кварц, слюда, корунд (Al2O3), рутил (TiO2) и др.;

- диэлектрики с ионной, электронной и релаксационными поляризациями; к ним относятся неорганические стекла, ситаллы, многие виды керамик.

studfile.net

Диэлектрики-часть 1

ОПРЕДЕЛЕНИЕ, НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ

ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

Диэлектрики — вещества, в которых могут длительно существовать электростати­ческие поля. Эти материалы, в противоположность проводниковым, практически не про­водят электрический ток под действием приложенного к ним постоянного напряжения.

Назначение электрической изоляции сводится прежде всего к тому, чтобы препят­ствовать прохождению тока путями, нежелательными для работы электротехниче­ского устройства. Кроме того, диэлектрики в электрических устройствах, в частности конденсаторах, играют активную роль, обеспечивая емкость требующейся вели­чины.

Дипольными диэлектриками являются те, молекулы которых построены в прост­ранстве несимметрично; как правило, они имеют более высокую диэлектрическую проницаемость, чем нейтральные диэлектрики. Дипольные диэлектрики более гигроскопичны и легче смачиваются водой, чем нейтральные.

Диэлектрики разделяются также на гетерополярные (ионные), молекулы которых относительно легко расщепляются на противоположно заряженные части (ионы), и гомеополярные, не расщепляющиеся на ионы.

По химическому составу электроизоляционные материалы разделяются на органи­ческие, в состав которых входит углерод, и на неорганические, не содержащие угле­рода. Как правило, неорганические материалы имеют более высокую нагревостойкость, чем органические.

ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

По самому своему назначению диэлектрики под воздействием постоянного напря­жения совершенно не должны пропускать тока, т. е. должны быть непроводниками. Однако все практически применяемые электроизоляционные материалы при приложении постоянного напряжения пропускают некоторый незна­чительный ток, так называемый ток утечки. Таким образом, удельное сопротивление электроизоляционных материалов не бесконечно, хотя и весьма велико.

Сопротивление участка изоляции равно отношению приложенного к этому участ­ку изоляции постоянного напряжения U (в вольтах) к току утечки I (в амперах) через этот участок:

.

Проводимость изоляции

.

Различают объемное сопротивление изоляции RV , численно определяющее препят­ствие, создаваемое изоляцией прохождению тока сквозь ее толщу, и поверхностное сопротивление RS определяющее препятствие прохождению тока по поверхности изоля­ции и характеризующее наличие повышенной проводи­мости поверхностного слоя диэлектрика за счет увлажне­ния, загрязнения и т. п.

Полное сопротивление изоляции определяется как ре­зультирующее двух сопротивлений, включенных параллель­но между электродами, объемного и поверхностного:

.

Для плоского участка изоляции с поперечным сечением S [см2] и толщиной h [см] объемное сопротивление (исключая влияние краев) равно:

.

Численно ρV равно сопротивле­нию (в Омах) куба с ребром в 1 см из данного материала, если ток проходит через две противоположные грани куба:

.

1 Ом∙см = 104Ом∙мм2= 106 мкОм∙см = 10-2Ом∙м.

Величина, обратная удельному объемному сопротивлению

,

называется удельной объемной проводимостью материала.

Значения ρV практически применяемых твердых и жидких электроизоляционных материалов колеблются примерно от 108—1010Ом∙см для сравнительно низко­качественных, применяемых в малоответственных случаях материалов (древесина, мрамор, асбестоцемент и пр.) до 1016—1018Ом∙см для таких материалов, как янтарь, полистирол, полиэтилен и др. Для неионизированных газов ρV порядка 1019—1020Ом∙см. Отношение удельных сопротивлений высококачественного твердого диэлектрика и хорошего проводника (при нормальной температуре) выражается колоссальным числом — по­рядка 1022—1024.

Удельное поверхностное сопротивление ρS характеризует свойство электро­изоляционного материала создавать в изготовленной из него изоляции по­верхностное сопротивление. Поверхностное сопротивление (пренебрегая влиянием краев) между электродами с параллельными друг другу прямыми кромками длиной b, находящимися друг от друга на расстоянии а, при исключении тока объемной утечки через толщу материала равно , где .

Величина ρS численно равна сопротивлению квадрата (любого размера) на поверхности данного материала, сели ток подводится к электродам, ограничивающим две противо­положные стороны этого квадрата.

Физическая природа электро­проводности диэлектриков

Электропроводность диэлектриков объясняется наличием в них свободных (т. е. не связанных с определенными молекулами и могу­щих передвигаться под действием приложенного электрического поля) заряженных частиц: ионов, молионов (коллоидных частиц), иногда электронов.

Наиболее характерна для большей части электроизоляционных материалов ионная электропроводность. Следует отметить, что в ряде случаев электролизу подвергается основное вещество диэлектрика; примером может служить стекло, в ко­тором благодаря его прозрачности можно непосредственно наблюдать выделение про­дуктов электролиза. При пропускании постоянного тока через стекло, нагретое для понижения проводимости, у катода образуются характерные древовидные отложения («дендриты») входящих в состав стекла металлов, прежде всего натрия. Еще чаще наблюдаются такие случаи, когда молекулы основного вещества диэлектрика не облада­ют способностью легко ионизироваться, но ионная электропроводность имеет место за счет практически неизбежно присутствующих в диэлектрике загрязнений — примесей влаги, солей, кислот, щелочей и т. п. Даже весьма малые, иногда с трудом обнаруживаемые химическим анализом примеси способны заметно влиять на проводимость вещества; поэтому при изготовлении диэлектриков и вообще в технике электрической изоляции такое важное значение имеет чистота исходных продуктов и чистота рабочего места. У диэлектрика с ионным характером электропроводности строго соблюдается за­кон Фарадея, т. е. пропорциональность между количеством прошедшего через изоля­цию электричества (при постоянном токе) и количеством выделившегося при электро­лизе вещества.

При повышении температуры удельное сопротивление электроизоляционных материалов, как правило, сильно уменьшается. Очевидно, что условия работы электрической изоляции становятся при этом более тяжелы­ми. При низких температурах, наоборот, даже очень плохие диэлектрики приобрета­ют высокие значения ρV.

Присутствие даже малых количеств воды способно значительно уменьшить ρV диэлектрика. Это объясняется тем, что имеющиеся в воде примеси диссоциируют на ионы или же присутствие воды может способствовать диссоциации молекул самого вещества. Таким образом, условия работы электрической изоляции утяжеляются и при увлажнении. Весьма сильно влияет увлажнение на изменение ρV волокнистых и некоторых других материалов, в которых влага может образовывать сплошные пленки вдоль волокон — «мостики», пронизывающие весь диэлектрик от одного электрода до дру­гого.

Гигроскопичные материалы для защиты от действия влаги после сушки пропиты­вают или покрывают негигроскопичными лаками, компаундами и т. п. При сушке электрической изоляции влага из нее удаляется, и сопротивление ее растет. Поэтому при повышении температуры ρV увлажненного материала сначала может даже расти (если влияние удаления влаги перевешивает влияние повышения температуры), и только после удаления значительной части влаги начинается сниже­ние ρV.

Сопротивление изоляции может уменьшаться с повышением напряжения, что имеет существенное практическое значение: измеряя сопротивление изо­ляции (машины, кабеля, конденсатора и т. п.) при напряжении, которое ниже рабочего, мы можем по­лучить завышенную величину сопротивления.

Зави­симость Rиз от величины напряжения объясняется рядом причин:

  • образованием в диэлектрике объем­ных зарядов;

  • плохим контактом между электродами и измеряемой изоляцией и др.

При достаточно больших напряженностях мо­жет происходить освобождение электронов силами электрического поля; создающаяся при этом доба­вочная электронная проводимость приводит к су­щественному увеличению общей электропроводности. Это явление предшествует развитию пробоя диэлек­трика.

При приложении к твердому диэлектрику постоянного напряжения в большинст­ве случаев ток постепенно спадает с течением времени, асимптотически прибли­жаясь к некоторой установившейся величине. Таким образом, постепенно проводи­мость диэлектрика возрастает, а сопротивление уменьшается. Изменение проводи­мости со временем связано с влиянием образования объемных зарядов, с процессами электролиза в диэлектрике и другими причинами.

Характер изменения удельного поверхностного сопротивления ρS диэлектриков от различных факторов (температуры, влажности, величины напряжения, времени воздействия напряжения) сходен с характером изменения ρV, рассмотренным выше. Величина ρS гигроскопичных диэлектриков весьма чувствительна к увлажне­нию.

Поляризация диэлектриков

Важнейшим свойством диэлектриков является способность их под действием при­ложенного извне электрического напряжения поляризоваться. Поляризация сводится к изменению пространственного положения заряженных материальных частиц диэлектрика, причем диэлектрик приобретает наведенный электрический момент, и в нем образуется электрический заряд. Если мы рассматриваем некоторый участок изоляции с электродами, к которым подается напряжение U [В], то заряд этого участка Q [Кл] определяется выражением

Q=CU .

Здесь С есть емкость данного участка изоляции, измеряемая в фарадах (ф).

Емкость изоляции зависит как от материала (диэлектрика), так и от геометри­ческих размеров и конфигурации изоляции.

Способность данного диэлектрика образовывать электрическую емкость называет­ся его диэлектрической проницаемостью и обозначается ε. Вели­чина ε вакуума принимается за единицу.

Пусть Со — емкость вакуумного конденсатора произвольной формы и размеров. Если, не меняя размеров, формы и взаимного расположения обкладок конденсатора, заполнить пространство между его обкладками материалом с диэлектри­ческой проницаемостью ε, то емкость конденсатора увеличится и достигнет зна­чения

C= ε Со.

Таким образом, диэлектрическая проницаемость какого-либо вещества есть число, показывающее, во сколько раз увеличится емкость вакуумного конденсатора, если, не меняя размеров и формы электродов конденсатора, заполнить пространство между электродами данным веществом. Емкость конденсатора данных геомет­рических размеров и формы прямо пропорциональна ε диэлектрика.

Величина диэлектрической проницаемости входит во многие основные уравнения электростатики. Так, по закону Кулона усилие взаимного отталкивания двух точечных электрических зарядов величиной Q1 и Q2 (абсолютных единиц заряда), расположен­ных в среде с диэлектрической проницаемостью ε на расстоянии друг от друга h [см], составляет:

.

Ди­электрическая проницаемость является величиной безразмерной. Для газов она весьма близка к 1. Так, для воздуха при нормальных условиях ε=1,00058. Для большинства жидких и твердых электроизоляционных материалов ε – порядка нескольких единиц, реже десятков и весьма редко превышает 100. Некоторые вещества особого класса – сегнетоэлектрики - при определенных условиях обладают исключительно высокими значениями диэлектрической проницаемости.

Физическая сущность поляризации

Поляризация, как и проводимость, обусловлена передвижением в пространстве электрических зарядов. Различия этих двух явлений:

  1. при поляризации имеет место смещение связанных с определенными молекулами зарядов, не могущих выходить за пределы данной молекулы, в то время как проводимость обусловлена движением (дрейфом) свободных зарядов, могущих перемещаться в диэлектрике на сравнительно большое расстояние;

  2. смещение при поляризации – упругий сдвиг зарядов; по окончании действия приложенного к диэлектрику напряжения смещенные заряды имеют тенденцию к возвращению в исходные положения, что для проводимости не характерно;

  3. поляризация однородного материала имеет место практически во всех моле­кулах диэлектрика, в то время как электропроводность диэлектриков часто обуслов­ливается наличием незначительного количества примесей (загрязнений).

В то время как ток проводимости существует все время, пока к диэлектрику при­ложено извне постоянное напряжение, ток смещения (емкостный ток) возникает лишь при включении или выключении постоянного напряжения или вообще при изменении величины приложенного напряжения; длительно существует емкостный ток только в диэлектрике, находящемся под воздействием переменного напряжения.

Наиболее типичные виды поляризации: электронная, ионная и дипольная.

Электронная поляризация — смещение орбит электронов относительно атомного ядра. Электронная поляризация при наложении внешнего электрического поля про­текает за чрезвычайно короткое время (порядка 10-15сек).

Ионная поляризация (у ионных диэлектриков) — смещение друг относительно друга ионов, составляющих молекулу. Эта поляризация протекает в сроки более длительные, чем электронная, но так же в весьма короткие — порядка 10-13 сек.

Электронная и ионная поляризация — разновидности деформационной поляриза­ции, представляющей собой сдвиг друг относительно друга зарядов в направлении внешнего электрического поля.

Дипольная (ориентационная) поляризация сводится к повороту (ориентации) дипольных молекул вещества. Эта поляризация численно велика по сравнению с де­формационной и полностью протекает за промежутки времени, различные для молекул разных веществ, но значительно более длительные, чем продолжительность де­формационной поляризации.

Очевидно, что у нейтральных диэлектриков может иметь место лишь деформа­ционная поляризация. Эти диэлектрики имеют сравнительно малую диэлектрическую проницаемость (например, для жидких и твердых углеводородов ε порядка 1,9—2,8).

Таблица 1.1

Величина диэлектрической проницаемости некоторых веществ

Вещество

Диэлектрическая проницаемость

Азот

1,0006

Бензол

2,22

Парафин

2,1

Полистирол

2,6

Сера

3,8

Алмаз

5,7

Дипольные диэлектрики, у которых, помимо деформационной поляризации, наблю­дается и ориентационная поляризация, имеют более высокие значения диэлектрической проницаемости по сравнению с нейтральными диэлектриками, причем у дипольных диэлектриков ,например, для воды, ε = 82.

Диэлектрическая проницаемость дипольного вещества, вообще говоря, тем боль­ше, чем меньше размеры молекулы (или молекулярный вес). Так, весьма большое ε воды связано с очень малым размером ее молекулы.

Зависимость диэлектрической проницаемости от частоты. Так как время установления деформационной поляризации весьма мало по сравнению с временем изменения знака напряжения даже при наиболее высоких частотах, применяемых в современной радиоэлектронике, поляризация нейтральных диэлектриков успевает установиться полностью за время, которым по сравнению с полупериодом переменного напряжения можно пренебречь. Поэтому практически существенной зависимости ε от частоты у нейтральных диэлектриков нет.

У дипольных диэлектриков при повышении частоты переменного напряжения величина ε сначала также остается неизменной, но начиная с некоторой критической частоты, когда поляризация не успевает полностью установиться за один полупериод, ε начинает снижаться, приближаясь при весьма высоких частотах к значениям, характерным для нейтральных диэлектриков; при повышении температуры критическая частота увеличивается.

В резко неоднородных диэлектриках, в частности в диэлектриках с вкраплениями воды, наблюдается явление так называемой междуслойной поляризации. Междуслойная поляризация сводится к накоплению электрических зарядов на границах раздела диэлектриков (в случае увлажненного диэлектрика — на поверхности вкрапленной воды). Процессы установления междуслойной поляризации весьма медленны и могут протекать на протяжении минут и даже часов. Поэтому увеличение емкости изоляции вследствие увлажнения последней тем больше, чем меньше частота переменного напряжения, приложенного к изоляции.

Зависимость диэлектрической проницаемости от температуры. У нейтральных диэлектриков ε слабо зависит от температуры, уменьшаясь при повышении последней вследствие теплового расширения вещества, т. е. уменьшения количества поляризующихся молекул в единице объема вещества.

У дипольных диэлектриков в области низких температур, когда вещество обладает большой вязкостью, ориентация дипольных молекул вдоль поля в большинстве случаев невозможна или во всяком случае затруднена. При повышении температуры и уменьшении вязкости возможность ориентации диполей облегчается, вследствие чего ε существенно возрастает. При высокой температуре вследствие усиления тепловых хаотических тепловых колебаний молекул степень упорядоченности ориента­ции молекул снижается, что вновь приводит к снижению ε.

У кристаллов с ионной поляризацией, стекол, фарфора и других видов керамики с большим содержанием стекловидной фазы, диэлектрическая проницаемость возрастает при повышении температуры.

studfile.net

Диэлектрик - это... Что такое Диэлектрик?

Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

Физические свойства

Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.

Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Удельное сопротивление деионизированной воды (см. также: бидистиллят) — 10-20 МОм·см.

Параметры

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

Примеры

К диэлектрикам относятся воздух и другие газы, стёкла, различные смолы, пластмассы, многие виды резины.

Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.

Использование

При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.

Диэлектрики используются не только как изоляционные материалы.

Пассивные свойства диэлектриков

Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Активные свойства диэлектриков

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.

См. также

Ссылки

dic.academic.ru

Поляризация диэлектриков — Википедия

У этого термина существуют и другие значения, см. Поляризация.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью E1{\displaystyle \mathbf {E} _{1}}, направленное против внешнего поля с напряжённостью E0{\displaystyle \mathbf {E} _{0}}. В результате напряжённость поля E{\displaystyle \mathbf {E} } внутри диэлектрика будет выражаться равенством:

E=E0−E1.{\displaystyle \mathbf {E} =\mathbf {E} _{0}-\mathbf {E} _{1}.}

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

  • Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.
  • Ионная — смещение узлов кристаллической решетки под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.
  • Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
  • Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
  • Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
  • Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
  • Самопроизвольная (спонтанная) — возникает в отсутствие внешнего электрического поля. Наблюдается в материалах, состоящих из отдельных доменов (областей). В каждом из доменов имеет своё, отличное от других доменов, направление, в результате чего суммарный дипольный момент материала равен нулю. При наложении внешнего электрического поля дипольные моменты доменов ориентируются вдоль поля. Возникающая при этом поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля; наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики).
  • Резонансная — ориентация частиц, собственные частоты колебания которых совпадают с частотами внешнего электрического поля.
  • Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объёмных зарядов, особенно при высоких градиентах напряжения; имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

Основной источник: [1]
  • Индуцированная электрическим полем
    • Упругая (деформационная)
    • Тепловая (прыжковая)
    • Объемно-зарядная (миграционная)

Сравнительные параметры различных типов поляризации

  • Вызванная неэлектрическим воздействием
    • Пьезополяризация
    • Пирополяризация
    • Фотополяризация
  • Существующая без внешних воздействий
    • Спонтанная
    • Остаточная

Зависимость вектора поляризации от внешнего поля[править | править код]

В постоянном поле[править | править код]

В слабых полях[править | править код]

В постоянном или достаточно медленно меняющемся от времени внешнем электрическом поле при достаточно малой величине напряженности этого поля, вектор поляризации P, как правило (исключение составляют сегнетоэлектрики), линейно зависит от вектора напряженности поля E:

P=χE{\displaystyle \mathbf {P} =\chi \mathbf {E} } (в системе СГС),
P=ε0χE{\displaystyle \mathbf {P} =\varepsilon _{0}\chi \mathbf {E} } (в Международной системе единиц (СИ); дальше формулы в этом параграфе приводятся только в СГС, формулы СИ и дальше отличаются лишь электрической постоянной ε0{\displaystyle \varepsilon _{0}})

где χ{\displaystyle \chi } — коэффициент, зависящий от химического состава, концентрации, структуры (в том числе от агрегатного состояния) среды, температуры, механических напряжений и т. д. (от одних факторов более сильно, от других слабее, конечно же и в зависимости от диапазона изменений каждого), и называемый (электрической) поляризуемостью (а чаще, по крайней мере для того случая, когда он выражается скаляром — диэлектрической восприимчивостью) данной среды. Для однородной среды фиксированного состава и структуры в фиксированных условиях её можно считать константой. Однако в связи со всем сказанным выше вообще говоря χ{\displaystyle \chi } зависит от точки пространства, времени (явно или через другие параметры) и т. д.

Для изотропных[2] жидкостей, изотропных твердых тел или кристаллов достаточно высокой симметрии χ{\displaystyle \chi } — просто число (скаляр). В более общем случае (для кристаллов низкой симметрии, под действием механических напряжений и т. д.) χ{\displaystyle \chi } — тензор (симметричный тензор второго ранга, вообще говоря невырожденный), называемый тензором поляризуемости. В этом случае можно переписать формулу так (в компонентах):

Pi=∑j χijEj,{\displaystyle P_{i}=\sum _{j}\ \chi _{ij}E_{j},}

где величины со значками соответствуют компонентам векторов и тензора, соответствующим трем пространственным координатам.

Можно заметить, что поляризуемость — одна из наиболее удобных физических величин для простой иллюстрации физического смысла тензоров и применения их в физике.

Как и для всякого симметричного невырожденного тензора второго ранга, для тензора поляризуемости можно выбрать (если среда неоднородная — то есть тензор зависит от точки пространства — то по крайней мере локально, если же среда однородная, то и глобально) т. н. собственный базис — прямоугольные декартовы координаты, в которых матрица χij{\displaystyle \chi _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент χij{\displaystyle \chi _{ij}} отличными от нуля являются лишь три: χ11{\displaystyle \chi _{11}}, χ22{\displaystyle \chi _{22}} и χ33{\displaystyle \chi _{33}}. В этом случае, обозначив для простоты χii{\displaystyle \chi _{ii}} как χi{\displaystyle \chi _{i}}, вместо предыдущей формулы получаем более простую

Pi=χiEi.{\displaystyle P_{i}=\chi _{i}E_{i}.}

Величины χi{\displaystyle \chi _{i}} называют главными поляризуемостями (или главными диэлектрическими восприимчивостями). Если среда в отношении поляризуемости изотропна, то все три главные поляризуемости равны друг другу, а действие тензора сводится к простому умножению на число.

В сильных полях[править | править код]

В достаточно сильных полях[3] всё описанное выше осложняется тем, что по мере роста напряженности электрического поля рано или поздно теряется линейность зависимости P от E.

Характер появляющейся нелинейности и характерная величина поля, с которой нелинейность становится заметной, тоже, конечно, зависит от индивидуальных свойств среды, условий итп.

Можно выделить их связь с типами поляризации, описанными выше.

Так для электронной и ионной поляризации при полях, приближающихся к величинам порядка отношения потенциала ионизации к характерному размеру молекулы U0/D, характерно сначала ускорение роста вектора поляризации с ростом поля (увеличение наклона графика P(E)), затем плавно переходящее в пробой диэлектрика.

Дипольная (Ориентационная) поляризация при обычно несколько более низких значениях напряженности внешнего поля — порядка kT/p (где p — дипольный момент молекулы, T — температура, k — константа Больцмана) — то есть когда энергия взаимодействия диполя (молекулы) с полем становится сравнимой со средней энергией теплового движения (вращения) диполя — наоборот начинает достигать насыщения (при дальнейшем росте напряженности поля должен рано или поздно включиться сценарий электронной или ионной поляризации, описанный выше, и кончающийся пробоем).

В зависящем от времени поле[править | править код]

Зависимость вектора поляризации от быстро меняющегося во времени внешнего поля достаточно сложна. Она зависит от конкретного вида изменения внешнего поля со временем, быстроты этого изменения (или, скажем, частоты колебаний) внешнего поля, превалирующего механизма поляризации в данном веществе или среде (который тоже оказывается разным для разных зависимостей внешнего поля от времени, частот и т. д.).

При достаточно медленном изменении внешнего поля поляризация в целом происходит как в постоянном поле или очень близко к этому (впрочем то, насколько медленным должно быть для этого изменение поля, зависит, и зачастую крайне сильно, от превалирующего типа поляризации и других условий, например температуры).

Одним из наиболее распространенных подходов к изучению зависимости поляризации от характера меняющегося во времени поля является исследование (теоретическое и экспериментальное) случая синусоидальной зависимости от времени внешнего поля и зависимости вектора поляризации (также меняющегося в этом случае по синусоидальному закону с той же частотой), его амплитуды и сдвига фазы от частоты.

Каждому механизму поляризации в целом соответствует тот или иной диапазон частот и общий характер зависимости от частоты.

Диапазон частот, в котором имеет смысл говорить о поляризации диэлектриков как таковой, простирается от нуля где-то до ультрафиолетовой области, в которой становится интенсивной ионизация под действием поля.

  1. ↑ Рез, 1989, с. 65.
  2. ↑ Обычно жидкости можно считать изотропными, однако это может оказаться верно не для всех классов жидкостей и может быть нарушено различными возмущениями (иногда — очень сильно, например, для растворов полимеров итп), поэтому лучше уточнить это явно.
  3. ↑ В этом параграфе подразумевается, что поле постоянно или медленно меняется во времени — то есть затронуты только вопросы, связанные с большой величиной напряженности поля; усложнения, связанные с достаточно быстрым изменением поля со временем, описаны далее в отдельном параграфе.
    • Рез И. С., Поплавко Ю. М. Диэлектрики. Основные свойства и применение в электронике. — М.: Радио и связь, 1989. — 288 с. — ISBN 5-256-00235-X.

ru.wikipedia.org

Урок 26. Лекция 26. Проводники и диэлектрики в электрическом поле. Конденсаторы.

По электрическим свойствам все вещества разделяют на два больших класса - вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы). 

Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле  складывается из внешнего поля  и внутреннего поля  создаваемого заряженными частицами вещества.

Проводник - это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.

В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) - ионы.

Диэлектрик - это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.

Рассмотрим подробнее эти классы веществ.

Проводники в электрическом поле.

Проводниками называют вещества, проводящие электрический ток.

Типичными проводниками являются металлы.

Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

 

   Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.

  Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами. 

   Индукционные заряды создают свое собственное поле  , которое компенсирует внешнее поле  во всем объеме проводника:

   (внутри проводника).

   Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

   Диэлектрики в электрическом поле.

   Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.

   В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

   При внесении диэлектрика во внешнее электрическое поле  в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

   Связанные заряды создают электрическое поле , которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля . Этот процесс называется поляризацией диэлектрика.

   Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.

   В результате полное электрическое поле внутри диэлектрика  оказывается по модулю меньше внешнего поля .

   Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме  к модулю напряженности полного поля в однородном диэлектрике , называется диэлектрической проницаемостью вещества.

 

   Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).

   При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов  и полное поле  могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле   в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем  строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

   Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля , создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

               

   Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная - при поляризации твердых диэлектриков.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.

Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:


 В системе СИ единица электроемкости называется фарад [Ф]: 

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – плоский конденсаторсистема из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними.

Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

   - сферический конденсатор

   - цилиндрический конденсатор

Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.

1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.

 

Напряжения на конденсаторах одинаковы     U1U2U,  заряды равны q1 = С1U и    q2 = С2U.

Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом qq1q2 при напряжении между обкладками равном U. Отсюда следует  или С = С1 + С2

Таким образом, при параллельном соединении электроемкости складываются.

2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки

Заряды обоих конденсаторов одинаковы    q1q2q,  напряжения на них равны  и 

Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками UU1U2.

Следовательно,   или  

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи

при параллельном соединении Собщ = nС

при последовательном соединении Собщ = С/n

Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов

   

при переносе каждой порции Δq внешние силы должны совершить работу

   

Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:

   

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением qCU.

   

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

infofiz.ru

Диэлектрическая проницаемость — Википедия

Диэлектри́ческая проница́емость — коэффициент, входящий в математическую запись закона Кулона для силы взаимодействия точечных зарядов q1{\displaystyle q_{1}} и q2{\displaystyle q_{2}}, находящихся в однородной изолирующей (диэлектрической) среде на расстоянии r12{\displaystyle r_{12}} друг от друга:

F=14πεa⋅|q1q2|r122{\displaystyle F={\frac {1}{4\pi \varepsilon _{a}}}\cdot {\frac {|q_{1}q_{2}|}{r_{12}^{2}}}},

а также в уравнение связи вектора электрической индукции с напряжённостью электрического поля:

D=εaE{\displaystyle \mathbf {D} =\varepsilon _{a}\mathbf {E} }

в рассматриваемой среде[1]. Вводятся абсолютная (а) и относительная (r, от англ. relative — относительный) проницаемости:

εa=ε0εr{\displaystyle \varepsilon _{a}=\varepsilon _{0}\varepsilon _{r}},

где ε0{\displaystyle \varepsilon _{0}} — электрическая постоянная[2]. Cам термин «диэлектрическая проницаемость» применяется и для εr{\displaystyle \varepsilon _{r}}, и для εa{\displaystyle \varepsilon _{a}}; ради краткости, одну из этих величин (в российской литературе чаще εr{\displaystyle \varepsilon _{r}}, в англоязычной εa{\displaystyle \varepsilon _{a}}) переобозначают как ε{\displaystyle \varepsilon } (из контекста всегда ясно, о чём идёт речь). Величина εr{\displaystyle \varepsilon _{r}} безразмерна, а εa{\displaystyle \varepsilon _{a}} по размерности совпадает с ε0{\displaystyle \varepsilon _{0}} (в Международной системе единиц (СИ): фарад на метр, Ф/м).

Проницаемость εr{\displaystyle \varepsilon _{r}} показывает, во сколько раз сила взаимодействия двух электрических зарядов в конкретной среде меньше, чем в вакууме, для которого εr=1{\displaystyle \varepsilon _{r}=1}. Отличие проницаемости от единицы обусловлено эффектом поляризации диэлектрика под действием внешнего электрического поля, в результате которой создаётся внутреннее противоположно направленное поле. В области низких частот ω{\displaystyle \omega } значение проницаемости реальных сред εr>1{\displaystyle \varepsilon _{r}>1}, обычно оно лежит в диапазоне 1—100, но для сегнетоэлектриков составляет десятки и сотни тысяч. Как функция частоты электрического поля величина εr(ω){\displaystyle \varepsilon _{r}(\omega )} слегка возрастает на участках вне линий поглощения данного материала, однако вблизи линий резко спадает, из-за чего высокочастотная диэлектрическая проницаемость ниже статической. Имеет место связь проницаемости и показателя преломления вещества: для немагнитной непоглощающей среды n2(ω)=εr(ω){\displaystyle n^{2}(\omega )=\varepsilon _{r}(\omega )}.

Относительная диэлектрическая проницаемость εr{\displaystyle \varepsilon _{r}} является одним из «электромагнитных параметров» среды, влияющих на распределение компонент напряжённости электромагнитного поля в пространстве и описывающих среду в материальных уравнениях электродинамики (уравнениях Максвелла).

\varepsilon _{r} Схематическое изображение ориентации диполей в диэлектрической среде под воздействием электрического поля

Абсолютная диэлектрическая проницаемость вакуума[править | править код]

Электрическая постоянная, она же «абсолютная диэлектрическая проницаемость вакуума», в системе единиц СИ равна ε0≈8,85⋅10−12{\displaystyle \varepsilon _{0}\approx 8{,}85\cdot 10^{-12}} Ф/м (имеет размерность L−3M−1T4I2). В системе СГС эта же постоянная составляет ε0=1/4π{\displaystyle \varepsilon _{0}=1/4\pi }, однако часто в СГС вообще не задействуют ε0{\displaystyle \varepsilon _{0}}, надлежащим образом адаптируя формулы (скажем, закон Кулона: F=εr−1⋅|q1q2|/r122{\displaystyle F=\varepsilon _{r}^{-1}\cdot |q_{1}q_{2}|/r_{12}^{2}}). Электрическая постоянная связана с магнитной постоянной и скоростью света в вакууме:

ε0μ0=c−2{\displaystyle \varepsilon _{0}\mu _{0}=c^{-2}}

Ниже все формулы приводятся для СИ, а символ ε{\displaystyle \varepsilon } используется как замена εr{\displaystyle \varepsilon _{r}} (εa=ε0ε{\displaystyle \varepsilon _{a}=\varepsilon _{0}\varepsilon }).

Эффект поляризации диэлектрика и проницаемость[править | править код]

Под воздействием электрического поля в диэлектрике имеет место поляризация — явление, связанное с ограниченным смещением зарядов или поворотом электрических диполей. Данное явление характеризует вектор электрической поляризации P{\displaystyle \mathbf {P} }, равный дипольному моменту единицы объёма диэлектрика. В отсутствие внешнего поля диполи ориентированы хаотично (см. верхний рис.), за исключением особых случаев спонтанной поляризации в сегнетоэлектриках. При наличии поля диполи в большей или меньшей степени поворачиваются (нижний рис.), в зависимости от восприимчивости χ(ω){\displaystyle \chi (\omega )} конкретного материала, а восприимчивость, в свою очередь, определяет проницаемость ε(ω){\displaystyle \varepsilon (\omega )}. Помимо дипольно-ориентационного, имеются и другие механизмы поляризации. Поляризация не изменяет суммарного заряда в любом макроскопическом объёме, однако она сопровождается появлением связанных электрических зарядов на поверхности диэлектрика и в местах неоднородностей. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле, как правило, направленное против внешнего наложенного поля. В итоге тот факт, что εa≠ε0{\displaystyle \varepsilon _{a}\neq \varepsilon _{0}}, является следствием электрической поляризации материалов.

Роль диэлектрической проницаемости среды в физике[править | править код]

Относительная диэлектрическая проницаемость ε{\displaystyle \varepsilon } среды, наряду с её относительной магнитной проницаемостью μ{\displaystyle \mu } и удельной электропроводностью σ{\displaystyle \sigma }, влияет на распределение напряжённости электромагнитного поля в пространстве и используется при описании среды в системе уравнений Максвелла. Среду со значениями μ=1{\displaystyle \mu =1} и σ=0{\displaystyle \sigma =0} называют идеальным диэлектриком (диэлектриком без поглощения, диэлектриком без потерь), для неё ε{\displaystyle \varepsilon } определяет такие вторичные параметры, как коэффициент преломления среды, скорость распространения, фазовую скорость и коэффициент укорочения длины электромагнитной волны в среде, волновое сопротивление среды. Относительная диэлектрическая проницаемость реальных диэлектриков (диэлектриков с потерями, диэлектриков с поглощением, для которых σ>0{\displaystyle \sigma >0}) также влияет на значение тангенса угла диэлектрических потерь и погонное затухание электромагнитной волны в среде. Относительная диэлектрическая проницаемость среды влияет на электрическую ёмкость расположенных в ней проводников: увеличение ε{\displaystyle \varepsilon } приводит к увеличению ёмкости. При изменении ε{\displaystyle \varepsilon } в пространстве (то есть если ε{\displaystyle \varepsilon } зависит от координат) говорят о неоднородной среде, зависимость ε{\displaystyle \varepsilon } от частоты электромагнитных колебаний — одна из возможных причин дисперсии электромагнитных волн, зависимость ε{\displaystyle \varepsilon } от напряженности электрического поля — одна из возможных причин нелинейности среды. Если среда является анизотропной, то в материальном уравнении ε{\displaystyle \varepsilon } будет не скаляром, а тензором. При использовании метода комплексных амплитуд в решении системы уравнений Максвелла и наличии потерь в среде (σ>0{\displaystyle \sigma >0}) оперируют комплексной диэлектрической проницаемостью.

Таким образом, ε{\displaystyle \varepsilon } является одним из важнейших «электромагнитных параметров» соответствующей среды.

Диэлектрическая проницаемость непоглощающей среды[править | править код]

Проницаемость и связанные с ней величины[править | править код]

Применительно к диэлектрической среде без потерь действует цепочка соотношений:

D=ε0E+P=ε0(1+χ)E=ε0εE{\displaystyle \mathbf {D} =\varepsilon _{0}\mathbf {E} +\mathbf {P} =\varepsilon _{0}(1+\chi )\mathbf {E} =\varepsilon _{0}\varepsilon \mathbf {E} }.

В большинстве случаев χ{\displaystyle \chi } и, соответственно, ε{\displaystyle \varepsilon } — это просто безразмерные константы конкретного материала. В вакууме χ{\displaystyle \chi } равно нулю.

Особая ситуация возникает для нелинейных сред, когда ε{\displaystyle \varepsilon } зависит от величины поля E{\displaystyle E}; такое возможно в сравнительно сильных полях. В сегнетоэлектриках возможно появление спонтанной поляризации, а именно сохранение P≠0{\displaystyle \mathbf {P} \neq 0} после снятия ранее наложенного внешнего поля.

Распределение электрического поля в пространстве с различными диэлектриками находится из численного решения уравнения Максвелла

∇⋅D(r)=ρ(r){\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {D(r)} =\rho (\mathbf {r} )}

или уравнения Пуассона для электрического потенциала φ{\displaystyle \varphi }

∇(ε(r)∇φ(r))=−ε0−1ρ(r){\displaystyle {\boldsymbol {\nabla }}\left(\varepsilon (\mathbf {r} ){\boldsymbol {\nabla }}\varphi (\mathbf {r} )\right)=-\varepsilon _{0}^{-1}\rho (\mathbf {r} )},

где ρ(r){\displaystyle \rho (\mathbf {r} )} обозначает плотность свободных зарядов. На незаряженной границе двух диэлектрических сред отношение нормальных компонент напряжённости поля En{\displaystyle E_{n}} с обеих сторон равно обратному отношению значений проницаемости сред.

В ситуации однородного диэлектрика его наличие приводит к снижению электрического поля E(r){\displaystyle \mathbf {E} (\mathbf {r} )} в ε{\displaystyle \varepsilon } раз, по сравнению со случаем вакуума при том же распределении свободных зарядов. Помимо закона Кулона, практически важным примером является конденсатор любой геометрии, заряд (не разность потенциалов!) обкладок которого фиксирован.

Проницаемость в оптическом диапазоне частот[править | править код]

Диэлектрическая проницаемость, совместно с магнитной, определяют фазовую скорость распространения электромагнитной волны в рассматриваемой среде, а именно:

ε0ε(ω)μ0μ(ω)=vph−2{\displaystyle \varepsilon _{0}\varepsilon (\omega )\mu _{0}\mu (\omega )=v_{ph}^{-2}}.

Показатель преломления диэлектрика без потерь можно выразить как квадратный корень из произведения его магнитной и диэлектрической проницаемостей:

n(ω)=μ(ω)⋅ε(ω){\displaystyle n(\omega )={\sqrt {\mu (\omega )\cdot \varepsilon (\omega )}}}

Для немагнитных сред μ=1{\displaystyle \mu =1}. Значения ε{\displaystyle \varepsilon } для актуального в данном контексте оптического диапазона могут очень сильно отличаться от статических значений: как правило, ε{\displaystyle \varepsilon } намного ниже, чем для статического поля. Однако, если рассматривать оптический диапазон частот сам по себе, то в нём с ростом ω{\displaystyle \omega } величина ε{\displaystyle \varepsilon } (а значит, и n{\displaystyle n}) чаще всего возрастает. Такое поведение показателя преломления («синий свет преломляется сильнее красного») является случаем так называемой нормальной дисперсии. С противоположной ситуацией аномальной дисперсии можно столкнуться вблизи полос поглощения, но такой случай не может рассматриваться как случай без потерь.

Тензор проницаемости анизотропных сред[править | править код]

Диэлектрическая проницаемость связывает электрическую индукцию D{\displaystyle \mathbf {D} } и напряжённость электрического поля E{\displaystyle \mathbf {E} }. В электрически анизотропных средах компонента вектора напряжённости Ei{\displaystyle E_{i}} может не только влиять на ту же самую компоненту вектора электрической индукции Di{\displaystyle D_{i}}, но и порождать другие его компоненты Dj(j≠i){\displaystyle D_{j}(j\neq i)}. В общем случае проницаемость является тензором, определяемым из следующего соотношения (в записи использовано соглашение Эйнштейна):

Di=ε0εijEj{\displaystyle D_{i}=\varepsilon _{0}\varepsilon _{ij}E_{j}}

или, иначе,

D=εaE{\displaystyle \mathbf {D} ={\boldsymbol {\varepsilon }}_{a}\mathbf {E} }

где жирный шрифт использован для векторных и тензорных величин, а

E=E1e1+E2e2+E3e3{\displaystyle \mathbf {E} =E_{1}\mathbf {e} _{1}+E_{2}\mathbf {e} _{2}+E_{3}\mathbf {e} _{3}} — вектор напряжённости электрического поля,
D=D1e1+D2e2+D3e3{\displaystyle \mathbf {D} =D_{1}\mathbf {e} _{1}+D_{2}\mathbf {e} _{2}+D_{3}\mathbf {e} _{3}} — вектор электрической индукции,
εa=ε0εij{\displaystyle {\boldsymbol {\varepsilon }}_{a}=\varepsilon _{0}\varepsilon _{ij}} — тензор абсолютной диэлектрической проницаемости.

В изотропном случае любая компонента вектора напряженности Ei{\displaystyle E_{i}} влияет только на Di{\displaystyle D_{i}}, при этом εij= δijε{\displaystyle \varepsilon _{ij}=~\delta _{ij}\varepsilon }, где δij{\displaystyle \delta _{ij}} — символ Кронекера, поэтому уравнения Максвелла могут быть записаны с использованием скалярной диэлектрической проницаемости (ε{\displaystyle \varepsilon } — просто коэффициент в уравнении).

Статическая проницаемость некоторых диэлектриков[править | править код]

Значение ε{\displaystyle \varepsilon } вакуума равно единице, для реальных сред в статическом поле ε>1{\displaystyle \varepsilon >1}. Для воздуха и большинства других газов в нормальных условиях значение ε{\displaystyle \varepsilon } близко к единице в силу их низкой плотности. В статическом электрическом поле для большинства твёрдых или жидких диэлектриков значение ε{\displaystyle \varepsilon } лежит в интервале от 2 до 8, для жидкой воды значение ε{\displaystyle \varepsilon } достаточно высокое, 88 при 0∘{\displaystyle 0^{\circ }}. А у твердого льда ε{\displaystyle \varepsilon } больше и составляет 97 при 0∘{\displaystyle 0^{\circ }}. Это объясняется тем, что переход атома Н от одного О-атома к другому вызывает перестройку ковалентных и водородных связей у обоих этих О-атомов и в их в окрестности. В результате вся сеть ковалентных и водородных связей во льду сильно флуктуирует, и это приводит к аномально высокой поляризуемости льда, превосходя диэлектрическую проницаемость жидкой воды[3]. Значение ε{\displaystyle \varepsilon } велико для веществ с молекулами, обладающими большим электрическим дипольным моментом. Значение ε{\displaystyle \varepsilon } сегнетоэлектриков составляет десятки и сотни тысяч.

Статическая диэлектрическая проницаемость материалов (таблица)
Вещество Химическая формула Условия измерения Характерное значение εr
Вакуум - - 1
Воздух - Нормальные условия, 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO2{\displaystyle {\ce {CO2}}} Нормальные условия 1,0009
Тефлон (политетрафторэтилен, фторопласт) [−CF2−CF2−]n{\displaystyle {\ce {[{-CF2-CF2-}]_n}}} - 2,1
Нейлон - - 3,2
Полиэтилен [−Ch3−Ch3−]n{\displaystyle {\ce {[{-Ch3-Ch3-}]_n}}} - 2,25
Полистирол [−Ch3−(C6H5)H−]n{\displaystyle {\ce {[{-Ch3-{(C6H5)}H-}]_{n}}}} - 2,4-2,7
Каучук - - 2,4
Битум - - 2,5-3,0
Сероуглерод CS2{\displaystyle {\ce {CS2}}} - 2,6
Парафин C18h48−C35H72{\displaystyle {\ce {C18h48-C35H72}}} - 2,0-3,0
Бумага - - 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C6H9S)2{\displaystyle {\ce {(C6H9S)_2}}} 2,5-3,0
Плексиглас (оргстекло) - - 3,5
Кварц SiO2{\displaystyle {\ce {SiO2}}} - 3,5-4,5
Диоксид кремния

ru.wikipedia.org

Что такое диэлектрик для физика?

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Концетрация свободных носителей заряда в диэлектрике не превышает 108 см-3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твердого тела диэлектрик - вещество с шириной запрещенной зоны больше 3 эВ. Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию. К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком. Диэлектрики используются не только как изоляционные материалы. Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли) . В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ &lt; 10-5 Ом·м, а к диэлектрикам — материалы, у которых ρ &gt; 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10-8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10-5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбужденным. Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными.

Вещество, содержащее не более 10^5 свободных зарядов в 1 см^:3

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2015-2019 © Игровая комната «Волшебный лес», Челябинск
тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск