Испарение жидкости происходит: Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара – Почему жидкость испаряется при любой температуре

Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Тема: Агрегатные состояния вещества

Урок: Испарение. Поглощение энергии при испарении жидкости и выделение её при конденсации пара

На этом уроке мы рассмотрим вопрос, связанный с испарением, а также с поглощением энергии при испарении жидкости и с выделением энергии при конденсации пара.

На предыдущих уроках мы рассматривали различные процессы и, в частности, говорили о плавлении, о нагревании тел, об отвердевании или кристаллизации тел.

Сегодня мы рассмотрим процессы, при которых образуется пар (разновидность газа) или газ.

Давайте вспомним схему, по которой происходят различные процессы превращения агрегатных состояний (Рис. 1).

Рис. 1.

Парообразование может происходить двумя способами: кипение

и испарение. Как правило, указывают первый способ – кипение.

На сегодняшнем уроке мы подробно рассмотрим второй способ парообразования: испарение.

Определение

Испарение – это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. То есть тогда, когда поверхность жидкости открыта и с поверхности начинается переход вещества из жидкого состояния в газообразное.

Вспомним, для начала, схему, на которой представлена картина превращений одного состояния вещества в другое состояние.

Конденсация      Парообразование
Десублимация  Сублимация
Отвердевание  Плавление

Таблица, в которой описаны названия процессов переходов между агрегатными состояниями вещества, выглядит следующим образом:

Переход

Название

Твёрдое  жидкое

Плавление

Жидкое  твёрдое

Отвердевание (кристаллизация)

Жидкое  газообразное

Парообразование

Газообразное  жидкое

Конденсация

Твёрдое  газообразное

Сублимация

Газообразное  твёрдое

Десублимация

Процесс испарения происходит не мгновенно, поэтому мы говорим, что испарение – процесс непрерывный и, соответственно, испарение жидкости происходит в течение некоторого времени.

Как происходит испарение?

Рассмотрим поверхность жидкости. Мы знаем, что жидкость состоит из атомов и молекул, которые находятся в непрерывном движении. Соответственно, может найтись такая частица данного вещества, у которой скорость (а, соответственно, и энергия) будет достаточно велика для того, чтобы преодолеть притяжение своих соседей и покинуть жидкость, то есть перейти в газообразное состояние. Поэтому говорят, что испарение происходит со свободной поверхности.

Рассмотрим факторы, которые влияют на испарение (в частности, его скорость).

1. Строение вещества

В первую очередь испарение связано со строением самого вещества. Можно привести следующий пример: возьмём две бумажные салфетки, смочим одну салфетку водой, а другую – эфиром. Можно заметить, что та салфетка, которая смочена эфиром, высохнет гораздо быстрее. Это объясняется тем, что сила взаимодействия между молекулами эфира гораздо меньше, чем сила взаимодействия между молекулами воды. И поэтому испарение происходит у эфира быстрее.

2. Площадь поверхности

Площадь свободной поверхности жидкости играет очень важную роль: если площадь поверхности достаточно большая, то количество частиц, покидающих жидкость, будет, конечно же, больше, и в этом случае испарение будет происходить быстрее. Можно привести такой пример: если в блюдце налить воду и такое же количество воды налить в стакан, то из блюдца испарение будет происходить гораздо быстрее (Рис. 2). Другой пример: все знают, что бельё, перед тем как его повесить сушиться, встряхивают и расправляют. В этом случае площадь белья увеличивается, соответственно, площадь испарения также увеличивается, и сам процесс испарения происходит быстрее.

  

Рис. 2. Блюдце и стакан с водой (Источник) (Источник)

3. Температура

Ещё одно явление, которое влияет на испарение, – это изменение температуры. Чем температура выше, тем быстрее происходит испарение. То есть, нагревая тело, мы можем увеличивать скорость процесса испарения, ускорять его, или, наоборот, если мы будем понижать температуру, то процесс испарения будет замедляться. Объясняется это тем, что с увеличением температуры возрастает скорость движения частиц. А раз скорость движения возрастает, то большее количество частиц может покинуть жидкость и перейти в газообразное состояние.

Поскольку движение частиц происходит непрерывно, то процесс испарения также непрерывен. Поскольку при любой температуре движение частиц не прекращается, то и испарение может происходить практически при любой температуре. Поэтому испарение происходит даже при низкой температуре. Например, лужи на улице высыхают не только летом, когда жарко, но и осенью, когда холодно (Рис. 3). Отличается лишь скорость высыхания луж.

Рис. 3. (Источник)

Возникает вопрос: что можно сказать об энергии жидкости при испарении? Так как жидкость покидают наиболее быстрые частицы, то они обладают большей кинетической энергией. Следовательно, в целом энергия испаряющейся жидкости уменьшается. Пояснить это можно на следующем примере: возьмём несколько человек, построим их в ряд и измерим их средний рост. Затем из этого строя уберём самых высоких и снова измерим средний рост. В результате, вполне логично, получится меньшее значение. То же самое происходит и с энергией. Каждый раз частицы с наибольшей энергией уходят из жидкости, и внутренняя энергия жидкости уменьшается.

Однако в жизни это охлаждение мы замечаем крайне редко. С чем же это связано? Это происходит из-за того, что жидкость сообщается с окружающими телами, в первую очередь, конечно, с воздухом, и поэтому, охлаждаясь, одновременно получает энергию из окружающих тел, то есть из воздуха. В результате этого «теплообмена» температура поддерживается на одном уровне. А испарение происходит с приблизительно одинаковой интенсивностью.

4. Ветер

Следующий фактор, который влияет на испарение, – это наличие ветра. Представьте себе, что над поверхностью жидкости образуется газ. Процесс испарения, как мы выяснили, продолжается непрерывно. Но точно так же будет происходить процесс возвращения молекул обратно в жидкость. Если же дует ветер, то он уносит молекулы, которые перешли из жидкости в газ, и не даёт им вернуться обратно в жидкость. В этом случае процесс испарения ускоряется, то есть скорость испарения возрастает.

Очень важно заметить и то, что в быту часто встречается так называемое испарение в закрытых сосудах. К примеру, если взять кастрюлю, в которой находится вода, то на поверхности крышки с внутренней стороны образуются капельки воды. То есть, поскольку внутри кастрюли ветра нет, то процесс испарения и возвращения молекул обратно в жидкость в данном случае выравнивается. Вот такое состояние называют

динамическим равновесием.

Определение

Динамическое равновесие – это состояние системы «пар – жидкость», при которой количество молекул, вышедших из жидкости (перешедших в пар), равно количеству молекул, которое вернулось из пара обратно в жидкость.

Если же преобладает испарение над возвращением частиц обратно в жидкость, то такой пар, который находится над жидкостью, называется ненасыщенным.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным.

При динамическом равновесии общая масса системы «пар – жидкость» не меняется: количество молекул, которые «вылетели» с поверхности жидкости, равно количеству молекул, которые «вернулись». Поэтому в целом масса всей системы «пар – жидкость» не изменяется.

Кроме испарения существует и обратный ему процесс, который называется конденсацией (от латинского – «сгущаю»).

То есть, конденсация – это процесс перехода пара (газа) в жидкость. Этот процесс происходит всегда с выделением количества теплоты (так как внутренняя энергия вещества уменьшается). То есть температура окружающих тел будет повышаться (жидкость передаёт избыточную энергию окружающим телам).

Конденсация происходит так же непрерывно, как и испарение. Точнее, можно сказать, что эти два процесса происходят одновременно, непрерывно.

Подтверждением этого, например, является образование облаков, ведь облака – это сконденсированная жидкость. Выпадение росы или, например, дождь, который идёт, – это всё процессы, которые связаны с конденсацией.

Отметим, что существует испарение не только с поверхности жидкостей, но и твёрдых тел. Для этого существует наглядный пример: если зимой мокрое бельё повесить на улице, то оно замёрзнет, то есть покроется коркой льда. Но, через некоторое время выяснится, что бельё сухое, то есть вода, даже в твёрдом состоянии, куда-то исчезла. Это и есть процесс испарения твёрдого тела, в данном случае льда. Встречаются испарения и других веществ, например, нафталина. Запах нафталина, который мы чувствуем, говорит о том, что нафталин также способен к испарению.

На следующем уроке мы рассмотрим вопросы, связанные с другим процессом перехода из жидкого состояния в газообразное – парообразованием.

                       

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «Открытый урок» (Источник).
  2. Сайт учителя информатики (Источник).
  3. Продленка (Источник).

 

Домашнее задание

  1. П. 16, вопросы 1–8, упр. 9 (1–7). Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. При какой температуре происходит испарение воды?
  3. Почему мокрое бельё на ветру сохнет быстрее?
  4. Почему жидкость при испарении охлаждается?

Испарение | Физика

Испарение — это переход вещества из жидкого состояния в газообразное (пар), происходящее со свободной поверхности жидкости.

Сублимацию, или возгонку, т. е. переход вещества из твердого состояния в газообразное, так­же называют испарением.

Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно — она превращается в пар. Испарение — это один из видов парообразования. Другой вид — это кипение.

Механизм испарения. Как происходит испарение? Молекулы любой жидкости находятся в не­прерывном и беспорядочном движении, причем чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную ве­личину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией, достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое пов­торится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поглощение энергии при испарении. Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшает­ся. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и темпера­тура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости про исходило без изменения ее температуры, жидкости необходимо сообщать энергию.

Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.

Скорость испарения жидкости. В отличие от кипения испарение происходит при любой темпе­ратуре, однако с повышением температуры жидкости скорость испарения возрастает. Чем выше температура жидкости, тем больше быстро движущихся молекул имеет достаточную кинетичес­кую энергию, чтобы преодолеть силы притяжения соседних частиц и вылететь за пределы жид­кости, и тем быстрее идет испарение.

Скорость испарения зависит от рода жидкости. Быстро испаряются летучие жидкости, у кото­рых силы межмолекулярного взаимодействия малы (например, эфир, спирт, бензин). Если кап­нуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жид­кость будет охлаждаться и отбирать у нее некоторое количество теплоты.

Скорость испарения жидкости зависит от площади ее свободной поверхности. Это объясняется тем, что жидкость испаряется с поверхности, и чем* больше площадь свободной поверхности жид­кости, тем большее количество молекул одновременно вылетает в воздух.

В открытом сосуде масса жидкости вследствие испарения постепенно уменьшается. Это свя­зано с тем, что большинство молекул пара рассеивается в воздухе, не возвращаясь в жидкость (в отличие от того, что происходит в закрытом сосуде). Но небольшая часть их возвращается в жидкость, замедляя тем самым испарение. Поэтому при ветре, который уносит молекулы пара, испарение жидкости происходит быстрее.

Применение в технике. Испарение играет важную роль в энергетике, холодильной технике, в процессах сушки, испарительного охлаждения. Например, в космической технике быстроиспа-ряющимися веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус аппарата в результате трения нагревается, и покрывающее его вещество начи­нает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от пере­грева.

Факторы, влияющие на испарение — урок. Физика, 8 класс.

Теперь рассмотрим, от чего зависит испарение:

 

1) От рода жидкости.

В четыре стакана налили жидкости разной плотности.

 

 

При одинаковой температуре быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой.

Через некоторый промежуток времени в первом стакане осталось жидкости меньше всего. В нашем случае это спирт.

 

2) От температуры жидкости.

Испарение происходит при любой температуре.

 

Обрати внимание!

С повышением температуры испарение становится интенсивнее.

 

 

Мы видим, что в первом стакане осталось меньше воды, чем во втором.

Дело в том, что чем выше температура жидкости, тем больше в ней быстро движущихся молекул. Они способны преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.

Например, лужи высыхают и летом в жару, и осенью, когда уже холодно. Но летом высыхают быстрее.

 

c4a8112b0b6f2e850ea73d4bc901736f.jpg

 

3) От площади свободной поверхности.

Жидкость испаряется с поверхности, и чем больше площадь поверхности, тем большее число молекул одновременно вылетает в воздух.

Например, развешанное бельё быстрее высыхает, чем скомканное.

 

 

4) От потока воздуха.

В ветреную погоду бельё высохнет быстрее, чем в безветренную, т.к. при испарении молекулы не только покидают жидкость, но и возвращаются обратно. А поток воздуха уносит вылетевшие молекулы, и они не могут вернуться снова в жидкость.

 

Источники:

http://bigpo.ru/potrb/Конспект+урока+ф.+И.+О.+Оситняжская+Лариса+Николаевна+>+Место+работы+моу+«Куриловская+гимназия»b/208219_html_2d06f395.png

https://arhivurokov.ru/kopilka/uploads/user_file_544e699647b2d/img_user_file_544e699647b2d_3.jpg

http://cdn01.ru/files/users/images/c4/a8/c4a8112b0b6f2e850ea73d4bc901736f.jpg

https://im3-tub-by.yandex.net/i?id=8e1624fc425d819add08a8d6268c97be-l&n=13

https://im3-tub-by.yandex.net/i?id=50beddee68e7467e491217c693229d6f-l&n=13

это… Что такое испарение: определение, примеры :: SYL.ru

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение – это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

испарение воды

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение – это парообразование с поверхности вещества, а кипение – со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

процесс испарения
  • Кипение – это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла — 227 °С, для нерафинированного — 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура – 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение – это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

температура испарения

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье – мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

испарение это

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества – она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом – вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, – температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить – подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) — это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

условия испарения

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

от чего зависит испарение

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения – потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

примеры испарения

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение – это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

скорость испарения

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они – невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *