Как через концентрацию найти массу – . ., ,

Как найти концентрацию?

Знакомая нам с детства такая величина как концентрация определяет количество находящегося в любом растворе вещества. И чаще всего задача, как найти концентрацию используется в такой науке как химия, в основном, при различных экспериментах. Потому что очень важно, чтобы нужный раствор был правильно приготовлен, ведь от этого многое будет зависеть.

Кроме химии, то, как найти концентрацию раствора применяется и в других научных направлениях, а зачастую используется человеком и в повседневной жизни при приготовлении точного раствора сахара, соли или соды, например.

Виды концентраций и формулы

Если говорить о химии, то тут в основном используют три основных вида концентраций. Это, как правило, концентрация молярная или (молярность), далее идет моляльная (моляльность), а также сюда следует добавить эквивалентную или нормальную концентрацию.

  1. Что касается первой (молярной) концентрации, то она являет собой отношение полного количества растворяемого вещества к самому объему раствора:

    См = n/V

    Символы:

    • n - это количество всего вещества, моль,
    • V - это объем самого раствора, л.

    Еще такую концентрацию, как правило, обозначают буквой М. В случае, если М стоит после числа 5, то это - 5 моль/л.

  2. В отношении моляльной концентрации или моляльности, это отношение количества

    вещества к массе самого растворителя:

    m = n/ M (раствора)

    Здесь:

    • n - количество вещества, моль,
    • М - масса раствора.
  3. Еще один вид концентрации называется - эквивалентная, или (нормальная) концентрация – отношение числа эквивалентов того вещества, которое растворяем, к объему самого раствора. Обозначается: Сн или буквой н после числа (3 нНСl - в литре р-ра - 3 эквивалента вещества).

Решение задач

Пример 1

1 кг соли растворяем в 9 литров чистой воды. Вопрос: как найти концентрацию раствора и чему она будет равна? (масса 1 литра воды равна 1 кг).

Решение:

Знаем, что масса вещества, которое растворили (в данном случае соли) равна 1 килограмму. Масса воды в растворе равняется 9 килограммам. Таким образом, до 9 кг +1 кг, получится 10 килограмм, будет составлять общую массу раствора.

1/10 = 0,1 = 10%

В итоге у нас получится 10 процентная концентрация раствора.

Пример 2

Рассчитать нормальность и молярность 70% раствора H2SO4, т.е., как найти концентрацию вещества (r = 1,615 г/мл).

Решение:

Необходимо вычислить массу H2SO4 в 1 л приготовленного раствора. В 70% h3SO4 содержится 70 г h3SO4 в 100 г р-ра. Эта масса раствора имеет объем:

V = 100/1,615 = 61,92 мл

1 л раствора содержит H2SO4:

70х1000/61,92 = 1130,49 г

Следовательно, молярность раствора:

1130,49/М(H2SO4) =1130,49/98 =11,53

Нормальность раствора (кислота в реакции используется в качестве двухосновной):

1130,49 / 49 =23,06 H

Теперь вы знаете все формулы и понимаете, как найти концентрацию при решении каких-либо химических задач. 

elhow.ru

Урок 15. Моляльность и молярность – HIMI4KA

В уроке 15 «Моляльность и молярность» из курса «Химия для чайников

» рассмотрим понятия растворитель и растворенное вещество научимся выполнять расчет молярной и моляльной концентрации, а также разбавлять растворы. Невозможно объяснить что такое моляльность и молярность, если вы не знакомы с понятием моль вещества, поэтому не поленитесь и прочитайте предыдущие уроки. Кстати, в прошлом уроке мы разбирали задачи на выход реакции, посмотрите если вам интересно.

Химикам нередко приходится работать с жидкими растворами, так как это благоприятная среда для протекания химических реакций. Жидкости легко смешивать, в отличие от кристаллических тел, а также жидкость занимает меньший объем, по сравнению с газом. Благодаря этим достоинствам, химические реакции могут осуществляться гораздо быстрее, так как исходные реагенты в жидкой среде часто сближаются и сталкиваются друг с другом. В прошлых уроках мы отмечали, что вода относится к полярным жидкостям, и потому является неплохим растворителем для проведения химических реакций. Молекулы H2O, а также ионы H

+ и OH, на которых вода диссоциирована в небольшой степени, могут способствовать запуску химические реакций, благодаря поляризации связей в других молекулах или ослаблению связи между атомами. Вот почему жизнь на Земле зародилась не на суше или в атмосфере, а именно в воде.

Растворитель и растворенное вещество

Раствор может быть образован путем растворения газа в жидкости или твердого тела в жидкости. В обоих случаях жидкость является растворителем, а другой компонент — растворенное вещество. Когда раствор образован путем смешивания двух жидкостей, растворителем считается та жидкость, которая находится в большем количестве, иначе говоря имеет бОльшую концентрацию.

Расчет концентрации раствора

Молярная концентрация

Концентрацию можно выражать по разному, но наиболее распространенный способ — указание его молярностиМолярная концентрация (молярность) — это число молей растворенного вещества в 1 литре раствора. Единица молярности обозначается символом M. Например два моля соляной кислоты на 1 литр раствора обозначается 2 М HCl. Кстати, если на 1 литр раствора приходится 1 моль растворенного вещества, тогда раствор называется одномолярным. Молярная концентрация раствора обозначается различными символами:

  • cx, Смx, [x], где x — растворенное вещество

Формула для вычисления молярной концентрации (молярности):

где n — количество растворенного вещества в молях, V — объем раствора в литрах.

Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным. Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л. Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.

Молярная концентрация раствора

Молярная концентрация раствора

Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.

Решение:

Определим объем (NH4)2SO4 до растворения:

  • 264 г / 1,76 г/мл = 150 мл = 0,150 л

Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:

  • 1,000 л + 0,150 л = 1,150 л

Число молей растворенного сульфата аммония равно:

  • 264 г / 132 г/моль = 2,00 моля (Nh5)2SO4

Завершающий шаг! Молярность раствора равна:

  • 2,000 / 1,150 л = 1,74 моль/л, т.е 1,74 М (NH4)2SO4

Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.

Моляльная концентрация

Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора. Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m. Формула для вычисления моляльной концентрации:

где n — количество растворенного вещества в молях, m — масса растворителя в кг

Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.

Моляльная концентрация раствора

Моляльная концентрация раствора

Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.

Решение:

Число молей уксусной кислоты в 5 г равно:

  • 5,00 г / 60,05 г/моль = 0,833 моля C
    2
    H4O2

Масса 1 л этанола равна:

  • 1,000 л × 0,789 кг/л = 0,789 кг этанола

Последний этап. Найдем моляльность полученного раствора:

  • 0,833 моля / 0,789 кг растворителя = 0,106 моль/кг

Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.

Разбавление растворов

В химической практике часто занимаются разбавлением растворов, т.е добавлением растворителя. Просто нужно запомнить, что число молей растворенного вещества при разбавлении раствора остается неизменным. И еще запомните формулу правильного разбавления раствора:

  • Число молей растворенного вещества = c1V1 = c2V2

где с1 и V1 — молярная концентрация и объем раствора до разбавления, с2 и V2 — молярная концентрация и объем раствора после разбавления. Рассмотрите задачи на разбавление растворов:

Разбавление растворов

Разбавление растворов

Пример 3. Определите молярность раствора, полученного разбавлением 175 мл 2,00 М раствора до 1,00 л.

Решение:

В условие задача указаны значения с1, V1 и V2, поэтому пользуясь формулой разбавления растворов, выразим молярную концентрацию полученного раствора с2

  • с2 = c1V1 / V2 = (2,00 М × 175 мл) / 1000 мл = 0,350 М

Пример 4 самостоятельно. До какого объема следует разбавить 5,00 мл 6,00 М раствора HCl, чтобы его молярность стала 0,1 М?

Ответ: V2 = 300 мл

Без сомнения, вы и сами догадались, что урок 15 «Моляльность и молярность» очень важный, ведь 90% все лабораторных по химии связаны с приготовлением растворов нужной концентрации. Поэтому проштудируйте материал от корки до корки. Если у вас возникли вопросы, пишите их в комментарии.

himi4ka.ru

Концентрация растворов

Способы выражения концентрации растворов

Существуют различные способы выражения состава раствора. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.


Массовая доля растворённого вещества
w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m:
w(B)= m(B) / m
Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества - CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.

Пример
Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора?

Решение
m(Na2SO4) = w(Na2SO4) / 100 = (5300) / 100 = 15 г

где w(Na2SO4) - массовая доля в %,
m - масса раствора в г
m(H2O) = 300 г - 15 г = 285 г.

Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г Na2SO4 и 285 г воды.

Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.
C(B) = n(B) / V = m(B) / (M(B)V),

где М(B) - молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается "M". Например, 2 MNaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).

Пример
Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?

Решение M(K2CrO4) = C(K2CrO4)

V M(K2CrO4) = 0,1 моль/л 1,2 л 194 г/моль = 23,3 г.

Таким образом, для приготовления 1,2 л 0,1 М раствора нужно взять 23,3 г K2CrO4 и растворить в воде, а объём довести до 1,2 литра.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют моляльностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.
Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.
Эоснования = Моснования / число замещаемых в реакции гидроксильных групп
Экислоты = Мкислоты / число замещаемых в реакции атомов водорода
Эсоли = Мсоли / произведение числа катионов на его заряд
Пример
Вычислите значение грамм-эквивалента (г-экв.) серной кислоты, гидроксида кальция и сульфата алюминия.
Э H2SO4 = М H2SO4 / 2 = 98 / 2 = 49 г
Э Ca(OH)2 = М Ca(OH)2 / 2 = 74 / 2 = 37 г
Э Al2(SO4)3 = М Al2(SO4)/ (23) = 342 / 2= 57 г

Величины нормальности обозначают буквой "Н". Например, децинормальный раствор серной кислоты обозначают "0,1 Н раствор H2SO4". Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.

Пример
Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).

Решение
Для вычисления молярности и нормальности надо знать число граммов H2SO4 в 1 л раствора. 70% -ный раствор H2SO4 содержит 70 г H2SO4 в 100 г раствора. Это весовое количество раствора занимает объём
V = 100 / 1,615 = 61,92 мл
Следовательно, в 1 л раствора содержится 701000 / 61,92 = 1130,49 г H2SO4

Отсюда молярность данного раствора равна: 1130,49 / М (H2SO4) =1130,49 / 98 =11,53 M
Нормальность этого раствора (считая, что кислота используется в реакции в качестве двухосновной) равна 1130,49 / 49 =23,06 H
Пересчет концентраций растворов из одних единиц в другие
При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная - на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с - процентная концентрация; M - молярная концентрация; N - нормальная концентрация; э - эквивалентная масса, r - плотность раствора; m - мольная масса, то формулы для пересчета из процентной концентрации будут следующими:
M = (cp 10) / m

N = (cp 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.

Пример 1
Какова молярная и нормальная концентрация 12%-ного раствора серной кислоты, плотность которого р = 1,08 г/см3?

Решение
Мольная масса серной кислоты равна 98. Следовательно,
m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.

Подставляя необходимые значения в формулы, получим:
а) Молярная концентрация 12% раствора серной кислоты равна
M = (121,08 10) / 98 = 1,32 M

б) Нормальная концентрация 12% раствора серной кислоты равна
N = (121,08 10) / 49 = 2,64 H.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.
Для пересчета из одной концентрации в другую можно использовать формулы:
M = (NЭ) / m

N = (Mm) / Э

Пример
Нормальная концентрация 1 М раствора серной кислоты N = (198) / 49 = 2 H.

Пример
Молярная концентрация 0,5 н. Na2CO3
M = (0,553) / 106 = 0,25 M.Упаривание, разбавление, концентрирование,

смешивание растворов
Имеется mг исходного раствора с массовой долей растворенного вещества w1 и плотностью r1.
Упаривание раствора
В результате упаривания исходного раствора его масса уменьшилась на Dm г. Определить массовую долю раствора после упаривания w2

Решение
Исходя из определения массовой доли, получим выражения для w1 и w2 (w2 > w1):
w1 = m1 / m
(где m1 - масса растворенного вещества в исходном растворе)
m1 = w1m

w2 = m1 / (m - Dm) = (w1m) / (m - Dm)

Пример
Упарили 60 г 5%-ного раствора сульфата меди до 50 г. Определите массовую долю соли в полученном растворе.
m = 60 г; Dm = 60 - 50 = 10 г; w1 = 5% (или 0,05)
w2 = (0,0560) / (60 - 10) = 3 / 50 = 0,06 (или 6%-ный)


Концентрирование раствора
Какую массу вещества (X г) надо дополнительно растворить в исходном растворе, чтобы приготовить раствор с массовой долей растворенного вещества w2?

Решение
Исходя из определения массовой доли, составим выражение для w1 и w2:
w1 = m1 / m2, (где m1 - масса вещества в исходном растворе).
m1 = w1m

w2 = (m1+x) / (m + x) = (w1m + x) / (m+x)

Решая полученное уравнение относительно х получаем:
w2m + w2 x = w1 m + x

w2m - w1 m = x - w2 x

(w2 - w1)

m = (1 - w2) x

x = ((w2 - w1)m) / (1 - w2)

Пример
Сколько граммов хлористого калия надо растворить в 90 г 8%-ного раствора этой соли, чтобы полученный раствор стал 10%-ным?
m = 90 г
w1 = 8% (или 0,08), w2 = 10% (или 0,1)
x = ((0,1 - 0,08) 90) / (1 - 0,1) = (0,02 90) / 0,9 = 2 г


Смешивание растворов с разными концентрациями
Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2. Образовался раствор (№3) с массовой долей растворенного вещества w3. Как относятся друг к другу массы исходных растворов?

Решение
Пусть w1 > w2, тогда w1 > w3 > w2. Масса растворенного вещества в растворе №1 составляет w1

m1, в растворе №2 - w2 m2. Масса образовавшегося раствора (№3) - (m1 - m2). Сумма масс растворенного вещества в растворах №1 и №2 равна массе этого вещества в образовавшемся растворе (№3):

w 1m1 + w 2 m2 = w3 (m1 + m2)

w1m1 + w 2 m2 = w3 m1 + w3 m2

w 1m1 - w 3 m1 = w3 m2 - w2 m2

(w1- w3)m1 = (w3- w2) m2

m1 / m2 = (w3- w2 ) / (w1- w3)
Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).

Для облегчения использования правила смешивания применяют правило креста :

w1
\

(w3 - w2)
/
m1

w3

/
w2

\
(w1 - w3)
m2


m1 / m2 = (w3 - w2) / (w1 - w3)
Для этого по диагонали из большего значения концентрации вычитают меньшую, получают (w1 - w3), w1 > w3 и (w3 - w2), w3 > w2. Затем составляют отношение масс исходных растворов m1 / m2 и вычисляют.

Пример
Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.

40%
\

5%
/
m1

10%

/
5%

\
30%
m2=210-m1


5 / 30 = m1 / (210 - m1)
1/6 = m1 / (210 - m1)
210 - m1 = 6m1
7m1 = 210
m1 =30 г; m2 = 210 - m1 = 210 - 30 = 180 г

Разбавление раствора
Исходя из определения массовой доли, получим выражения для значений массовых долей растворенного вещества в исходном растворе №1 (w1) и полученном растворе №2 (w2):
w1 = m1 / (r1V1) откуда V1= m1 /( w1 r1)

w2 = m2 / (r2V2)

m2 = w2r2 V2

Раствор №2 получают, разбавляя раствор №1, поэтому m1 = m2. В формулу для V1 следует подставить выражение для m2. Тогда
V1= (w2r2 V2) / (w1 r1)

m2 = w2 • r2 • V2

или

w1r1 • V1 = w2r2 • V2
m1(раствор)
m2(раствор)


m1(раствор) / m2(раствор) = w2 / w1
При одном и том же количестве растворенного вещества массы растворов и их массовые доли обратно пропорциональны друг другу.

Пример
Определите массу 3%-ного раствора пероксида водорода, который можно получить разбавлением водой 50 г его 3%-ного раствора.
m1(раствор) / m2(раствор) = w2 / w1
50 / x = 3 / 30
3x = 50

30 = 1500

x = 500 г
Последнюю задачу можно также решить, используя "правило креста":

30%
\

3%
/
50

3%

/
0%

\
27%
X


3 / 27 = 50 / x
x = 450 г воды
450 г + 50 г = 500 г


www.examen.ru

Формула концентрации раствора в химии

Определение и формула концентрации раствора

Наиболее распространены следующие способы выражения концентрации раствора.

Массовая доля – отношение (обычно – процентное) массы растворенного вещества к массе раствора:

w = msolute / msolution× 100%.

Например, 15: (масс.) водный раствор хлорида натрия – это такой раствор, в 100 единицах массы которого содержится 15 единиц массы NaCl и 85 единиц массы воды.

Молярная доля – это отношение количества растворенного вещества (или растворителя) к сумме количеств всех веществ, составляющих раствор. В случае раствора одного вещества в другом молярная доля растворенного вещества (N2) равна:

N2 = n2 / (n1 + n2),

а молярная доля растворителя (N1):

N1 = n1 / (n1 + n2),

где n1иn2 – соответственно количество вещества растворителя и растворенного вещества.

Молярная концентрация, или молярность – отношение количества растворенного вещества к объему раствора:

СМ = n / V.

Обычно молярность обозначается СМили (после численного значения молярности) М. Так, 2М H2SO4 означает раствор, в каждом литре которого содержится 2 моля серной кислоты, т.е. СМ = 2 моль/л.

Моляльная концентрация, или моляльность – это отношение количества растворенного вещества к массе растворителя:

m = nsolute / msolvent.

Обычно моляльность обозначается буквой m. Так, для раствора серной кислоты запись m = 2 моль/кг (воды) означает, что в этом растворе на каждый килограмм растворителя (воды) приходится 2 моля серной кислоты. Моляльность раствора в отличие от его молярности не изменяется при изменении температуры.

Нормальность раствора (нормальная концентрация, молярная концентрация эквивалента) СН(Х) – это отношение количества вещества эквивалента, содержащегося в растворе, к объему этого раствора [моль / м3]. На практике нормальность раствора по аналогии с молярной концентрацией выражают в моль/л. Так, например, с(H2SO4) = 1 моль/л, с(KOH) = 0,01 моль/л. При с(В) = 1 моль/л раствор называют нормальным, при с(В) = 0,01 моль/л – сантимолярным и т.д. Приняты и такие обозначения: 1 н. раствор H2SO4; 0,01 н. раствор KOH.

Эквивалентом называется реальная или условная частица вещества, которая может замещать, присоединять, высвобождать или быть каким-либо другим способом эквивалентна одному иону водорода в кислотно-основных или ионообменных реакциях или одному электрону в окислительно-восстановительных реакциях. Моль вещества эквивалента содержит 6,02×1023 эквивалентов.

Титр раствора – это масса вещества, содержащаяся в одном кубическом сантиметре (одном миллилитре) раствора [г/мл]. Обычно обозначается буквой Т. Например, T(HCl) = 0,02 г/мл означает, что в 1 мл раствора содержится 0,02 г соляной кислоты.

Примеры решения задач

ru.solverbook.com

Формулы для пересчета концентраций растворов


В приводимой ниже таблице приняты следующие обозначения:

М — мольная масса растворенного вещества, г/моль; Э — эквивалентная масса растворенного вещества, г/моль; р — плотность раствора, г/мл.


* Дли жидкостей может применяться величина Pv, % (об.) —число миллилитров растворенной жидкости в 100 мл раствора.

РАСЧЕТНЫЕ ФОРМУЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРИГОТОВЛЕНИЯ РАСТВОРОВ

Для приготовления определенного количества раствора какого-либо вещества заданной концентрации исходят из следующих данных: а) из количества чистого вещества и растворителя; б) из количества раствора данного вещества с более высокой концентрацией, чем заданная, и количества чистого растворителя или в) из количества двух растворов того же вещества, один из которых имеет концентрацию больше нужной, а другой — меньше.

Растворение вещества в воде

Пусть требуется приготовить А граммов раствора концентрации P [в % (масс.) ]. Тогда:

(I)
(2)

где х— необходимая масса растворяемого вещества, г; b—необходимая масса воды, г.

Если нужно приготовить определенный объем V раствора (в мл) концентрации Р, находят по таблицам плотность р (в г/см3) раствора данного вещества требуемой концентрации. Поскольку А = Vp, формула (1) будет иметь вид:


(3)

В тех случаях, когда растворяемое вещество представляет собой кристаллогидрат, т. е. содержит кристаллизационную воду, для расчета необходимого его количества используют формулу:

(4)
(5)

где х— необходимая масса кристаллогидрата, г; M1—мольная масса кристаллогидрата; М2—моль-мая масса вещества без кристаллизационной воды; b — необходимая масса воды, г.

Если нужно приготовить раствор объемом V (в мл) заданной нормальности N, вычисляют значение эквивалентной массы Э растворяемого вещества, после чего находят необходимую его навеску (в г) по формуле:


(6)

При приготовлении раствора заданной молярной концентрации применяют аналогичную формулу:


(7)

где М — молярная концентрация раствора; Мв — мольная масса растворяемого вещества; V — заданный объем раствора, мл.

Разбавление раствора водой

Пусть требуется приготовить раствор концентрации Р2 из имеющегося раствора с более высокой концентрацией Р1. Обозначим массу раствора до разбавления А1, а массу раствора после разбавления— А2. Тогда массу воды b (в г), необходимую для разбавления, находят по формуле (8) или (9) в зависимости от того, задано ли значение А\ или А2.

(8)

(9)
(10)

В тех случаях, когда известна не масса, а объем раствора, необходимо по таблицам найти плотности растворов данного вещества исходной и конечной концентраций — p1 и р2 соответственно. Тогда, если нужно приготовить раствор объемом V2 (в мл) концентрации Р2 [в % (масс.)], а концентрация исходного раствора равна P1 [(в % (масс.)], то объем исходного раствора вычисляется по формуле:


(11)

Объем воды (в мл) для разбавления: b = V2 - V1

Смешивание двух растворов различной концентрации

Пусть требуется приготовить раствор заданной концентрации из двух растворов того же вещества, один из которых имеет концентрацию больше нужной, а другой — меньше. Чтобы определить, в каких пропорциях следует смешивать растворы, пользуются «правилом креста», которое наглядно показано на следующем примере:


Смешиваемые растворы можно измерять в объемных или массовых частях в зависимости от того, в объемных или массовых процентах выражают концентрацию растворов.

«Правило креста» можно применять и в случаях разбавления раствора чистым растворителем. При этом концентрацию вещества в чистом растворителе считают равной нулю:


Для получения более концентрированного раствора растворением в нем дополнительного количества компонента твердое вещество условно считают раствором с концентрацией 100%:

К оглавлению

 

 

см. также

 

 


www.himikatus.ru

Способы выражения концентраций

Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях. Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными. Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве. Существуют  растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.

Существует множество способов измерить количество вещества, находящегося в единице объема или массы раствора, это так называемые способы выражения концентрации раствора. Каждый их методов занимает важное место в количественном и качественном анализе и находит в химии свое применение, поэтому при изучении химии, необходимы знания о том, каким образом можно выразить концентрацию растворов. Итак, приступим к рассмотрению каждого из методов.

Концентрацию раствора можно охарактеризовать как качественную и количественную.
Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.
С этой точки зрения растворы можно классифицировать на:

  • Насыщенные – растворы с максимально возможным количеством растворенного вещества. Количество растворяемого вещества, необходимое для получения насыщенного раствора определяет растворимость этого вещества.
  • Ненасыщенные – любые растворы, которые все еще могут растворять введенное вещество.
  • Пересыщенные – растворы, в которых растворено больше вещества, чем максимально возможное. Такие растворы очень нестабильны и в определенных условиях растворенное вещество будет выкристаллизовываться из него, до тех пор, пока не образуется насыщенный раствор.

Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.

  1. Наиболее распространенный способ выражения концентрации растворов –  молярная концентрация растворов или молярность. Она определяется как количество молей n растворенного вещества в одном литре раствора V:

См = n/V, моль/л (моль ·л-1 )

Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества,  децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.

Термин «молярная концентрация» распространяется на любой вид частиц. Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.

  1. Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).

Понятие эквивалентности мы уже вводили здесь. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях. Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде представляет собой 1/5 (KMnO4).

Введем понятие фактор эквивалентности – число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной  кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции. Он может быть равен 1 или быть меньше 1. Фактор эквивалентности для предыдущего примера  fэкв(KMnO4) = 1/5.

Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:

Мэ = fэкв· М(х)

Молярная концентрация эквивалента определяется числом молярных масс эквивалентов на 1 литр раствора. Эквивалент определяется в соответствии с типом рассматриваемой реакции.

Сн = nэ/V, моль/л (моль ·л-1)

Для обозначения нормальной концентрации допускается сокращение  «н» вместо «моль/л».

  1. Процентная концентрация раствора или массовая доля показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора. Это отношение массы m (х) вещества x к общей массе m раствора или смеси веществ:

ω (х) = m (х)/m,

Массовую долю выражают в долях от единицы или процентах.

  1. Моляльная концентрация раствора b (x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m:

b (x) = n(x)/m, моль/кг

  1. Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора:

Т (х) = m (х)/V, г/мл

  1. Мольная или молярная доля α (х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:

α (х) =  n(х)/ Σn.

Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации  найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети.  В разделе задач показано, как произвести такой пересчет, не зная формул.

zadachi-po-khimii.ru

Молярность | Задача 1 - 3

Молярность (molarity) - способ выражения концентрации, показывающей количество растворенного вещества (п, моль) в единице объема раствора (1 литр). В отличие от массовой и мольной доли, молярность имеет единицы измерения. В случае использования в качестве меры объема литров, молярность измеряется в «моль/литр»1. Обозначается молярность — «См».

Для вычисления молярной концентрации раствора (молярности) используется формула:

Задача 1. 
24 г чистой серной кислоты растворили в 85 г воды. Определить молярную концентрацию серной кислоты в полученном растворе, если его плотность составляет 1,155 г/мл.
Дано:
масса серной кислоты: m(Н24) = 24 г;
масса воды: m(Н2О) = 85 г;
плотность раствора: рр-ра = 1,155 г/мл.
Найти:
молярную концентрацию серной кислоты в растворе.
Решение:
Для определения молярной концентрации необходимо вычислить количество (п, моль) растворенного вещества (Н24) и объем раствора. 

Схематично алгоритм решения можно представить следующим образом:

1. Определим количество вещества серной кислоты:

2. Определим объем раствора:

Объем, выраженный в других единицах, для определения молярной концентрации всегда необходимо переводить в литры.

Подставим в формулу для вычисления молярной концентрации полученные данные:

Ответ: СМ2SO4) = 2,6 моль/л.


Задача 2. 
Определить массу гидроксида натрия в 700 г 14,ЗМ раствора NаОН в воде (рр-ра = 1,43 г/мл).
Дано:
масса раствора гидроксида натрия в воде : mр-ра = 700 г;
молярная концентрация гидроксида натрия в растворе: См(NаОН) = 14,3 моль/л,
плотность раствора: рр-ра= 1,43 г/мл.
Найти:
массу гидроксида натрия.
Решение:
Схематично алгоритм решения можно представить так:

1. Определим объем 700 г раствора

Обращайте, пожалуйста, внимание на согласованность единиц измерения величин, подставляемых в формулу. Если плотность выражена в г/мл или г/см3, то объем необходимо использовать в миллилитрах, а массу в граммах. Для использования молярной концентрации объем необходимо переводить в литры.

2. Используя соотношение для молярной концентрации, определим количество вещества NаОН в 0,4895 л раствора.

3. Определим массу 7 моль NаОН:

m(NaOH) = n(NaOH) .  M(NaOH) = 7 .40 =280 г.

Ответ: m(NaOH) = 280 г.


Задача 3. 
3 г поваренной соли (NаС1) растворили в 200 г воды. Определить молярную концентрацию полученного раствора.
Дано:
масса поваренной соли: m(NаС1) = 3 г;
масса воды: m(Н2О) = 200 г.
Найти:
молярную концентрацию поваренной соли в растворе.
Решение:
Схематично алгоритм решения можно представить следующим образом:

1 . Определяем количество вещества NаС1:

2. Для вычисления молярной концентрации необходимо знать объем раствора. Но по данным из условия задачи, возможно определить только его массу:

mр-ра = m(NаС1) + mН2О) = 3 + 200 = 203 г.

3. Для нахождения объема раствора требуется плотность. При необходимости очень точного расчета можно воспользоваться справочником физико-химических величин. В случае решения обычной задачи разумно принять плотность разбавленного водного раствора равной плотности воды2.

Определим молярную концентрацию NаС1 в растворе:

Ответ: 0,24моль/л.


Комментарии:
1 Иногда для сокращения записи после значения молярной концентрации вместо размерности записывают заглавную букву (М). Например, запись « 0.03М раствор NаОН в воде» следует понимать так: молярная концентрация NаОН в воде равна 0,03 моль/л.

2 Справочное значение плотности данного раствора равно 1,009 г/мл.


buzani.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *