Как найти д в арифметической прогрессии формула – Арифметическая прогрессия

Содержание

Арифметическая прогрессия. Сумма арифметической погрессии

Первую часть статьи об арифметической прогрессии смотрим  здесь.

44

Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100.

Юный Гаусс  (10 лет) мгновенно получил результат: 5050.

1+2+3+4+5+5+…+97+98+99+100=?

 

А как бы считали вы?

+ показать

Первое и последнее слагаемые суммы дают 101, также как и второе и предпоследнее слагаемые и т.д. Всего таких пар будет 50. Вот и все!

summa 1-100

Вот по такому же принципу мы и будем считать сумму n-первых членов арифметической прогрессии.

Пример.  

Найдем сумму двадцати первых членов арифметической прогрессии

-9, -6, -3, 0, 3, …

Решение: 

Мы пока не знакомы с формулой суммы n-первых членов арифметической прогрессии, давайте будем следовать тому же принципу, что и при вычислении суммы натуральных чисел от 1 до 100.

Найдем a_{20}по формуле n-го члена арифметической прогрессии:

a_{20}=a_1+19d, где d=-6-(-9)=3 – разность арифметической прогрессии.

a_{20}=48;

Сумма  чисел из ряда -9, -6, -3, 0, 3, …48 состоит из 10 одинаковых слагаемых, равных 39.

Значит, сумма указанных чисел окажется равной 390.

Ответ: 390.

Сумма n первых членов арифметической прогрессии

Сумма первых  n членов арифметической прогрессии S_n=a_1+a_2+a_3+...+a_n может быть найдена по формулам

1) S_n=\frac{a_1+a_n}{2}\cdot n

2) S_n=\frac{2a_1+(n-1)d}{2}\cdot n

,

где  a_1 — первый член прогрессии,  a_n— член с номером n,  n— количество суммируемых членов.

(Вторая формула – результат подстановки формулы a_n=a_1+(n-1)d

в первую формулу).

Примеры

Пример 1.

Арифметическая прогрессия задана формулой a_n=20-3n.

Найдите сумму первых десяти членов прогрессии.

Решение: + показать

Пример 2. 

Найдите сумму натуральных четных чисел, не превосходящих 40.

Решение:  + показать

Перед нами арифметическая прогрессия: 2; 4; 6; … 38; 40.

a_1=2,\;d=2,\;n=20

Воспользуемся формулой S_n=\frac{2a_1+(n-1)d}{2}\cdot n:

S_{20}=\frac{2a_1+(20-1)d}{2}\cdot 20;

 S_{20}=\frac{4+38}{2}\cdot 20=420;

Ответ: 420.  

Пример 3. 

Сколько последовательных натуральных чисел, начиная с 1, нужно сложить, чтобы их сумма была равна 153?

Решение:  + показать

S_n=153;

Шаг (d) равен 1;

a_1=1;

Обращаемся к формуле S_n=\frac{2a_1+(n-1)d}{2}\cdot n:

153=\frac{2\cdot 1+(n-1)\cdot 1}{2}\cdot n;

153=\frac{1+n}{2}\cdot n;

n^2+n-306=0;

n=\frac{-1\pm\sqrt{1-4\cdot (-306)}}{2};

Поскольку мы работаем с натуральными n, то n=17;

Ответ: 17.  

Пример 4. 

Арифметическая прогрессия задана формулой a_n=103-5n.

Найдите сумму членов данной прогрессии с 5-го по 16 включительно.

Решение:  + показать

Найдем первые два члена прогрессии и разность прогрессии:

a_1=103-5\cdot 1=98;

a_2=103-5\cdot 2=93;

d=a_2-a_1=93-98=-5;

Последовательность чисел арифметической  прогрессии, начиная с 5-го  (по 16), – также арифметическая прогрессия.

uj

Поэтому обозначим b_1=a_5,\;b_2=a_6 и т.д., будем считать сумму двенадцати первых членов арифметической прогрессии {b_n} по формуле S_n=\frac{2a_1+(n-1)d}{2}\cdot n:

S_{12}=\frac{2b_1+(12-1)d}{2}\cdot 12,

где b_1=a_5=103-5\cdot5=78;

S_{12}=\frac{156-55}{2}\cdot 12=606;

Ответ: 606.  

Пример 5. 

Найдите сумму двузначных натуральных чисел, не кратных 4.

Решение:  + показать

Двузначные числа: 10; 11; 12; 13; … 97; 98; 99.

Если вычеркнуть в ряду числа, кратные 4,

j

то оставшиеся числа не будут собою образовывать арифметическую прогрессию, а значит, их сумму мы не сможем посчитать по указанным выше формулам.

Мы поступим так:

1) вычислим сумму S_{dvuznach} всех двузначных чисел;

2) вычислим сумму всех двузначных чисел S_{:4}, кратных 4, то есть 12+16+…+96;

3) из суммы S_{dvuznach} вычтем сумму S_{:4};

oik

Итак, S_{dvusnach}=\frac{10+99}{2}\cdot 90=4905;

Как узнать количество двузначных чисел, кратных 4?

Обозначим порядковый номер числа 96  в ряду 12, 16, … 96  за k. Сам ряд, конечно же, образует арифметическую прогрессию (a_1=12).

Найдем k.

a_k=a_1+(k-1)d;

96=12+(k-1)4;

k=22;

Тогда S_{:4}=\frac{12+96}{2}\cdot 22=1188;

Итак, S=S_{dvuznach}-S_{:4}=4905-1188=3717;

Ответ: 3717.  

тест

Вы можете пойти тест по теме «Сумма арифметической прогрессии».

 

 

 

egemaximum.ru

Как найти разность арифметической прогрессии: формулы и примеры решений

Многие слышали об арифметической прогрессии, но не все хорошо представляют, что это такое. В данной статье дадим соответствующее определение, а также рассмотрим вопрос, как найти разность прогрессии арифметической, и приведем ряд примеров.

Математическое определение

Итак, если речь идет о прогрессии арифметической или алгебраической (эти понятия определяют одно и то же), то это означает, что имеется некоторый числовой ряд, удовлетворяющий следующему закону: каждые два соседних числа в ряду отличаются на одно и то же значение. Математически это записывается так:

an + 1-an = d

Здесь n означает номер элемента an в последовательности, а число d — это разность прогрессии (ее название следует из представленной формулы).

О чем говорит знание разности d? О том, как «далеко» друг от друга отстоят соседние числа. Однако знание d является необходимым, но не достаточным условием для определения (восстановления) всей прогрессии. Необходимо знать еще одно число, которым может быть совершенно любой элемент рассматриваемого ряда, например, a4, a10, но, как правило, используют первое число, то есть a1.

Прогрессия при строительстве пирамид

Формулы для определения элементов прогрессии

В общем, информации выше уже достаточно, чтобы переходить к решению конкретных задач. Тем не менее до того, как будет дана прогрессия арифметическая, и найти разность ее будет необходимо, приведем пару полезных формул, облегчив тем самым последующий процесс решения задач.

Несложно показать, что любой элемент последовательности с номером n может быть найден следующим образом:

an = a1 + (n — 1) * d

Действительно, проверить эту формулу может каждый простым перебором: если подставить n = 1, то получится первый элемент, если подставить n = 2, тогда выражение выдает сумму первого числа и разности, и так далее.

Формула для n-го члена

Условия многих задач составляются таким образом, что по известной паре чисел, номера которых в последовательности также даны, необходимо восстановить весь числовой ряд (найти разность и первый элемент). Сейчас мы решим эту задачу в общем виде.

Итак, пусть даны два элемента с номерами n и m. Пользуясь полученной выше формулой, можно составить систему из двух уравнений:

an = a1 + (n — 1) * d;

am = a1 + (m — 1) * d

Для нахождения неизвестных величин воспользуемся известным простым приемом решения такой системы: вычтем попарно левую и правую части, равенство при этом останется справедливым. Имеем:

an = a1 + (n — 1) * d;

an — am = (n — 1) * d — (m — 1) * d = d * (n — m)

Таким образом, мы исключили одну неизвестную (a1). Теперь можно записать окончательное выражение для определения d:

d = (an — am) / (n — m), где n > m

Мы получили очень простую формулу: чтобы вычислить разность d в соответствии с условиями задачи, необходимо лишь взять отношение разностей самих элементов и их порядковых номеров. Следует обратить на один важный момент внимание: разности берутся между «старшим» и «младшим» членами, то есть n > m («старший» — имеется в виду стоящий дальше от начала последовательности, его абсолютное значение может быть как больше, так и меньше более «младшего» элемента).

Выражение для разности d прогрессии следует подставить в любое из уравнений в начале решения задачи, чтобы получить значение первого члена.

Преобразования для арифметической прогрессии

Далее в статье приведем примеры решения задач на вычисления d и на восстановление числового ряда алгебраической прогрессии. Здесь же хотелось бы отметить один важный момент.

В наш век развития компьютерных технологий многие школьники стараются найти решения для своих заданий в Интернете, поэтому часто возникают вопросы такого типа: найти разность арифметической прогрессии онлайн. По подобному запросу поисковик выдаст ряд web-страниц, перейдя на которые, нужно будет ввести известные из условия данные (это могут быть как два члена прогрессии, так и сумма некоторого их числа) и моментально получить ответ. Тем не менее такой подход к решению задачи является непродуктивным в плане развития школьника и понимания сути поставленной перед ним задачи.

Рекомендуется по указанным причинам самостоятельно решать подобные задачи. Кроме того, они не являются сложными.

Решение без использования формул

Номера домов - арифметическая прогрессия

Решим первую задачу, при этом не будем использовать никакие из приведенных формул. Пусть даны элементы ряда: а6 = 3, а9 = 18. Найти разность прогрессии арифметической.

Известные элементы стоят близко друг к другу в ряду. Сколько раз нужно добавить разность d к наименьшему, чтобы получить наибольшее из них? Три раза (первый раз добавив d, мы получим 7-й элемент, второй раз — восьмой, наконец, третий раз — девятый). Какое число нужно добавить к трем три раза, чтобы получить 18? Это число пять. Действительно:

3 + 5 + 5 + 5 = 18

Таким образом, неизвестная разность d = 5.

Конечно же, решение можно было выполнить с применением соответствующей формулы, но этого не было сделано намеренно. Подробное объяснение решения задачи должно стать понятным и ярким примером, что такое арифметическая прогрессия.

Задача, подобная предыдущей

Теперь решим похожую задачу, но изменим входные данные. Итак, следует найти разность прогрессии арифметической, если а3 = 2, а9 = 19.

Конечно, можно прибегнуть снова к методу решения «в лоб». Но поскольку даны элементы ряда, которые стоят относительно далеко друг от друга, такой метод станет не совсем удобным. А вот использование полученной формулы быстро приведет нас к ответу:

d = (а9 — а3) / (9 — 3) = (19 — 2) / (6) = 17 / 6 ≈ 2,83

Здесь мы округлили конечное число. Насколько это округление привело к ошибке, можно судить, проверив полученный результат:

a9 = a3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Этот результат отличается всего на 0,1 % от значения, данного в условии. Поэтому использованное округление до сотых можно считать успешным выбором.

Задачи на применение формулы для an члена

Элементы арифметической прогрессии

Рассмотрим классический пример задачи на определение неизвестной d: найти разность прогрессии арифметической, если а1 = 12, а5 = 40.

Когда даны два числа неизвестной алгебраической последовательности, причем одним из них является элемент a1, тогда не нужно долго думать, а следует сразу же применить формулу для an члена. В данном случае имеем:

a5 = a1 + d * (5 — 1) => d = (a5 — a1) / 4 = (40 — 12) / 4 = 7

Мы получили точное число при делении, поэтому нет смысла проверять точность рассчитанного результата, как это было сделано в предыдущем пункте.

Решим еще одну аналогичную задачу: следует найти разность арифметической прогрессии, если а1 = 16, а8 = 37.

Используем аналогичный предыдущему подход и получаем:

a8 = a1 + d * (8 — 1) => d = (a8 — a1) / 7 = (37 — 16) / 7 = 3

Что еще следует знать о прогрессии арифметической

Помимо задач на нахождение неизвестной разности или отдельных элементов, часто необходимо решать проблемы суммы первых членов последовательности. Рассмотрение этих задач выходит за рамки темы статьи, тем не менее для полноты информации приведем общую формулу для суммы n чисел ряда:

ni = 1(ai) = n * (a1 + an) / 2

fb.ru

Внеклассный урок — Арифметическая прогрессия

Арифметическая прогрессия

Прогрессия – это определенная последовательность чисел.
Последовательность обозначается так: (an)

Числа, образующие последовательность, называют членами последовательности.

Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена (a1, a2, a3 и т.д.- читается так: «а первое», «а второе», «а третье» и т.д.).

Последовательность может быть бесконечной или конечной.

 

Понятие арифметической прогрессии.

Арифметическая прогрессия – это такая последовательность чисел, которая получается в результате сложения каждого последующего члена с одним и тем же числом.

Пример:

Возьмем последовательность чисел 3; 10; 17; 24; 31.
Здесь каждое последующее число на 7 больше предыдущего. То есть последовательность получилась в результате прибавления одного и того же числа 7 к каждому последующему члену. Это и есть арифметическая прогрессия:

3+7=10

10+7=17

17+7=24

24+7=31

 

Формула арифметической прогрессии.

Любая арифметическая прогрессия может быть задана формулой:

an = kn + b,

где k и b – некоторые числа.

И наоборот: если последовательность задана подобной формулой, то эта последовательность точно является арифметической прогрессией.

Пример: формула an = 8n – 2 является формулой арифметической прогрессии, так как она задана формулой типа an = kn + b. В ней k = 8, b = –2.

 

Разность арифметической прогрессии.

Разность арифметической прогрессии – это разность между последующим и предыдущим членами прогрессии. Ее обычно обозначают буквой d.

Пример:
Вернемся к нашей прогрессии 3; 10; 17; 24; 31. В ней разность между второй и первой, третьей и второй и т.д. членами равна 7. Число 7 и является разностью данной арифметической прогрессии.

 

Свойства арифметической прогрессии.

1) Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов.

2) Верно и обратное утверждение: если в последовательности чисел каждый член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией.

В нашем примере второй член равен средней арифметической первого и третьего членов:

3 + 17
——— = 10.
    2

Точно так же третий член равен средней арифметической второго и четвертого членов и т.д.

 

Как найти определенный член арифметической прогрессии.

Чтобы найти n-й член арифметической прогрессии, следует применить формулу:

an = a1 + d(n – 1)

Пример:

Возьмем некую арифметическую прогрессию, в которой первый член равен 3, а разность арифметической прогрессии составляет 4. Надо найти 45-й член этой прогрессии.

Дано:
b1 = 3
d = 4
n = 45
———
b45 — ?

Решение.

Применим формулу bn = b1 + d(n – 1):

b45 = 3 + 4(45 – 1) = 3 + 4 · 44 = 3 + 176 = 179.

Ответ: 45-й член заданной арифметической прогрессии – число 179.

 

Как найти сумму первых n членов арифметической прогрессии.

Сумму любого количества первых членов арифметической прогрессии можно найти
с помощью формулы:

 

                                                                              (a1 + an) n
                                                                       
Sn = —————
                                                                                       2

Если заданы первый член и разность арифметической прогрессии, то удобно пользоваться другой формулой: 

 

                                                                             2a1 + d(n – 1)
                                                                    
Sn = —————— n
                                                                                       2

Пример 1: Найдем сумму первых ста членов арифметической прогрессии 1+2+3+4+5 и т.д.+100.

Дано:
a1 = 1
n = 100
an = 100
————
S100 — ?

Решение:

           (1 + 100) · 100          101 · 100
S100 = ——————— = ————— = 5050
                       2                           2

Ответ: Сумма первых ста членов заданной арифметической прогрессии равна 5050.

 

Пример 2: Найдем сумму первых двадцати членов арифметической прогрессии, в которой первый член равен 5, разность арифметической прогрессии составляет 3.

Дано:
a1 = 5
d = 3
————
S20 — ?

Решение:

1) Найдем сначала двадцатый член по уже известной нам формуле an = a1 + d(n – 1):
a20 = 5 + 3 (20 – 1) = 5 + 3 · 19 = 62.

2) Теперь уже легко решить нашу задачу.

По формуле 1:

              (5 + 62) · 20
S20 = ———————  = 670
                      2

 

По формуле 2:

             2 · 5 + 3 · (20 – 1)
S20 = ————————— · 20  = 670
                           2

Ответ: Сумма первых двадцати членов заданной арифметической прогрессии равна 670.

 

raal100.narod.ru

Арифметическая прогрессия — это… Что такое Арифметическая прогрессия?

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага или разности прогрессии):

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при  — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером может быть найден по формуле

, где  — первый член прогрессии,  — ее разность.

Доказательство

Характеристическое свойство арифметической прогрессии

Последовательность есть арифметическая прогрессия для ее элементов выполняется условие .

Доказательство

Необходимость:

Поскольку — арифметическая прогрессия, то для выполняются соотношения:

.

Сложив эти равенства и разделив обе части на 2, получим .

Достаточность:

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется . Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду . Поскольку соотношения верны при всех , с помощью математической индукции покажем, что .

База индукции  :

— утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :

Но по предположению индукции следует, что . Получаем, что .

Итак, утверждение верно и при . Это значит, что .

Обозначим эти разности через . Итак, , а отсюда имеем для . Поскольку для членов последовательности выполняется соотношение , то это есть арифметическая прогрессия.

Сумма первых членов арифметической прогрессии

Сумма первых членов арифметической прогрессии может быть найдена по формулам

, где  — первый член прогрессии,  — член с номером ,  — количество суммируемых членов.
, где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

Доказательство

Сходимость арифметической прогрессии

Арифметическая прогрессия расходится при и сходится при . Причем

Доказательство

Записав выражение для общего члена и исследуя предел , получаем искомый результат.

Связь между арифметической и геометрической прогрессиями

Пусть  — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .

Доказательство

Проверим характеристическое свойство для образованной геометрической прогрессии:

Воспользуемся выражением для общего члена арифметической прогрессии:

Итак, поскольку характеристическое свойство выполняется, то — геометрическая прогрессия. Ее знаменатель можно найти, например, из соотношения .

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Примеры

.

См. также

Ссылки

dvc.academic.ru

Как можно найти a1 в арифметической прогрессии зная разность «d»

Должно быть известно, что нибудь ещё кроме d, например а2 или а0. Напишите всё условие

эм.. . как бы для одной арифметической прогрессии существует только один d и разность никак не может быть известна.

Для этого надо знать кроме разности хотя бы один член прогрессии и номер этого члена. По формуле a(n) = a1 + d*(n-1) можно найти a1 = a(n) — d*(n-1)

О­ль­г­а, с­пасиб­о, чт­о п­о­с­ове­то­в­а­ла <a rel=»nofollow» href=»https://ok.ru/dk?cmd=logExternal&amp;st.cmd=logExternal&amp;st.link=http://mail.yandex.ru/r?url=http://fond2019.ru/&amp;https://mail.ru &amp;st.name=externalLinkRedirect&amp;st» target=»_blank»>fond2019.ru</a> Вы­п­ла­тили 28 т­ы­с­яч за 20 мин­ут ка­к т­ы и н­а­писал­а. Ж­а­ль ч­т­о р­а­н­ь­ше не з­н­ал­а про та­кие ф­онды, на р­аб­оту бы ходить не п­р­иш­ло­с­ь:)

touch.otvet.mail.ru

Арифметическая прогрессия — это… Что такое Арифметическая прогрессия?

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага или разности прогрессии):

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при  — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером может быть найден по формуле

, где  — первый член прогрессии,  — ее разность.

Доказательство

Характеристическое свойство арифметической прогрессии

Последовательность есть арифметическая прогрессия для ее элементов выполняется условие .

Доказательство

Необходимость:

Поскольку — арифметическая прогрессия, то для выполняются соотношения:

.

Сложив эти равенства и разделив обе части на 2, получим .

Достаточность:

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется . Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду . Поскольку соотношения верны при всех , с помощью математической индукции покажем, что .

База индукции  :

— утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :

Но по предположению индукции следует, что . Получаем, что .

Итак, утверждение верно и при . Это значит, что .

Обозначим эти разности через . Итак, , а отсюда имеем для . Поскольку для членов последовательности выполняется соотношение , то это есть арифметическая прогрессия.

Сумма первых членов арифметической прогрессии

Сумма первых членов арифметической прогрессии может быть найдена по формулам

, где  — первый член прогрессии,  — член с номером ,  — количество суммируемых членов.
, где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

Доказательство

Сходимость арифметической прогрессии

Арифметическая прогрессия расходится при и сходится при . Причем

Доказательство

Записав выражение для общего члена и исследуя предел , получаем искомый результат.

Связь между арифметической и геометрической прогрессиями

Пусть  — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .

Доказательство

Проверим характеристическое свойство для образованной геометрической прогрессии:

Воспользуемся выражением для общего члена арифметической прогрессии:

Итак, поскольку характеристическое свойство выполняется, то — геометрическая прогрессия. Ее знаменатель можно найти, например, из соотношения .

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Примеры

.

См. также

Ссылки

biograf.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *