Как раскрыть скобки?
В данной статье мы подробно рассмотрим основные правила такой важной темы курса математики, как раскрытие скобок. Знать правила раскрытия скобок нужно для того, чтобы верно решать уравнения, в которых они используются.
Как правильно раскрывать скобки при сложении
Раскрываем скобки, перед которыми стоит знак « + »
Эта самый простой случай, ибо если перед скобками стоит знак сложения, при раскрытии скобок знаки внутри них не меняются. Пример:
(9 + 3) + (1 – 6 + 9) = 9 + 3 + 1 – 6 + 9 = 16.
Как раскрыть скобки, перед которыми стоит знак « — »
В данном случае нужно переписать все слагаемые без скобок, но при этом сменить все знаки внутри них на противоположные. Знаки меняются только у слагаемых из тех скобок, перед которыми стоял знак « — ». Пример:
(9 + 3) — (1 – 6 + 9) = 9 + 3 — 1 + 6 — 9 = 8.
Как раскрыть скобки при умножении
Перед скобками стоит число-множитель
В данном случае нужно умножить каждое слагаемое на множитель и раскрыть скобки, не меняя знаков. Если множитель имеет знак « — », то при перемножении знаки слагаемых меняются на противоположные. Пример:
3 * (1 – 6 + 9) = 3 * 1 — 3 * 6 + 3 * 9 = 3 – 18 + 27 = 12.
Как раскрыть две скобки со знаком умножения между ними
В данном случае нужно каждое слагаемое из первых скобок перемножить с каждым слагаемым из вторых скобок и затем сложить полученные результаты. Пример:
(9 + 3) * (1 – 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 – 54 + 81 + 3 – 18 + 27 = 48.
Как раскрыть скобки в квадрате
В случае, если сумма или разность двух слагаемых возведена в квадрат, скобки следует раскрывать по следующей формуле:
( х + у ) ^ 2 = х ^ 2 + 2 * х * у + у ^ 2.
В случае с минусом внутри скобок формула не меняется. Пример:
(9 + 3) ^ 2 = 9 ^ 2 + 2 * 9 * 3 + 3 ^ 2 = 144.
Как раскрыть скобки в другой степени
Если сумма или разность слагаемых возводится, например, в 3 или 4-ю степень, то нужно просто разбить степень скобки на «квадраты». Степени одинаковых множителей складываются, а при делении из степени делимого вычитается степень делителя. Пример:
(9 + 3) ^ 3 = ((9 + 3) ^ 2) * (9 + 3) = (9 ^ 2 + 2 * 9 * 3 + 3 ^ 2) * 12 = 1728.
Как раскрыть 3 скобки
Бывают уравнения, в которых перемножаются сразу 3 скобки. В таком случае нужно сначала перемножить между собой слагаемые первых двух скобок, и затем сумму этого перемножения умножить на слагаемые третьей скобки. Пример:
( 1 + 2 ) * ( 3 + 4 ) * ( 5 — 6 ) = ( 3 + 4 + 6 + 8 ) * ( 5 – 6) = — 21.
Данные правила раскрытия скобок одинаково распространяются для решения как линейных, так и тригонометрических уравнений.
elhow.ru
Формулы сокращенного умножения с примерами
Формулами сокращенного умножения (ФСУ) называют несколько наиболее часто встречающихся в практике случаев умножения многочленов.
ФСУ используются при упрощении алгебраических выражений (в том числе в работе с алгебраическими дробями), решении уравнений и неравенств, при разложении на множители и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.
Квадрат суммы
Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: \((a+b)^2\). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, \((a+b)^2=(a+b)(a+b)\). Теперь мы можем просто раскрыть скобки, перемножив их как делали это здесь, и привести подобные слагаемые. Получаем:
А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:
Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)
Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.
Пример. Раскрыть скобки: \((x+5)^2\)
Решение:
Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.
На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:
Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите свойства степеней и тему приведения одночлена к стандартному виду.
Пример. Преобразуйте выражение \((1+5x)^2-12x-1 \) в многочлен стандартного вида.
Решение:
\((1+5x)^2-12x-1= \) |
Раскроем скобки, воспользовавшись формулой квадрата суммы… |
|
\(=1+10x+25x^2-12x-1=\) |
…и приведем подобные слагаемые. |
|
\(=25x^2-2x\) |
Готово. |
Ответ: \(25x^2-2x\).
Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.
Пример. Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.
Решение:
\((368)^2+2·368·132+(132)^2=\) |
Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего. Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: \(a^2+2ab+b^2=(a+b)^2\) |
|
\(=(368+132)^2=\) |
Вот теперь вычислять гораздо приятнее! |
|
\(=(500)^2=250 000.\) |
Готово. |
Ответ: \(250 000\).
Квадрат разности
Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для \((a-b)^2\):
В более краткой записи имеем:
Квадрат разности: \((a-b)^2=a^2-2ab+b^2\)
Применяется она также, как и предыдущая.
Пример. Упростите выражение \((2a-3)^2-4(a^2-a)\) и найдите его значение при \(a=\frac{17}{8}\).
Решение:
\((2a-3)^2-4(a^2-a)=\) |
Если сразу подставить дробь в выражение – придется возводить ее в квадрат и вообще делать объемные вычисления. Попробуем сначала упростить выражение, воспользовавшись формулой выше и раскрыв скобки. |
|
\(=4a^2-12a+9-4a^2+4a=\) |
Теперь приведем подобные слагаемые. |
|
\(=-8a+9=\) |
Вот теперь подставляем и наслаждаемся простотой вычислений. |
|
\(=-8·\frac{17}{8}+9=-17+9=8\) |
Пишем ответ. |
Ответ: \(8\).
Разность квадратов
Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:
Получили формулу:
Разность квадратов \(a^2-b^2=(a+b)(a-b)\)
Эта формула одна из наиболее часто применяемых при разложении на множители и работе с алгебраическими дробями.
Пример. Сократите дробь \(\frac{x^2-9}{x-3}\).
Решение:
\(\frac{x^2-9}{x-3}\)\(=\) |
Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус! |
|
\(=\) \(\frac{x^2-3^2}{x-3}\)\(=\)\(\frac{(x+3)(x-3)}{x-3}\)\(=\) |
Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки. |
|
\(=x+3\) |
Готов ответ. |
Ответ: \(x+3\).
Пример.Разложите на множители \(25x^4-m^{10} t^6\).
Решение:
\(25x^4-m^{10} t^6\) |
Воспользуемся формулами степеней: \((a^n )^m=a^{nm}\) и \(a^n b^n=(ab)^n\). |
|
\(=(5x^2 )^2-(m^5 t^3 )^2=\) |
Ну, а теперь пользуемся формулой \(a^2-b^2=(a+b)(a-b)\), где \(a=5x^2\) и \(b=m^5 t^3\). |
|
\(=(5x^2-m^5 t^3 )(5x^2+m^5 t^3 )\) |
Готов ответ. |
Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.
Пример (повышенной сложности!).Сократите дробь \(\frac{x^2-4xy-9+4y^2}{x-2y+3}\) .
Решение:
\(\frac{x^2-4xy-9+4y^2}{x-2y+3}\)\(=\) |
На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем). |
|
\(\frac{(x^2-4xy+4y^2)-9}{x-2y+3}\)\(=\) |
Теперь немного преобразуем слагаемые в скобке: |
|
\(\frac{(x^2-4xy+(2y)^2)-9}{x-2y+3}\)\(=\) |
Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой \(a=x\), \(b=2y\). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как \(3\) в квадрате. |
|
\(\frac{(x-2y)^2-3^2}{x-2y+3}\)\(=\) |
Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой \(a=(x-2y)\), \(b=3\). Раскладываем по ней к произведению двух скобок. |
|
\(\frac{(x-2y-3)(x-2y+3)}{x-2y+3}\)\(=\) |
И вот теперь сокращаем вторую скобку числителя и весь знаменатель. |
|
\(x-2y-3\) |
Готов ответ. |
cos-cos.ru
Как раскрыть скобки со степенью 2. Правило раскрытия скобок при произведении
То части уравнения находится выражение в скобках. Чтобы раскрыть скобки, посмотрите на знак перед скобками. Если стоит знак плюс, при раскрывании скобок в записи выражения ничего не поменяется: просто уберите скобки. Если стоит знак минус, при раскрытии скобок необходимо поменять все знаки , стоящем изначально в скобках, на противоположные. Например, -(2х-3)=-2х+3.
Перемножение двух скобок.
Если в уравнении присутствует произведение двух скобок, раскрытие скобок по стандартному правилу. Каждый член первой скобки перемножается с каждым членом второй скобки. Полученные числа суммируются. При этом произведение двух «плюсов» или двух «минусов» дает слагаемому знак «плюс», а если множители имеют разные знаки, то получает знак «минус».
Рассмотрим .
(5х+1)(3х-4)=5х*3х-5х*4+1*3х-1*4=15х^2-20х+3х-4=15х^2-17х-4.
Раскрытием скобок иногда возведение выражения в . Формулы возведения в квадрат и в куб надо знать наизусть и помнить.
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
(a+b)^3=a^3+3a^2*b+3ab^2+b^3
(a-b)^3=a^3-3a^2*b+3ab^2-b^3
Формулы возведения выражения больше трех можно при помощи треугольника Паскаля.
Источники:
- формула раскрытия скобок
Заключенные в скобки математические действия могут содержать переменные и выражения разной степени сложности. Для перемножения таких выражений придется искать решение в общем виде, раскрывая скобки и упрощая полученный результат. Если же в скобках содержатся операции без переменных, только с численными значениями, то раскрывать скобки не обязательно, так как при наличии компьютера его пользователю доступны весьма значительные вычислительные ресурсы – проще воспользоваться ими, чем упрощать выражение.
Инструкция
Перемножайте последовательно каждое (или уменьшаемое с ), содержащееся в одной скобке, на содержимое всех остальных скобок, если требуется получить результат в общем виде. Например, пусть исходное выражение записано так: (5+x)∗(6-х)∗(x+2). Тогда последовательное перемножение (то есть раскрытие скобок) даст следующий результат: (5+x)∗(6-х)∗(x+2) = (5∗6-5∗х)∗(5∗x+5∗2) + (6∗x-х∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) — (5∗х∗5∗x+5∗х∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) — (х∗x∗x∗x+х∗x∗2∗x) = 5∗6∗5∗x + 5∗6∗5∗2 — 5∗х∗5∗x — 5∗х∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x — х∗x∗x∗x — х∗x∗2∗x = 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³.
Упрощайте после результат, сокращая выражения. Например, полученное на предыдущем шаге выражение можно упростить таким образом: 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³ = 100∗x + 300 — 13∗x² — 8∗x³ — x∗x³.
Воспользуйтесь калькулятором, если требуется перемножить икс равен 4.75, то есть (5+4.75)∗(6-4.75)∗(4.75+2). Для вычисления этого значения перейдите на сайт поисковика Google или Nigma и введите выражение в поле запроса в его исходном виде (5+4.75)*(6-4.75)*(4.75+2). Google покажет 82.265625 сразу, без нажатия кнопки, а Nigma нуждается в отправке данных на сервер нажатием кнопки.
Везде. Везде и всюду, куда ни глянь, встречаются вот такие конструкции:
«Конструкции» эти у грамотных людей вызывают неоднозначную реакцию. Как минимум типа «неужели так — правильно?».
Вообще лично я не могу понять, откуда пошла «мода» не закрывать внешние кавычки. Первая и единственная приходящая по этому поводу аналогия — аналогия со скобками. Никто же не сомневается, что две скобки подряд — это нормально. Например: «Оплатить весь тираж (200 шт. (из них 100 — брак))». А вот в нормальности постановки двух кавычек подряд кто-то засомневался (интересно, кто первый?)… И теперь все поголовно стали с чистой совестью плодить конструкции типа ООО «Фирма «ПупковЪ и Ко».
Но даже если вы в жизни не видели правила, о котором речь пойдет чуть ниже, то единственным логически обоснованным вариантом (на примере скобок) был бы следующий: ООО «Фирма «ПупковЪ и Ко»».
Итак, непосредственно правило:
Если в начале или в конце цитаты (то же относится к прямой речи) встречаются внутренние и внешние кавычки, то они должны различаться между собой рисунком (так называемые «елочки» и «лапочки»), причем внешние кавычки не должны опускаться, например: С борта парохода передали по радио:«„Ленинград“ вошел в тропики и следует дальше своим курсом». О Жуковском Белинский пишет: «Современники юности Жуковского смотрели на него преимущественно как на автора баллад, и в одном своем послании Батюшков называл его „балладником“».© Правила русской орфографии и пунктуации. — Тула: Автограф, 1995. — 192 с.
Соответственно… если у вас нет возможности набрать кавычки-«елочки», то, что уж поделаешь, придется пользоваться такими «» значками. Однако, невозможность (или нежелание) использовать русские кавычки отнюдь не является причиной, по которой можно не закрывать внешние кавычки.Таким образом с неверностью констукции ООО «Фирма «ПупковЪ и Ко» вроде бы разобрались. Встречаются еще конструкции вида ООО «Фирма «ПупковЪ и Ко».
Из правила совершенно понятно, что и такие конструкции безграмотны… (Правильно: ООО «Фирма „ПупковЪ и Ко“»Однако!
В «Справочнике издателя и автора» А. Э. Мильчина (издание 2004 года) указано, что можно использовать два варианта оформления в подобных случаях. Использование «елочек» и «лапок» и (при отсутствии технических средств) использование только «елочек»: двух открывающих и одной закрывающей.
Справочник это «свежий» и лично у меня тут сразу появляется 2 вопроса. Во-первых, с какой все же радости можно использовать одну закрывающую кавычку-елочку (ну нелогично это, см. выше), а во-вторых, особо обращает на себя внимание фраза «при отсутствии технических средств». Это как, простите? Вот откройте Notepad и наберите там «только елочки: две открывающие и одну закрывающую». На клавиатуре таких символов нет. Напечатать «елочку» не получается… Сочетание Shift + 2 выдает знак » (который, как известно, и кавычкой-то не является). А теперь откройте Microsoft Word и снова нажмите Shift + 2. Программа исправит » на « (или »). Что же, получается что существовавшее не один десяток лет правило взяли и переписали под Microsoft Word? Мол, раз ворд из «Фирма «ПупковЪ и Ко» делает «Фирма «ПупковЪ и Ко», то пусть теперь это будет допустимо и корректно???Похоже, что так. А если это так, то есть все основания усомниться в правильности подобного нововведения. Да, и еще одно уточнение… про то самое «отсутствие технических средств». Дело в том, что на любом компьютере с Windows всегда имеются «технические средства» для ввода и «елочек», и «лапок», так что это новое «правило» (для меня оно — именно в кавычках) неверно изначально!
Все специальные символы шрифта можно легко набрать, зная соответствующий номер этого символа. Достаточно зажать Alt и набрать на NumLock-клавиатуре (NumLock нажат, индикаторная лампочка горит) соответствующий номер символа:
„ Alt + 0132 (левая «лапка»)
“ Alt + 0147 (правая «лапка»)
« Alt + 0171 (левая «елочка»)
» Alt + 0187 (правая «елочка»)
Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов.
Приведем примеры таких выражений:
\(xy^3 — 5x^2y + 9x^3 — 7y^2 + 6x + 5y — 2 \)
Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.
Например, многочлен
\(8b^5 — 2b \cdot 7b^4 + 3b^2 — 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.
Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 — 2b \cdot 7b^4 + 3b^2 — 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 — 14b^5 + 3b^2 -8b -3b^2 + 16 \)
Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных.
Такие многочлены называют многочленами стандартного вида .
За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b — 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) — вторую.
Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени.
Например:
\(5x — 18x^3 + 1 + x^5 = x^5 — 18x^3 + 5x + 1 \)
Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.
Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:
Если перед скобками ставится знак «+», то члены, закл
getbox24.ru
Перемножение скобок
При математических вычислениях операции над числами и переменными часто для удобства или наглядности группируют с помощью круглых скобок. Случаются и противоположные ситуации, когда выражение в скобках необходимо преобразовать к тождественному выражению, не содержащему скобок.
Одним из наиболее сложных случаев раскрытия скобок является перемножение двух или более заключенных в скобки выражений.
Замечание 1
Для краткости вместо «перемножение выражений, заключенных в скобки» допустимо говорить «перемножение скобок».
Чтобы получать корректные результаты при перемножении скобок, необходимо придерживаться определенных математических алгоритмов.
Во-первых, следует помнить, когда при раскрытии скобок знак меняется:
- когда перед скобками стоит знак плюс, его можно опустить вместе со скобками;
- когда перед скобками стоит знак минус, его можно опустить вместе со скобками, однако все заключавшиеся в них слагаемые поменяют знак на противоположный.
Во-вторых, следует иметь в виду распределительный закон умножения: при умножении числа на сумму чисел следует это число умножить по отдельности на каждое слагаемое, а полученные произведения сложить. Например:
$5 \cdot (3 + 4) \implies 5 \cdot 3+5 \cdot 4 \implies 35$.
Распределительный закон умножения является частным случаем математической дистрибутивности.
Определение 1
Умножение числа или переменной на выражение в скобках или выражения в скобках на число или переменную принято называть раскрытием скобок.
В общем случае раскрытие скобок выглядит как
$(a_1 ± a_2 ± … ± a_n) \cdot b = a_1 \cdot b ± a_2 \cdot b ± … ±a_n \cdot b$
Понятно, что выражение в скобках и множитель $b$ можно поменять местами, результат раскрытия будет такой же. Множитель при скобках (в данном случае $b$) называют общим множителем.
Когда перед скобками отсутствуют числа или переменные, общим множителем являются $1$ или $−1$, в зависимости от знака перед скобками:
- в случае, если перед скобками находится плюс, общим множителем считается $1$;
- если перед скобками находится минус, то общий множитель равен $−1$.
Еще одним приемом, помогающим раскрывать скобки, является приведение подобных слагаемых, то есть таких, в которых участвуют однотипные переменные, например:
$-4 \cdot (2b + 1) — 2b + 3$
После раскрытия скобок окажется, что переменная $b$ дважды встречается в получившемся выражении, равно как и свободные члены:
$-4 \cdot (2b + 1) — 2b + 3 = -8b + (-4) + (-2b) + 3 = (-8 + (-2)) \cdot b + (-4 + 3)$
Таким образом, мы получили две группы подобных слагаемых, которые можно безопасно складывать и вычитать в рамках своих скобок. Применяя правило смены знака, получим
$-10b + (-1) = -10b — 1$
Переменные, возведенные в степень, рассматриваются как подобные слагаемые. Рассмотрим выражение
$3 \cdot x^2 \cdot \left( 1 — x + \frac{1}{x + 2} \right)$.
После раскрытия скобок получаем:
$3 \cdot x^2 \cdot 1 — 3 \cdot x^2 \cdot x + 3 \cdot x^2 \cdot \frac{1}{x + 2}$.
При умножении скобки на скобку одно из выражений рассматривается как общий множитель. Рассмотрим произведение
$(a_1 + a_2) \cdot (b_1 + b_2)$.
Обозначим выражение $(b_1 + b_2)$ переменной $b$, превратив его в общий множитель, после чего задачу можно свести к уже знакомому виду:
$(a_1 + a_2) \cdot (b_1 + b_2) = (a_1 + a_2) \cdot b = (a_1 \cdot b + a_2 \cdot b) = a_1 \cdot b + a_2 \cdot b$.
Заменив везде $b$ на $(b_1 + b_2)$, повторно воспользуемся правилом умножения выражения на скобку:
$a_1 \cdot b + a_2 \cdot b=a_1 \cdot (b_1 + b_2) + a_2 \cdot (b_1 + b_2) = \\ (a_1 \cdot b_1 + a_1 \cdot b_2) + (a_2 \cdot b_1 + a_2 \cdot b_2) = \\ a_1 \cdot b_1 + a_1 \cdot b_2 + a_2 \cdot b_1 + a_2 \cdot b_2$.
В результате данного преобразования выражение из произведения двух скобок стало суммой произведений каждого слагаемого из первого выражения-скобки на каждое слагаемое второго.
Определение 2
Чтобы умножить одну сумму, представленную, как выражение в скобках, на другую, нужно каждое слагаемое первой умножить на каждое слагаемое второй, а затем сложить получившиеся произведения.
В виде формулы это можно записать так:
$(a_1 + a_2 + … + a_n) \cdot (b_1 + b_2 + … + b_n) = \\ + a_1 \cdot b_1 + a_1 \cdot b_2 + … + a_1 \cdot b_n + \\ + a_2 \cdot b_1 + a_2 \cdot b_2 + … + a_2 \cdot b_n + \\ + … + \\ + a_n \cdot b_1 + a_n \cdot b_2 + … + a_n \cdot b_n \\ $
Для иллюстрации этого правила раскрытия скобок при умножении, раскроем их в выражении
$(1 + x) \cdot (x^2 + x + 6)$.
Запишем сумму произведений первого слагаемого $1$ из первой части на каждое слагаемое $x^2$, $x$ и $6$ из второй, затем аналогично поступим со вторым слагаемым:
$(1 + x) \cdot (x^2 + x + 6) = \\ (1 \cdot x^2 + 1 \cdot x + 1 \cdot 6 + x \cdot x^2 + x \cdot x + x \cdot 6) = \\ 1 \cdot x^2 + 1 \cdot x + 1 \cdot 6 + x \cdot x^2 + x \cdot x + x \cdot 6 $.
Если в скобках присутствуют отрицательные члены (со знаками минус), то прежде, чем применять этот способ следует преобразовать выражения в скобках в суммы. Например, избавимся от скобок в выражении
$(1 − x) \cdot (3 \cdot x \cdot y − 2 \cdot x \cdot y^3)$.
Представим его в виде сумм:
$(1 + (−x)) \cdot (3xy + (−2xy^3))$.
Теперь можно применять вышеприведенное правило перемножения слагаемых:
$(1 + (−x)) \cdot (3xy + (−2xy^3)) = (1 \cdot 3xy + 1 \cdot (−2xy^3) + (−x) \cdot 3xy + (−x) \cdot (−2xy^3)) $.
Раскроем оставшиеся скобки, помня правила перемножения положительных и отрицательных чисел:
$1 \cdot 3xy − 1 \cdot 2xy^3 − x \cdot 3 \cdot xy + x \cdot 2xy^3$.
В выражениях, в которых перемножаются три и больше выражений в скобках, проводится по тому же принципу последовательно: сначала обрабатываются два первых множителя, результат заключается в дополнительные скобки, внутри которых раскрытие производится по стандартному алгоритму. Например, раскроем скобки в выражении
$(2 + 4) \cdot 3 \cdot (5 + 7 \cdot 8)$.
Оно представляет собой произведение трех множителей $(2 + 4)$, $3$ и $(5 + 7 \cdot 8)$. Первые два множителя для наглядности заключим в дополнительные скобки:
$(2+4) \cdot 3 \cdot (5 + 7 \cdot 8) = ((2+4) \cdot 3) \cdot (5 + 7 \cdot 8)$.
Произведем умножение скобки на число:
$((2 + 4) \cdot 3) \cdot (5 + 7 \cdot 8) = (2 \cdot 3 + 4 \cdot 3) \cdot (5 + 7 \cdot 8)$.
Перемножим выражения в скобках:
$(2 \cdot 3 + 4 \cdot 3) \cdot (5 + 7 \cdot 8) = 2 \cdot 3 \cdot 5 + 2 \cdot 3 \cdot 7 \cdot 8 + 4 \cdot 3 \cdot 5 + 4 \cdot 3 \cdot 7 \cdot 8$.
Вместо чисел внутри скобок могут присутствовать переменные, а также другие выражения.
Пример 1
Перемножить выражения в скобках $(x + 2) \cdot (2x — 1)$.
Преобразуем выражения в суммы:
$(x + 2) \cdot (2x — 1) = (x + 2) \cdot (2x + (-1))$
Последовательно перемножим слагаемые:
$x \cdot 2x + 2 \cdot 2x + x \cdot (-1) + 2 \cdot (-1)$
Упростим выражения в рамках каждого слагаемого, получим:
$2x^2 + 4x — x — 2$
Ответ:
$2x^2 + 3x — 2$
spravochnick.ru