Как решать правильно пропорции – Решение задач с помощью пропорции

Содержание

Как решать пропорции ℹ️ правила нахождения неизвестного члена, основные свойства, методы расчетов, примеры задач с вычислениями, онлайн-калькулятор

Как посчитать пропорцию в процентах пример

Общие сведения

Изучение какого-либо термина в математике начинается с определения. Пропорцией вида x / y = v / z (x: y = v: z) называется равенство отношений двух чисел. Она представлена в виде правильной дроби, и состоит из следующих элементов, которые называются крайними (x и z) и средними (y и v) членами.

Следует отметить, что в некоторых сферах пропорциональная зависимость может быть представлена в немного другом виде. В этом случае знак равенства не указывается. Для удобства используется символ деления «:». Записывается в таком виде: a: b: c. Объяснение такой записи очень простое: для приготовления какого-либо вещества нужно использовать «а» частей одного компонента, b — другого и с — третьего.

Как решать пропорции

Знак равенства не имеет смысла указывать, поскольку этот тип пропорциональной зависимости является абстрактным. Неизвестно, какой результат получится на выходе. Если взять за единицу измерения массу в кг, то и конечный результат получится в кг. В этом случае решать пропорцию не нужно — достаточно просто подставить данные, и получить результат.

Бывают случаи, когда следует посчитать пропорцию в процентах. Пример — осуществление некоторых финансовых операций.

Сферы применения

Пропорция получила широкое применение в физике, алгебре, геометрии, высшей и прикладной математике, химии, кулинарии, фармацевтике, медицине, строительстве и т. д. Однако ее нужно применять только в том случае, когда элементы соотношения не подчиняются какому-либо закону (методика исследования величин такого типа будет рассмотрена ниже), и не являются неравенствами.

В алгебре существует класс уравнений, представленных в виде пропорции. Они бывают простыми и сложными. Для решения последних существует определенный алгоритм. Кроме того, в геометрии встречается такие термин, как «гомотетия» или коэффициент подобия. Он показывает, во сколько раз увеличена или уменьшена фигура относительно оригинала.

Как найти неизвестный член пропорции

Масштаб в географии является также пропорцией, поскольку он показывает количество см или мм, которые содержатся в какой-либо единице, зависящей от карты (например, в 1 см = 10 км). Специалисты применяютправило пропорции в высшей и прикладной математике. Расчет количества реактивов, вступающих в реакцию, для получения другого вещества применяется также пропорциональная зависимость.

Каждая хозяйка также применяет это соотношение для приготовления различных блюд и консерваций. В этом случае пропорция имеет немного другой вид: 1:2. Все компоненты берутся частями с одинаковыми размерностями или единицами измерения. Например, на 1 кг клубники необходимо 2 кг сахара. Расшифровывается такое соотношение следующим образом: 1 часть одного и 2 части другого компонентов.

В фармацевтике она также применяется, поскольку необходимо очень точно рассчитать массовую долю для каждого компонента лекарственного препарата. В медицине используется пропорциональная зависимость для назначения лекарства больному, дозировка которого зависит от массы тела человека.

Решать на калькуляторе

Для приготовления различных строительных смесей она также используется, однако у нее такой же вид, как и для кулинарии. Например, для приготовления бетона М300 необходимы такие компоненты: цемент (Ц), щебень (Щ), песок (П) и вода (В). Далее следует воспользоваться таким соотношением, в котором единицей измерения является ведро: 1: 5: 3: 0,5. Запись расшифровывается следующим образом: для приготовления бетонной смеси необходимо 1 ведро цемента, 5 щебня, 3 песка и 0,5 воды.

Основные свойства

Для решения различных задач нужно знать основные свойства пропорции. Они действуют только для соотношения x / y = v / z. К ним можно отнести следующие формулы:

  1. Обращение или обратное пропорциональное соотношение: [x / y = v / z] = [y / x = z / v].
  2. Перемножение «крест-накрест»: x * z = y * v.
  3. Перестановка: x / v = y / z и v / x = z / y.
  4. Увеличение или уменьшение: x + у / y = v + z / z и x — у / y = v — z / z.
  5. Составление через арифметические операции сложения и вычитания: (x + v) / (y + z) = x / y = v / z и (x — v) / (y — z) = x / y = v / z.

Первое свойство позволяет перевернуть правильные дроби соотношений двух величин. Это следует делать одновременно для левой и правой частей. Умножение по типу «крест-накрест» считается главным соотношением. С помощью его решаются уравнения и упрощаются выражения, в которых нужно избавиться от дробных частей. Найти неизвестный член пропорции можно также с помощью второго свойства, формулировка которого следующая: произведение крайних эквивалентно произведению средних элементов (членов).

Правило пропорции

Очень часто члены соотношения необходимо переставить для оптимизации вычислений. Для этого применяется свойство перестановки. При этом следует внимательно подставлять значения в формулу, поскольку неправильные действия могут существенно исказить результат решения. Этого можно не заметить. Для осуществления проверки следует подставить значение неизвестной в исходную пропорцию. Если равенство соблюдается, то получен верный результат. В противном случае необходимо найти ошибку или повторить вычисления.

Увеличение или уменьшение пропорции следует производить по четвертому свойству. Основной принцип: равенство сохраняется в том случае, когда уменьшение или увеличение числителя происходит на значение, которое находится в знаменателе. Нельзя отнимать от пропорции (от числителя и знаменателя равные числовые значения), поскольку соотношение не будет выполняться. Это является распространенной ошибкой, которая влечет за собой огромные погрешности при расчетах или неверное решение экзаменационных заданий.

Составить пропорцию можно с помощью вычитания и сложения. Этот прием применяется редко, но в некоторых заданиях может использоваться. Суть его заключается в следующем: отношение суммы крайнего и среднего элемента к суммарному значению других крайнего и среднего членов, которое равно отношению крайнего к среднему значению. Однако не ко всем выражениям можно применять свойства пропорции. Следует рассмотреть методику их определения.

Методика исследования

Пропорция применима только к линейным законам изменения величин. Примером этого является поведение простой тригонометрической функции z = sin (p). Величина «z» — зависимая переменная, которая называется значением функции. Переменная «p» — независимая величина или аргумент. В данном контексте она принимает значения углов в градусах. Для демонстрации того, что пропорция «не работает» необходимо подставить некоторые данные.

Кроме того, нужна таблица значений тригонометрических функций некоторых углов. Необходимо предположить, что p = 30, тогда z = sin (30) = 0,5. По свойству пропорции можно найти значение функции при р = 60, не используя таблицу. Для этого нужно составить пропорцию с неизвестным: 30 / 0,5 = 60 / х. Чтобы найти х («икс»), нужно воспользоваться свойством умножения «крест-накрест»: 60 * 0,5 = 30 * х. Уравнение решается очень просто: х = 60 * 0,5 / 30 = 30 / 30 = 1. Ответ получен очень быстро, и нет необходимости смотреть табличное значение.

Как посчитать пропорцию

В этом случае не так все просто. Если воспользоваться вышеописанной таблицей, то z = sin (60) = [3^(½)] / 2. Полученное значение не равно 1. Причина несоответствия — нелинейность функции. Математики для облегчения вычислений предлагают методику определения нелинейных выражений. Она состоит из следующих положений:

  1. Записать функцию.
  2. Рассмотреть составные части.
  3. Если простой тип, перейти к 5 пункту.
  4. Сложная — разложить на простые элементы, а затем перейти к 5 пункту.
  5. Определить тип зависимости ее значения от аргумента: линейная или нелинейная. Если получен второй тип, то свойства пропорции применить невозможно.
  6. Определить тип линейности, построив график.

По таким правилам были исследовано огромное количество функций. К нелинейным относятся следующие: прямые и обратные тригонометрические, гиперболические, показательные, логарифмические и сложные математические, состоящие из нелинейных зависимостей.

К прямым тригонометрическим относятся sin (p), cos (p), tg (p) и ctg (p), а к обратным — arcsin (p), arccos (p), arctg (p) и arcctg (p). Следует отметить, что гиперболическими являются sh, ch, th, cth, sech и csch. Показательная — z = a^y, а логарифмической — функция, имеющая операцию логарифмирования. Простые линейные могут объединяться с нелинейными. В таких случаях правило пропорции также не соблюдается.

Решить пропорцию онлайн калькулятор

Универсальный алгоритм

Алгоритм позволяет решать уравнения, и найти неизвестный член пропорции. Для его реализации следует знать теорию о пропорциях, и методику обнаружения нелинейных функций. Он состоит из нескольких шагов, которые помогут правильно вычислить необходимую величину:

  1. Записать соотношение пропорции.
  2. Проанализировать выражение в пункте под первым номером на наличие нелинейных функций и составляющих.
  3. Применить свойство умножения «крест-накрест».
  4. Перенести неизвестные в левую сторону, а известные — в правую. Необходимо обратить внимание на знаки: умножение — деление, сложение — вычитание и положительная величина становится отрицательной.
  5. Решить уравнение.

Существуют различные приложения, позволяющие решить пропорцию. Онлайн-калькулятор позволяет вычислить неизвестный компонент очень быстро. Кроме того, результат вычислений отображается после проведения расчетов. Для реализации последнего пункта необходимо рассмотреть некоторые типы равенств с неизвестными.

Уравнения с пропорцией

Существуют уравнения в виде обыкновенной дроби, в которых необходимо найти неизвестную величину. Для этого нужно рассмотреть основные их виды:

Как посчитать пропорцию пример
  1. Линейные.
  2. Квадратные.
  3. Кубические.
  4. Биквадратные.

Различаются они степенным показателем. У первого типа степень переменной соответствует 1, второго — двойке, третьего — тройке и четвертого — четверке. При решении таких типов нужно выписать знаменатели отдельно, и решить их. Такие корни не являются решением исходной пропорции, поскольку знаменатели должны быть отличны от нулевого значения.

Решение линейного типа сводится к применению правила «крест-накрест». После чего нужно руководствоваться четвертым пунктом универсального алгоритма. Квадратное уравнение (ap 2 + bp + c = 0) решается при помощи разложения на множители (существует высокая вероятность сокращения степени с последующим упрощением выражения) или с использованием дискриминанта (D = b 2 — 4ac). Корни зависят от его значения:

  1. Два корня, когда D > 0: р1 = (-b — [D]^(½)) / 2a и р2 = (-b + [D]^(½)) / 2a.
  2. При D равном 0 (один): р = (-b) / 2a.
  3. Если D < 0, то решений нет.

Решение уравнений кубического и биквадратного видов сводятся к разложению на множители. В результате этого происходит понижение степени до двойки. Кроме того, эффективным методом нахождения корней считается введение замены переменной.

Пример решения

Как решать пропорции пример

Решение уравнений в виде пропорции осуществляется по такому же принципу. При этом рекомендуется использовать любые свойства. Необходимо проходить процесс обучения постепенно. Начинать нужно с простых примеров, а затем практиковаться на сложных заданиях. Первый тип был рассмотрен выше на примере sin (p).

Итак, необходимо решить уравнение [(t — 5) / (t — 2)] = [(t — 5) / (t — 1)]. Для начала следует определить тип функций каждого из элементов. Просмотрев список нелинейных выражений, можно сделать вывод о том, что все члены пропорции являются линейными. Далее нужно решить равенства с неизвестными, находящихся в знаменателях: t1 = 2 и t2 = 1. Корни не являются решениями уравнения.

Затем следует воспользоваться третьим пунктом алгоритма: (t — 5)(t — 1) = (t — 2)(t — 5). Если раскрыть скобки, то должно получиться такое равенство: t 2 — t — 5t + 5 =t 2 -5t -2t + 10. Перенести все слагаемые в левую сторону с противоположными знаками: t 2 — t — 5t + 5 + 5t — t 2 — 10 + 2t = 0. Приведя подобные слагаемые, выражение будет иметь такой вид: t = 5. Решением пропорции является значение t = 5.

Таким образом, для решения пропорций необходимо знать основные свойства, определение типа выражения по методике и алгоритм расчета.


nauka.club

Как составить и рассчитать пропорцию: онлайн калькулятор

Онлайн калькулятор пропорций

Формула пропорций

Пропо́рция — это равенство двух отношений, когда a:b=c:d

средние
члены
1:10=7:70
крайние члены
0,1=0,1
1 10 = 7 70

Основные свойства пропорции

Произведение крайних членов равно произведению средних членов (крест-накрест): если a:b=c:d, то a⋅d=b⋅c

1
10 ✕ 7
70

1  70 = 10  7

Обращение пропорции: если a:b=c:d, то b:a=d:c

1
10 7
70

10
1 = 70
7

Перестановка средних членов: если a:b=c:d, то a:c=b:d

1
10 7
70

1
7 = 10
70

Перестановка крайних членов: если a:b=c:d, то d:b=c:a

1
10 7
70

70
10 = 7
1

Решение пропорции с одним неизвестным | Уравнение

1 : 10 = x : 70



1
10 = x
70

Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение

x = 1  70
10 = 7

Как посчитать пропорцию

Задача: нужно пить 1 таблетку активированного угля на 10 килограмм веса. Сколько таблеток нужно выпить, если человек весит 70 кг?

Составим пропорцию:
1 таблетка — 10 кг
x таблеток — 70 кг

Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение:
1 таблетка
x таблеток ✕ 10 кг
70 кг

x = 1  70 : 10 = 7

Ответ: 7 таблеток

Задача: за пять часов Вася пишет две статьи. Сколько статей он напишет за 20 часов?

Составим пропорцию:
2 статьи — 5 часов 
x статей — 20 часов

x = 2  20 : 5 = 8

Ответ: 8 статей

Будущим выпускникам школ могу сказать, что умение составлять пропорции мне пригодилось и при расчёте процентов, и для того, чтобы пропорционально уменьшать картинки, и в HTML-вёрстке интернет-страницы, и в бытовых ситуациях.

shpargalkablog.ru

Пропорции | Формулы с примерами

Что такое пропорция?

Определение
Пропорция — это верное равенство двух отношений.

пропорция

Где a ? 0, b ? 0, c ? 0, d ? 0.

a и d — называют крайними членами пропорции;
b и c — называют средними членами пропорции.

Пример
3  =  18   или 3 : 5 = 18 : 30;
5 30
7  =  21   или 7 : 3 = 21 : 9;
3 9
12  =  48   или 12 : 15 = 48 : 60.
15 60

Основное свойство пропорции

Свойство
Основное свойство пропорции

Произведение крайних членов пропорции равно произведению ее средних членов.

Пример
12  =  24 , значит 12 • 8 = 4 • 24;
4 8
11  =  33 , значит 11 • 21 = 7 • 33;
7 21
23  =  69 , значит 23 • 42 = 14 • 69.
14 42

Обратное свойство

Свойство Обратное свойство Пример
11 • 4 = 2 • 22 значит,  11  =  22 ;
2 4
21 • 6 = 42 • 3 значит,  21  =  42 ;
3 6
33 • 21 = 7 • 99 значит,  33  =  99 .
7 21

Производные пропорции

Правило
Производные пропорции Пример
4  =  8  или  7  =  14  или  8  =  17  или  4  =  7 ;
7 14 4 8 4 7 8 14
5  =  10  или  6  =  12  или  10  =  12  или  5  =  6 ;
6 12 5 10 5 6 10 12
9  =  18  или  3  =  6  или  6  =  18  или  9  =  3 .
3 6 9 18 3 9 18 6

Правило
! По трем известным членам пропорции всегда можно найти
ее неизвестный член.

Пример
15  =  x , значит x = 15 • 14  = 15 • 2 = 30;
7 14 7
21  =  x , значит x = 21 • 9  = 21 • 3 = 63;
3 9 3
33  =  99 , значит x = 4 • 99  = 4 • 3 = 12.
4 x 33

Отношения

Определение
Отношением двух чисел a и b называется их частное a : b.

Показывает во сколько раз a больше b или какую часть число a составляет от b.1

Примеры отношений

Пример 1
Отношение числа 16 к числу 4 равно 16 : 4 = 4, т.е. 16 в 4 раза больше чем,
чем 4.

Пример 2
Отношение числа 4 к числу 12 равно 4 : 12 = 13, т.е. 4 составляет треть
от числа 12.

Пример 3
Масса стакана с жидкостью равна 440г. Стакан весит 40г. Какую часть
всей массы составляет масса стакана? Во сколько раз масса стакана с
жидкостью больше массы жидкости?

Решение:

Масса стакана составляет 40 : 440 =  1 11 часть полной массы.
Масса жидкости равна 440 — 40 = 400г; масса стакана с жидкостью больше массы самой жидкости в 440 : 400 = 1,1 раза.

formula-xyz.ru

Задачи и задания на пропорции: примеры и решение

Решение заданий на пропорции

Если один из членов пропорции неизвестен и надо его найти, то говорят, что надо решить пропорцию. Решение пропорций всегда выполняется с помощью свойства пропорции.

Задание 1. Найдите неизвестный член пропорции:

a)  x  =  3 ;     б)  1  =  5
21 3x

Решение: Так как неизвестны крайние члены пропорции, то для их нахождения надо умножить средние члены и разделить полученный результат на известный крайний член:

a) x =  2 · 3,   x = 6.      б) x =  3 · 5,   x = 15.
1 1

Ответ: а) x = 6, б) x = 15.

Задание 2. Решите пропорции:

a)  30  =  5 ;     б)  7  =  x
x8 510

Решение: Так как неизвестны средние члены пропорции, то для их нахождения надо умножить крайние члены и разделить полученный результат на известный средний член:

a) x =  30 · 8,   x = 48.      б) x =  7 · 10,   x = 14.
5 5

Ответ: а) x = 48, б) x = 14.

Задание 3. Известно, что 21x = 14y. Найдите отношение x к y.

Решение: сначала сократим обе части равенства на общий множитель 7:

получим:

3x = 2y

Теперь разделим обе части на 3y, чтобы в левой части у x убрать множитель 3, а в правой части избавиться от y:

После сокращения отношений у нас остаётся:

Ответ: 2 к 3.

Задачи на пропорции с решением

Задача 1. Из 300 читателей библиотеки 108 человек – студенты. Какой процент всех читателей составляют студенты?

Решение: Примем всех читателей библиотеки за 100% и запишем условие задачи кратко:

300 – 100%
108 – ?%

Составим пропорцию:

Найдём x:

x =  108 · 100  = 36
300

Ответ: 36% всех читателей составляют студенты.

Задача 2. При варке варенья используют ягоды и сахар в отношении 5:2. Сколько надо ягод, если взяли 450 грамм сахара?

Решение: составим пропорцию:

Найдём x:

x =  5 · 450  = 1125
2

Ответ: На 450 гр сахара надо взять 1125 гр ягод.

naobumium.info

Составить пропорцию

Составить пропорцию. В этой статье хочу поговорить с вами о пропорции. Понимать, что такое пропорция, уметь составлять её – это очень важно, она действительно спасает. Это вроде бы маленькая и незначительная «буковка» в большом алфавите математики, но без неё математика  обречена быть хромой  и неполноценной. Для начала напомню, что такое пропорция. Это равенство вида:

Составить пропорцию

что тоже самое (это разная форма записи).

Пример:

Составить пропорцию

Говорят – один относится к двум также, как четыре относится к восьми. То есть это равенство двух отношений (в данном примере отношения числовые).

Основное правило пропорции:

a:b=c:d

произведение крайних членов равно произведению средних

то есть

a∙d=b∙c

*Если какая-либо величина в пропорции неизвестна, ее всегда можно найти. 

Если рассматривать форму записи вида:

Составить пропорцию

то можно использовать следующее правило, его называют «правило креста»: записывается равенство произведений элементов (чисел или выражений) стоящих по диагонали

a∙d=b∙c

Как видите результат тот же.

Если три элемента пропорции известны, то мы всегда можем найти четвёртый.

Именно в этом суть пользы и необходимость пропорции при решении задач.

Давайте рассмотрим все варианты, где неизвестная величина х находится в «любом месте» пропорции, где a, b,  c – числа:

Составить пропорцию

Составить пропорцию

Величина стоящая по диагонали от х записывается в знаменатель дроби, а известные величины стоящие по диагонали записываются в числитель, как произведение. Его запоминать не обязательно, вы и так всё верно вычислите, если усвоили основное правило пропорции.

Теперь главный вопрос, связанный с названием статьи. Когда пропорция спасает и где используется? Например:

1. Прежде всего это задачи на проценты. Мы рассматривали их в статьях «Задачи на проценты. Часть 1!» и «Задачи на проценты. Часть 2!».

2. Многие формулы заданы в виде пропорций:

    > теорема синусов

Составить пропорцию

    > отношение элементов в треугольнике

Составить пропорцию

    > теорема тангенсов

Составить пропорцию

> теорема Фалеса и другие.

3. В задачах по геометрии в условии часто задаётся отношение сторон (других элементов) или площадей, например 1:2, 2:3  и прочие.

4. Перевод единиц измерения, причём пропорция используется для перевода единиц как в одной  мере, так и для перевода из одной меры в другую:

  —  часы в минуты (и наоборот).

  —  единицы объёма, площади.

  —  длины, например мили в километры (и наоборот).

  —  градусы в радианы  (и наоборот).

здесь без составления пропорции не обойтись.

Ключевой момент в том, что нужно правильно установить соответствие, рассмотрим простые примеры:

Составить пропорцию

Необходимо определить число, которое составляет 35%  от 700.

В задачах на проценты за 100% принимается та величина, с которой сравниваем. Неизвестное число обозначим как х. Установим соответствие:

Можно сказать, что семисот тридцати пяти соответствует 100 процентов.

Иксу соответствует 35 процентов. Значит,

700    –    100%

х       –     35 %

Решаем

Составить пропорцию

Ответ: 245

Составить пропорцию

Переведём 50 минут в часы.

Мы знаем, что одному часу соответствует 60 минут. Обозначим соответсвие — x часов это 50 минут. Значит

1    –    60

х    –    50

Решаем:

Составить пропорцию

То есть 50 минут это пять шестых часа.

Ответ: 5/6

Составить пропорцию

Николай Петрович проехал 3 километра. Сколько это будет в милях (учесть, что 1 миля это 1,6 км)?

Известно, что 1 миля это 1,6 километра. Число миль, которые проехал Николай Петрович примем за х. Можем установить соответствие:

Одной миле соответствует 1,6 километра.

Икс миль это три километра.

1    –    1,6

х    –    3

Составить пропорцию

Ответ: 1,875 миль

Вы знаете, что для перевода  градусов в радианы (и обратно) существуют  формулы. Я их не записываю, так как запоминать их считаю излишним, и так вам в памяти приходится держать много информации. Вы всегда сможете перевести градусы в радианы (и обратно), если воспользуетесь пропорцией.

Переведём 65 градусов в радианную меру.

Главное это запомнить, что 180 градусов это Пи радиан.

Обозначим искомую величину как х. Устанавливаем соответствие.

Ста восьмидесяти градусам соответствует Пи радиан.

Шестидесяти пяти градусам соответствует х радиан.

Составить пропорцию

Если записать отношение в общем виде, то получится

Составить пропорцию

То есть, если необходимо перевести градусы в радианы, то подставляете в эту пропорцию градусы и вычисляете радианы; если необходимо перевести радианы в градусы, то подставляете радианы  и вычисляете градусы.

Можете изучить статью по этой теме на блоге. Материал в ней изложен несколько по иному, но принцип тот же. На этом закончу. Обязательно будет ещё что-нибудь интересненькое, не пропустите!

Если вспомнить само определение математики, то в нём есть такие слова: математика изучает количественные ОТНОШЕНИЯ (ОТНОШЕНИЯ — здесь ключевое слово). Как видите в самом определении математики заложена пропорция. Вообщем, математика без пропорции это не математика!!!

Всего доброго!

С уважением, Александр 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Определение пропорции, задачи на пропорцию

pic_107

Пропо́рция – равенство двух отношений, т. е. равенство вида a : b = c : d, или, в других обозначениях, равенство   \frac{a}{b}=\frac{c}{d}

Если a : b = c : d,   то a и d называют крайними, а b и c — средними членами пропорции.

От « пропорции» никуда не деться, без нее не обойтись во многих задачах. Выход только один – разобраться  с этим отношением  и пользоваться пропорцией как палочкой-выручалочкой.

Прежде чем приступать к рассмотрению задач на пропорцию, важно вспомнить основное правило пропорции:

В пропорции \frac{a}{b}=\frac{c}{d}

произведение крайних членов равно произведению средних a\cdot d=b\cdot c

Если какая-то величина  в пропорции неизвестна, ее легко будет найти, опираясь на это правило.

Например,

свойство пропорции

или

свойства пропорции

То есть неизвестная величина пропорции – значении дроби, в знаменателе которой – то число, которое стоит напротив неизвестной величины, в числителе – произведение оставшихся  членов пропорции (независимо от того, где эта неизвестная величина стоит). свойство пропорции

Задача 1.

Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?

Решение:+ показать

Мы понимаем, что уменьшение веса семени во сколько-то раз, влечет за собой уменьшение веса получаемого масла во столько же раз. То есть величины связаны прямой зависимостью.

Заполним таблицу: пропорция

Неизвестная величина – значение дроби \frac{7\cdot 5,1}{21}, в знаменателе которой – 21 – величина, стоящая напротив неизвестного в таблице, в числителе – произведение оставшихся членов таблицы-пропорции.

Поэтому получаем, что из 7 кг семени  выйдет 1,7 кг масла.

Ответ: 1,7

Чтобы правильно заполнять таблицу, важно помнить правило:

Одинаковые наименования нужно записывать друг под другом. Проценты записываем под процентами, килограммы под килограммами и т.д

 

Задача 2.

Перевести 80^{\circ} в  радианы.

Решение:+ показать

Мы знаем, что 180^{\circ}=\pi. Заполним таблицу:

перевод градусов в радианы

Откуда 80^{\circ}=\frac{80\cdot \pi}{180}=\frac{4\pi}{9}

Ответ: \frac{4\pi}{9} 

Задача 3.

На клетчатой бумаге изображён круг. Какова площадь круга, если площадь заштрихованного сектора равна 27?

Решение: + показать

 

Задача 4. После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Решение: + показать

Все поле составляет 100%, и поскольку вспахано 82%, то осталось вспахать 100%-82%=18% поля.

Заполняем таблицу: proporsia11

Откуда получаем, что  все поле составляет \frac{9\cdot100}{18}=50 (га).

Ответ: 50. 

 

А следующая задача – с засадой.

Задача 5.

Расстояние между двумя городами пассажирский поезд прошел со скоростью 80км/ч за 3 часа. За сколько часов товарный поезд пройдет то же расстояние со скоростью 60 км/ч?

Решение: + показать

proporsia12Если вы будете решать эту задачу аналогично предыдущей, то получите следующее:

время, которое потребуется товарному поезду, чтобы пройти то же расстояние, что и пассажирским, есть \frac{3\cdot60}{80}=\frac{9}{4}=2,25 часа. То есть, получается, что идя с меньшей скоростью, он преодолевает (за одно и тоже время) расстояние быстрее, нежели поезд  с большей скоростью.

В чем ошибка рассуждений?

До сих пор мы рассматривали задачи, где величины  были прямопропорциональны друг другу, то есть рост одной величины  во сколько-то раз, дает рост связанной с ней второй величины во столько же раз (аналогично с уменьшением, конечно). А здесь у нас другая ситуация: скорость пассажирского  поезда больше скорости товарного во сколько-то раз, а  вот время, требуемое на преодоление одного и того же расстояния, требуется пассажирскому поезду меньшее во столько же раз, нежели товарному поезду. То есть величины друг другу обратно пропорциональны.

Схему, которой мы пользовались до сих пор, надо чуть изменить в данном случае.

Решение: 

Рассуждаем так:

Пассажирский поезд со скоростью 80 км/ч   ехал   3 ч,  следовательно, он проехал 80\cdot3=240 км. А значит товарный поезд это же расстояние преодолеет за 240:60=4 ч.

То есть, если бы мы составляли пропорцию, нам следовало бы поменять местами ячейки правой колонки предварительно. Получили бы: \frac{3\cdot80}{60}=4 ч.

Ответ: 4.

Поэтому, пожалуйста, будьте внимательны при составлении пропорции. Разберитесь сначала, с какой зависимостью имеете дело – с прямой или обратной. 

egemaximum.ru

Пропорция

Продолжаем изучать соотношения. В данном уроке мы познакомимся с пропорцией.

Что такое пропорция?

Пропорцией называют равенство двух отношений. Например, отношение  равно отношению 

Данная пропорция читается следующим образом:

Десять так относится к пяти, как два относится к одному

Предположим, что в классе 10 девочек и 5 мальчиков

Запишем отношение десяти девочек к пяти мальчикам:

10 : 5

Преобразуем данное отношение в дробь

Выполнив деление в этой дроби, мы получим 2. То есть десять девочек так будут относиться к пяти мальчикам, что на одного мальчика будет приходиться две девочки

Теперь рассмотрим другой класс в котором две девочки и один мальчик

Запишем отношение двух девочек к одному мальчику:

2 : 1

Преобразуем данное отношение в дробь:

Выполнив деление в этой дроби, мы снова получим 2. То есть две девочки так будут относиться к одному мальчику, что на этого одного мальчика будут приходиться две девочки:

Можно сделать вывод, что отношение  пропорционально отношению . Поэтому оно и читалось как «десять так относится к пяти, как два относится к одному».

В нашем примере десять девочек так относятся к пяти мальчикам, как и две девочки относятся к одному мальчику.

Пример 2. Рассмотрим отношение 12 девочек к 3 мальчикам

а также отношение 12 девочек к 2 мальчикам

Данные отношения не являются пропорциональными. Другими словами, мы не можем записать, что , поскольку первое отношение, как видно на рисунке показывает, что на одного мальчика приходятся четыре девочки, а второе отношение показывает, что на одного мальчика приходятся шесть девочек.

Поэтому отношение  не пропорционально отношению .

Из рассмотренных примеров видно, что пропорция составляется из дробей. Первая рассмотренная нами пропорция  состоит из двух дробей. Если выполнить деление в этих дробях, то получим, что 2=2. Понятно, что 2 равно 2.

Вторая рассмотренная нами пропорция была . Мы пришли к выводу, что она составлена неправильно, поэтому поставили между дробями  и  знак не равно (≠). Если выполнить деление в этих дробях, получим числа 4 и 6. Понятно, что 4 не равно 6.

Рассмотрим пропорцию . Данная пропорция составлена правильно, поскольку отношения    и    равны между собой:

Можно проверить это, выполнив деление в этих дробях, то есть разделить 4 на 2, а 8 на 4. В результате с двух сторон получатся двойки. А 2 равно 2

2 = 2

Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.

В нашей пропорции    крайние члены это 4 и 4, а средние члены это 2 и 8

Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то сразу станет всё понятно:

4 : 2 = 8 : 4

Числа 4 и 4 располагаются с краю, поэтому их назвали крайними, а числа 2 и 8 располагаются посередине, поэтому их назвали средними:

С помощью переменных пропорцию можно записать так:

Данное выражение можно прочесть следующим образом:

a так относится к b, как c относится к d

Смысл данного предложения уже понятен. Речь идет о членах, участвующих в соотношении. a и d — это крайние члены пропорции, b и c — средние члены пропорции.


Основное свойство пропорции

Основное свойство пропорции выглядит следующим образом:

Произведение крайних членов пропорции равно произведению её средних членов.

Мы знаем, что произведение это ни что иное, как обычное умножение. Чтобы проверить правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция составлена правильно.

Например, проверим правильно ли составлена пропорция . Для этого перемножим её крайние и средние члены. Легко заметить, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому в умножении нет ничего сложного. Перемножаем члены пропорции «крест-накрест»:

4 × 4 = 16 — произведение крайних членов пропорции равно 16.

2 × 8 = 16 — произведение средних членов пропорции так же равно 16.

4 × 4 = 2 × 8

16 = 16

4 × 4 = 2 × 8 — произведение крайних членов равно произведению средних членов. Значит пропорция  составлена правильно.


Пример 2. Проверить правильно ли составлена пропорция

Проверим равно ли произведение крайних членов пропорции произведению её средних членов. Перемножим члены пропорции крест-накрест:

2 × 6 = 12 — произведение крайних членов пропорции равно 12

3 × 1 = 3 — произведение средних членов пропорции равно 3

2 × 6 ≠ 3 × 1

12 ≠ 3

2 × 6 ≠ 3 × 1 — произведение крайних членов пропорции НЕ равно произведению её средних членов. Значит пропорция  составлена неправильно.

Поэтому в пропорции  разумнее заменить знак равенства (=) на знак не равно (≠)


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

spacemath.xyz

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *