Смешанная дробь. Действия со смешанными дробями
Смешанной называют дробь, имеющую целую и дробную части.
Записываются они как \(a\)\(\frac{m}{n}\), где – \(a\) целое число,\(\frac{m}{n}\) — правильная дробь.
Например: \(2\)\(\frac{3}{5}\) здесь \(2\) – целая часть, \(\frac{3}{5}\) – дробная часть (правильная дробь).
\(17\)\(\frac{17}{18}\) здесь \(17\) – целая часть, \(\frac{17}{18}\) – дробная часть (правильная дробь).
Фактически такие дроби представляют собой сумму целого числа и дроби, то есть между целой и дробной частью стоит знак «плюс» (а не «умножить»).
Например: \(2\frac{3}{5}=2+\frac{3}{5}\)
Это не нужно заучивать, просто поймите суть. Вдумайтесь, что на практике означает, например, запись: «на складе осталось \(2\)\(\frac{3}{5}\) мешка муки»? Что на складе лежит два полных мешка и еще один заполненный на \(\frac{3}{5}\). Где здесь место умножению? Очевидно ведь, что это два плюс еще \(\frac{3}{5}\) мешка муки! Понимать этот момент очень важно, потому что здесь допускается огромное количество ошибок при вычислениях со смешанными дробями (см. ниже).
Превращение смешанной дроби в неправильную
Чтобы преобразовать смешанную дробь в неправильную нужно целую часть умножить на знаменатель дробной и прибавить к результату числитель — получиться числитель неправильной дроби. Знаменатель при этом не меняется. То есть,
\(a\)\(\frac{m}{n}\)\(=\)\(\frac{a·n + m}{n}\).
Например, при преобразовании \(2\)\(\frac{3}{5}\) получим \(\frac{2·5 + 3}{5}=\frac{13}{5}\).
Почему вычисление производиться именно так? Все дело в плюсе, стоящем между целой и дробной частью (см. выше). На самом деле, полное преобразование выглядит вот так:
Но расписывать все так подробно слишком долго, да и незачем, проще сразу получать ответ, пользуясь формулой выше.
Превращение неправильной дроби в смешанную
Чтобы преобразовать неправильную дробь в смешанную, в ней нужно выделить целую часть.
Чтобы этого добиться, мы задаем себе вопрос – сколько раз знаменатель целиком «помещается» в числителе?
\(\frac{37}{11}\)\(=\)\(\frac{33 + 4}{11}\)\(=\)\(\frac{33}{11}\)\(+\)\(\frac{4}{11}\)\(=3+\)\(\frac{4}{11}\)\(=3\)\(\frac{4}{11}\)
\(\frac{26}{3}\)\(=\)\(\frac{24 + 2}{3}\)\(=\)\(\frac{24}{3}\)\(+\)\(\frac{2}{3}\)\(=8+\)\(\frac{2}{3}\)\(=8\)\(\frac{2}{3}\)
А вот пример неправильного выделения целой части:
\(\frac{7}{2}\)\(=\)\(\frac{4 + 3}{2}\)\(=\)\(\frac{4}{2}\)\(+\)\(\frac{3}{2}\)\(=2+\)\(\frac{3}{2}\)\(=2\)\(\frac{3}{2}\)
В чем ошибка? В том, что дробная часть должна быть правильной дробью. А здесь не так — значит целая часть выделена не полностью. Действительно, ведь двойка в семерке нацело помещается три раза, а не два. Поэтому верным будет вот такое выделение:
\(\frac{7}{2}\)\(=\)\(\frac{6 + 1}{2}\)\(=\)\(\frac{6}{2}\)\(+\)\(\frac{1}{2}\)\(=3+\)\(\frac{1}{2}\)\(=3\)\(\frac{1}{2}\)
Превращение смешанной дроби в десятичную
Чтобы преобразовать смешанную дробь в десятичную, нужно в дробной части поделить числитель на знаменатель, после чего сложить результат с целой частью.
Например: \(2\)\(\frac{3}{5}\)\(=2+\)\(\frac{3}{5}\)\(=2+0,6=2,6\)
\(7\)\(\frac{11}{25}\)\(=7+\)\(\frac{11}{25}\)\(=7+0,44=7,44\)
Отсюда вывод:
Смешанная дробь – обычное число, причем целая часть представляет собой то, что будет стоять до запятой, а дробная – после.
Наиболее частые ошибки при работе со смешанной дробью
Главной причиной большинства ошибок является забывание описанного выше момента – между целой и дробной частью стоит «плюс», а не «умножить».
Пример: Вычислить \(2\)\(\frac{3}{5}\)\(:\)\(\frac{1}{5}\)
Ошибочное решение: \(2\)\(\frac{3}{5}\)\(:\)\(\frac{1}{5}\)\(=2\)\(\frac{3}{5}\)\(·\)\(\frac{5}{1}\)\(=2\)\(\frac{3 · 5}{5 · 1}\)\(=2·3=6\)
Пример: Вычислить \(3\)\(\frac{1}{5}\)\(·1\)\(\frac{1}{4}\)
Ошибочное решение: \(3\)\(\frac{1}{5}\)\(·1\)\(\frac{1}{4}\)\(=3·\)\(\frac{1}{5}\)\(·1·\)\(\frac{1}{4}\)\(=\)\(\frac{3}{5}\)\(·\)\(\frac{1}{4}\)\(=\)\(\frac{3 · 1}{5 · 4}\)\(=\)\(\frac{3}{20}\)
Правильное решение: \(3\)\(\frac{1}{5}\)\(·1\)\(\frac{1}{4}\)\(=(3+\)\(\frac{1}{5}\)\()·(1+\)\(\frac{1}{4}\)\()=\)\(\frac{3·5 + 1}{5}\)\(·\)\(\frac{1·4 + 1}{4}\)\(=\)\(\frac{16}{5}\)\(·\)\(\frac{5}{4}\)\(=\)\(\frac{16 · 5}{5 · 4}\)\(=4\)
Из того, что целая и дробная части соединены знаком плюс следует еще один вывод:
Если перед смешанной дробью стоит знак минус, то он стоит и перед целой частью, и перед дробной.
Например: \(-7\) \(\frac{5}{9}\)\(=-(7+\) \(\frac{5}{9}\)\()=-7-\) \(\frac{5}{9}\).
Это важно помнить при вычитании смешанных дробей.
Пример. Вычислить \(4\)\(\frac{3}{5}\)\(-2\)\(\frac{1}{5}\).
Решение: \(4\)\(\frac{3}{5}\)\(-2\)\(\frac{1}{5}\)\(=(4+\)\(\frac{3}{5}\)\()-(2+\)\(\frac{1}{5}\)\()=4+\)\(\frac{3}{5}\)\(-2-\)\(\frac{1}{5}\)\(=4-2+\)\(\frac{3}{5}\)\(-\)\(\frac{1}{5}\)\(=2+\)\(\frac{3-1}{5}\)\(=2+\)\(\frac{2}{5}\)\(=2\)\(\frac{2}{5}\).
Вообще вычитание (сложение) смешанных дробей удобно проводить в два этапа: сначала отдельно вычесть (сложить) целые части, а затем – дробные.
Смотрите также:
Дроби (шпаргалка)
Скачать статью
cos-cos.ru
Сложение смешанных чисел | Математика
Чтобы разобраться, как складывать смешанные числа, сначала изучим теорию. Затем рассмотрим, как следует выполнять сложение смешанных чисел, на конкретных примерах.Чтобы выполнить сложение смешанных чисел:
1) Дробные части этих чисел нужно привести к наименьшему общему знаменателю.
2) Отдельно сложить целые части, отдельно — дробные.
3) Проверить, является ли дробная часть правильной несократимой дробью. При необходимости — сократить дробь или выделить целую часть и прибавить ее к полученной целой части.
Примеры.
Выполнить сложение смешанных чисел.
Решение:
1) Сложение смешанных чисел начинаем с поиска наименьшего общего знаменателя дробных частей. 9 на 6 не делится. 9∙2=18 на 6 делится. Значит, наименьший общий знаменатель равен 18. Чтобы найти дополнительный множитель к каждой дроби, надо новый знаменатель разделить на старый.
2) Отдельно складываем целые части, отдельно — дробные.
3) Дробная часть — правильная несократимая дробь, значит, мы получили окончательный ответ.
1) Ищем наименьший общий знаменатель дробных частей. 8 на 6 не делится. 8∙2=16 на 6 не делится. 8∙3=24 на 6 делится. Значит, 24 — наименьший общий знаменатель.
2) Отдельно складываем целые части, отдельно — дробные.
3) Дробная часть — неправильная дробь, поэтому выделяем из нее целую часть и прибавляем ее к полученной целой части.
1) Как обычно, сложение смешанных чисел начинается с нахождения наименьшего общего знаменателя. 15 на 12 не делится. 15∙2=30 на 12 не делится. 15∙3=45 на 12 не делится. 15∙4=60 на 12 делится, поэтому НОЗ здесь равен 60.
2) Отдельно складываем целые части, отдельно — дробные.
3) Полученная дробная часть — неправильная сократимая дробь. Сокращаем ее на 3, выделяем целую часть и прибавляем ее к полученной целой части (можно изменить порядок действий: сначала выделить целую часть, а затем — сократить).
www.for6cl.uznateshe.ru
Вычитание смешанных дробей. | tutomath
Смешанные дроби также, как и простые дроби можно вычитать. Чтобы отнять смешанные числа дробей нужно знать несколько правил вычитания. Изучим эти правила на примерах. Вычитание обыкновенных дробей с разными и одинаковыми знаменателями вы можете посмотреть нажав на ссылку.
Вычитание смешанных дробей с одинаковыми знаменателями.
Рассмотрим пример с условием, что уменьшаемое целое и дробная часть больше соответственно вычитаемого целой и дробной части. При таких условиях вычитание происходит отдельно. Целую часть вычитаем из целой части, а дробную часть из дробной.
Рассмотрим пример:
Выполните вычитание смешанных дробей \(5\frac{3}{7}\) и \(1\frac{1}{7}\).
\(5\frac{3}{7}-1\frac{1}{7} = (5-1) + (\frac{3}{7}-\frac{1}{7}) = 4\frac{2}{7}\)Правильность вычитания проверяется сложением. Сделаем проверку вычитания:
Рассмотрим пример с условием, когда дробная часть уменьшаемого меньше соответственно дробной части вычитаемого. В таком случае мы занимаем единицу у целого в уменьшаемом.
Рассмотрим пример:
Выполните вычитание смешанных дробей \(6\frac{1}{4}\) и \(3\frac{3}{4}\).
У уменьшаемого \(6\frac{1}{4}\) дробная часть меньше чем у дробной части вычитаемого \(3\frac{3}{4}\). То есть \(\frac{1}{4} < \frac{1}{3}\), поэтому сразу отнять мы не сможем. Займем у целой части у 6 единицу, а потом выполним вычитание. Единицу мы запишем как \(\frac{4}{4} = 1\)
\(\begin{align}&6\frac{1}{4}-3\frac{3}{4} = (6 + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {1} + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {\frac{4}{4}} + \frac{1}{4})-3\frac{3}{4} = (5 + \frac{5}{4})-3\frac{3}{4} = \\\\ &= 5\frac{5}{4}-3\frac{3}{4} = 2\frac{2}{4} = 2\frac{1}{4}\\\\ \end{align}\) Следующий пример: \(7\frac{8}{19}-3 = 4\frac{8}{19}\)Вычитание смешанного дроби из целого числа.
Пример: \(3-1\frac{2}{5}\)
Уменьшаемое 3 не имеет дробной части, поэтому сразу отнять мы не сможем. Займем у целой части у 3 единицу, а потом выполним вычитание. Единицу мы запишем как \(3 = 2 + 1 = 2 + \frac{5}{5} = 2\frac{5}{5}\)
\(3-1\frac{2}{5}= (2 + \color{red} {1})-1\frac{2}{5} = (2 + \color{red} {\frac{5}{5}})-1\frac{2}{5} = 2\frac{5}{5}-1\frac{2}{5} = 1\frac{3}{5}\)Вычитание смешанных дробей с разными знаменателями.
Рассмотрим пример с условием, если дробные части уменьшаемого и вычитаемого с разными знаменателями. Нужно привести к общему знаменателю, а потом выполнить вычитание.
Выполните вычитание двух смешанных дробей с разными знаменателями \(2\frac{2}{3}\) и \(1\frac{1}{4}\).
Общим знаменателем будет число 12.
\(2\frac{2}{3}-1\frac{1}{4} = 2\frac{2 \times \color{red} {4}}{3 \times \color{red} {4}}-1\frac{1 \times \color{red} {3}}{4 \times \color{red} {3}} = 2\frac{8}{12}-1\frac{3}{12} = 1\frac{5}{12}\)Как вычитать смешанные дроби? Как решать смешанные дроби?
Ответ: нужно определиться к какому типу относиться выражение и по типу выражения применять алгоритм решения. Из целой части вычитаем целое, у дробной части вычитаем дробную часть.
Как из целого числа вычесть дробь? Как от целого числа отнять дробь?
Ответ: у целого числа нужно занять единицу и записать эту единицу в виде дроби
\(4 = 3 + 1 = 3 + \frac{7}{7} = 3\frac{7}{7}\),
а потом целое отнять от целого, дробную часть отнять от дробной части. Пример:
\(4-2\frac{3}{7} = (3 + \color{red} {1})-2\frac{3}{7} = (3 + \color{red} {\frac{7}{7}})-2\frac{3}{7} = 3\frac{7}{7}-2\frac{3}{7} = 1\frac{4}{7}\)Пример №1:
Выполните вычитание правильной дроби из единицы: а) \(1-\frac{8}{33}\) б) \(1-\frac{6}{7}\)
Решение:
а) Представим единицу как дробь со знаменателем 33. Получим \(1 = \frac{33}{33}\)
б) Представим единицу как дробь со знаменателем 7. Получим \(1 = \frac{7}{7}\)
\(1-\frac{6}{7} = \frac{7}{7}-\frac{6}{7} = \frac{7-6}{7} = \frac{1}{7}\)Пример №2:
Выполните вычитание смешанной дроби из целого числа: а) \(21-10\frac{4}{5}\) б) \(2-1\frac{1}{3}\)
Решение:
а) Займем у целого числа 21 единицу и распишем так \(21 = 20 + 1 = 20 + \frac{5}{5} = 20\frac{5}{5}\)
б) Займем у целого числа 2 единицу и распишем так \(2 = 1 + 1 = 1 + \frac{3}{3} = 1\frac{3}{3}\)
\(2-1\frac{1}{3} = (1 + 1)-1\frac{1}{3} = (1 + \frac{3}{3})-1\frac{1}{3} = 1\frac{3}{3}-1\frac{1}{3} = \frac{2}{3}\\\\\)Пример №3:
Выполните вычитание целого числа из смешанной дроби: а) \(15\frac{6}{17}-4\) б) \(23\frac{1}{2}-12\)
а) \(15\frac{6}{17}-4 = 11\frac{6}{17}\)
б) \(23\frac{1}{2}-12 = 11\frac{1}{2}\)
Пример № 4:
Выполните вычитание правильной дроби из смешанной дроби: а) \(1\frac{4}{5}-\frac{4}{5}\)
Пример №5:
Вычислите \(5\frac{5}{16}-3\frac{3}{8}\)
tutomath.ru
Вычитание смешанных чисел. Онлайн калькулятор
Чтобы вычесть смешанное число из другого смешанного числа, нужно отдельно вычесть целую часть из целой, а дробную из дробной и полученные результаты сложить.
Вычислим разность и
:
Вычитание смешанных чисел можно записывать в более краткой форме, без промежуточных вычислений:
Если целые или дробные части уменьшаемого и вычитаемого окажутся равными, то в результате целая или дробная части соответственно будут равны нулю:
Если уменьшаемое равно вычитаемому, то разность равна нулю:
Если дробные части уменьшаемого и вычитаемого имеют разные знаменатели, то сначала их нужно привести к общему знаменателю, а потом выполнить вычитание:
Если дробная часть уменьшаемого меньше дробной части вычитаемого, то из целой части уменьшаемого нужно взять одну единицу, представить её в виде дроби и прибавить к дробной части, после этого из дробной части уменьшаемого можно вычесть дробную часть вычитаемого:
Чтобы из натурального числа вычесть смешанное число, у натурального числа нужно взять одну единицу и представить её в виде дроби:
Чтобы вычесть натуральное число из смешанного числа, нужно натуральное число вычесть из целой части смешанного числа, оставив дробную часть без изменений:
При вычитании обыкновенной дроби из смешанного числа, дробь вычитается из дробной части смешанного числа. Если дробь больше, чем дробная часть смешанного числа, то из целой части нужно взять одну единицу, представить её в виде дроби и прибавить к дробной части, после этого можно выполнить вычитание:
Также, смешанные числа можно записать в виде неправильных дробей и выполнить вычитание, а в конце (если требуется по условию задания) записать результат в виде смешанного числа:
Калькулятор вычитания смешанных чисел
Данный калькулятор поможет вам выполнить вычитание смешанных чисел. Просто введите уменьшаемое и вычитаемое и нажмите кнопку Вычислить
. Данный калькулятор позволяет также выполнять вычитание: натурального числа и дроби, смешанного числа и дроби, натурального и смешанного числа, натуральных чисел.
naobumium.info
3. Сложение и вычитание смешанных чисел (одинаковые знаменатели)
Рассмотрим примеры сложения и вычитания смешанных чисел.
Задача 1. На столе лежали 238 плитки шоколада.
Сколько плиток шоколада будет лежать на столе, если на стол положить ещё 128 плитки?
Решение. Чтобы решить задачу, надо сложить числа 238 и 128.
Так как 238=2+38;128=1+28, то
238+128=2+38+1+28=2+1+38+28=3+3+28=3+58=358.
Обычно записывают коротко: 238+128=358.
Ответ: 358 плитки шоколада.
Решение. Чтобы решить задачу, надо из 238 вычесть 128.
Тогда:
238−128=2+38−1+28=2+38−1−28=2−1+38−28==1+3−28=1+18=118.
Пишут короче: 238−128=118.
Ответ: 118 плитки шоколада.
Обрати внимание!
При сложении (и вычитании) чисел в смешанной записи целые части складывают (вычитают) отдельно, а дробные — отдельно.
В случае, когда при сложении смешанных чисел в их дробной части получается неправильная дробь, из неё выделяют целую часть и добавляют её к уже имеющейся целой части.
Пример 1.
15711+3611=181311=18+1311=18+1211=19211.
Рассмотрим пример, в котором при вычитании смешанных чисел дробная часть уменьшаемого меньше дробной части вычитаемого.
Пример 2.
713−523=7+13−523=6+1+13−523=6+113−523==6+43−523=643−523=123.
Обычно пишут короче: 713−523=643−523=123.
Таким же образом поступают и при вычитании дроби из натурального числа, и при вычитании смешанного числа из натурального числа.
25−713=241313−713=2413−713=24613.
Пример 4.
12−857=1177−857=37−57=327.
www.yaklass.ru
правила, примеры, решения, решение дробей
Следующее действие, которое можно выполнять с обыкновенными дробями, — вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.
Как найти разность дробей с одинаковыми знаменателями
Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:
58-28
В итоге у нас осталось 3 восьмых доли, поскольку 5−2=3. Получается, что 58-28=38.
Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.
Определение 1Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде ab-cb=a-cb.
Такую формулу мы будем использовать и в дальнейшем.
Возьмем конкретные примеры.
Пример 1Вычтите из дроби 2415 обыкновенную дробь 1715.
Решение
Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24. Мы получаем 7 и дописываем к ней знаменатель, получаем 715.
Наши подсчеты можно записать так: 2415-1715=24-1715=715
Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.
Пример 2Найдите разность 3712-1512.
Решение
Воспользуемся описанной выше формулой и подсчитаем: 3712-1512=37-1512=2212
Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 116. Это неправильная дробь, из которой мы выделим целую часть: 116=156.
Как найти разность дробей с разными знаменателями
Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто при
zaochnik.com