Как узнать степень числа – Помогите пожалуйста! как можно узнать последнюю цифру числа в большой степени! Срочно надо!

Действия, обратные возведению в степень

7. В виду последней особенности действий возведения в степень для него можно составить 2 обратных задачи. Напр.:

1) Я задумал число, возвел его в третью степень (или: в куб), получилось 64; какое число я задумал?

Эту задачу можно записать в виде

(?)3 = 64

2) Я взял число 3, возвел его в некоторую степень, – получилось 81. В какую степень было возведено число 3.

Эту задачу можно записать в виде:

3? = 81

Теперь уже, так как возведение в степень не обладает переместительным законом, эти две задачи следует считать совершенно различными.

Сначала решать их можно подбором: попробуем число 1, 13 = 1, а не 64, след., 1 не годится; 23 = 8, а не 64, след., 2 не годится, 33 = 27, а не 64, след., 3 не годится; 43 = 64, след., в 1 задаче было задумано число 4. Также выясним, что во второй задаче число 3 было возведено в 4-ую степень.

Так как таких задач можно составить очень много, то для их решения необходимо изобрести новые действия. Эти действия обратны возведению в степень. Итак, для возведения в степень существуют два обратных действия: первое из них называется

извлечением корня и служит для решения вопросов, подобных первой из наших задач; второе называется нахождением логарифма и служит для решения вопросов, подобных второй задаче.

Если мы обратим внимание на то, что в первой задаче нам даны степень 64 и показатель степени 3, то мы установим определение:

Извлечением корня называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному показателю находят основание степени.

Также точно: во второй задаче даны степень (81) и основание степени (3), а надо найти показателя степени. Поэтому

нахождением логарифма называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному основанию находится показатель степени.

Степень числа и как её найти. Как возвести число в степень 🎥

 Уже во втором классе на уроках математики дети сталкиваются с такими величинами, как площадь и объем. Учителя рассказывают, что площадь измеряется в квадратных сантиметрах или метрах и  так далее, а объем - в кубических. Дети просто запоминают и пишут см

2 или м2 или мм3. Очень немногие в тот момент задумывались, что же означает приписанная в верхнем уголке единицы длины цифра. По-настоящему со степенью мы познакомимся в пятом классе, а если хотите это сделать самостоятельно, можете и раньше :))

Что такое степень числа?

Как вы знаете, с помощью произведения удобно записывать сумму нескольких одинаковых слагаемых. Например 5 + 5 + 5 + 5 + 5 + 5 = 5 * 7

А если это будет не сумма, а произведение одинаковых чисел? Например, множитель 5 взять 7 раз: 5 * 5 * 5 * 5 * 5 * 5 * 5? Для более краткого обозначения такого произведения математики и придумали степень.

5 * 5 * 5 * 5 * 5 * 5 * 5 = 57 

Выражение  57 называют "степень", читается как пять в седьмой степени или седьмая степень числа 5. При этом 5 - основание степени, а 7 - показатель степени.

Число 7 показывает, сколько одинаковых множителей содержит произведение.

Как возвести число в степень?

Чтобы найти степень, нужно основание перемножить на себя столько раз, сколько написано в показателе.

          25  125  625 3125 15625
57 = 5  *  5  *  5  *  5  *   5    *    5  *  5 = 78125
                       7 раз

Тут иногда возникает путаница оттого, что дети считают не количество цифр основания, а количество знаков умножения. Считать нужно цифры, а не знаки умножения. 5 * 5 - это уже вторая степень, потому что пятерки две.  5 * 5 * 5 = 53,    5 * 5 * 5 * 5 = 5и так далее.

Рассмотрим еще примеры:

32 = 3 * 3 = 9
23 = 2 * 2 * 2 = 8
а4 = а * а * а * а
(5b)2 = 5b * 5b

Вторую степень числа называют "квадрат числа". Например, 32 читается как "три в квадрате" или квадрат числа три.

Третью степень числа называют "куб числа". Например 23 читается как "два в кубе" или куб числа два.

Может ли показатель степени быть равным 1? Да, может. Но если любое число взять 1 раз, то получится то же самое число, то есть а1 = а. А поскольку не принято рассматривать произведения, состоящие из одного множителя, то единичку в показателе степени обычно не пишут.

Например 81 = 8, 4561 = 456

Возведение числа в степень - это арифметическое действие

Если в выражение входит степень, то сначала выполняют возведение в степень, а потом - остальные действия в приоритетном порядке.

Например: 5 * 22 = 5 * 4 = 20
                   5 + 22 = 5 + 4 = 9

 

А теперь вы поняли, что такое см2?  Правильно, это   см * см. Именно так мы находим площадь прямоугольника, умножая длину одной стороны в см на длину другой. 
А мм3?   Это мм * мм * мм. Так мы находим объем.

Чтобы закрепить знания о степени числа, посмотрите видео:

Степень простого числа — Википедия

Материал из Википедии — свободной энциклопедии

В математике степень простого числа — это простое число, возведённое в целую положительную степень.

Числа 5 = 51, 9 = 32 и 16 = 24 являются степенями простых чисел, в то время как 6 = 2 × 3, 15 = 3 × 5 и 36 = 62 = 22 × 32 не являются.

Двадцать наименьших степеней простых чисел[1]:

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, …

Алгебраические свойства[править | править код]

  • Каждая степень простого числа делится только на одно простое число.
  • Плотность распределения степеней простых чисел асимптотически эквивалентна π(x){\displaystyle \pi (x)} — плотности простых чисел с точностью до O(x){\displaystyle O({\sqrt {x}})}.
  • Любая степень простого числа (за исключением степени 2) имеет первообразный корень. Так, мультипликативная группа целых чисел по модулю pn (или, что эквивалентно, группа единиц кольца Z/pnZ) является циклической.
  • Число элементов конечного поля всегда является степенью простого числа и обратно, любая степень простого является числом элементов некоторого конечного поля (единственного с точностью до изоморфизма).

Комбинаторные свойства[править | править код]

Свойство степеней простого числа, часто используемое в аналитической теории чисел, — что множество степеней простых чисел, не являющихся простыми, является маленьким[en] в том смысле, что бесконечная сумма обратных им величин сходится, хотя множество простых чисел является большим множеством.

Свойства делимости[править | править код]

Функция Эйлера (φ) и сигма функции (σ0) и (σ1) от степени простого числа можно вычислить по формулам:

ϕ(pn)=pn−1ϕ(p)=pn−1(p−1)=pn−pn−1=pn(1−1p),{\displaystyle \phi (p^{n})=p^{n-1}\phi (p)=p^{n-1}(p-1)=p^{n}-p^{n-1}=p^{n}\left(1-{\frac {1}{p}}\right),}
σ0(pn)=∑j=0np0∗j=∑j=0n1=n+1,{\displaystyle \sigma _{0}(p^{n})=\sum _{j=0}^{n}p^{0*j}=\sum _{j=0}^{n}1=n+1,}
σ1(pn)=∑j=0np1∗j=∑j=0npj=pn+1−1p−1.{\displaystyle \sigma _{1}(p^{n})=\sum _{j=0}^{n}p^{1*j}=\sum _{j=0}^{n}p^{j}={\frac {p^{n+1}-1}{p-1}}.}

Все степени простых чисел являются недостаточными числами. Степень простого pn является n-почти простыми[en]. Неизвестно, могут ли степени простых чисел pn быть дружественными числами. Если такие числа существуют, то pn должно быть больше 101500 и n должен быть больше 1400.

  1. ↑ Последовательность A000961 в OEIS: степени простых чисел = Powers of primes
  • Jones, Gareth A. and Jones, J. Mary. Springer-Verlag. Elementary Number Theory. — London: Limited, 1998.

Помогите пожалуйста! как можно узнать последнюю цифру числа в большой степени! Срочно надо!

Если я правильно понял, то тебя интересует как найти последнюю цифру в числе, которое находится в большой степени? Каждое число будет иметь свои 4-ре окончания, которые будут постоянно повторятся Пример: 2*(2)= (4)*2=(8)*2=1(6)*2=32 У 2-ки будут повторятся 2, 4 8, 6 То есть 2^21 (2 в 21 степени) = 21/4=5 целых и 1/4(из чего заключаем, что это число будет 2). Для 2^23 (2 в 23 степени) 5 целых и 3/4(из чего заключаем, что это 3-тее число и = 8 ) Для двухзначных и выше, берём просто последнее число и берём делаем то же самое, что и в 1-м случае: Например число 57 : последнее в нём число 7 значит считаем окончания: 7*(7)=4(9)*7= 34(3)*7=240(1)*7 следовательно 7 9 3 1 . Например для 7^10 считаем 10/4= 2 целых и 2/4 - из чего заключаем, что окончание будет 9-ка. На всякий случай: для числа 1 и 5, эти окончания всегда равны 1 и 5 😉 На практике срабатывает. Возможно есть и более лёгкий способ, но я его точно не помню, а этот как-то сам пришел в голову, но это скорее из раздела пришло в голову, работает, но ...

Возведи последнюю цифру большого числа в квадрат, что на конце, то тебе и нужно.

значёк ^ означает возведение в степень... 9 в нечётной степени будет оканчиваться на 9 9 в чётной степени будет оканчиваться на 1 поэтому 9999^999 будет оканчиваться на 9 и (9999^999)^99 тоже.. . и (((9999^999)^99)^9 тоже будет оканчиваться на 9

Как возводить в степень большие числа?

Число 7 в степени 707 тебе не покажет ни один калькулятор. Наверное вопрос такой: "Чему равна последняя цифра числа 7^707. Тогда несколько проще. 7*7=49. При дальнейшем умножении "4" никак не повлияет на последнюю цифру, поэтому ее можно отбросить. Дальше 9*7=63, 3*7=21, 1*7=7, 7*7=49 и т. д. Как видишь, последняя цифра после 4 шагов стала повторяться. Если рассматривать только последнюю цифру, то 7^4=1, в общем, 7^(4*n)=1. Значит 7^704=1, дальше будут цифры 7, 9, 3. То есть 7^707 заканчивается на цифру 3.

С помощью логарифмической линейки.

Если надо найти всё число - то всё число и умножать. Если - только последнюю цифру, то можно все кроме последней и отбрасывать. Пример: 7^707 = 7 * 7^706 = 7* (7^2)^353 = 7 * (49)^353 Здесь полученное 49 можно заменить 9 7 * (9)^353 = 7 * 9 * (9^2)^176 = 7 * 9 * (81)^176 81 заменяем на 1 7*9* (1)^176 = 63 Последняя цифра 3. Значит, в числе 7^707 последняя цифра тоже 3.

В первый раз слышу, чтобы на экзамене нельзя было пользоваться калькулятором. Только, конечно, его надо приносить с собой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *