Какие реакции называются окислительно восстановительными: Окислительно-восстановительные реакции | CHEMEGE.RU – Урок №17. Окислительно – восстановительные реакции

Окислительно-восстановительные реакции(ОВР) | АЛХИМИК

Все химические реакции можно разделить на два типа:

1) Реакции, которые протекают без изменения степеней окисления элементов: степени окисления всех элементов в молекулах исходных веществ равны степеням окисления этих элементов в молекулах продуктов реакции. Например:

2) Реакции, которые протекают с изменением степеней окисления элементов: степени окисления всех или некоторых элементов в молекулах исходных веществ не равны степеням окисления этих элементов в молекулах продуктов реакции. Например:

Окислительно-восстановительные реакции (ОВР)

Реакции второго типа называются окислительно-восстановительными.

Окислительно-восстановительные реакции (ОВР) — это химические реакции, при протекании которых степени окисления элементов изменяются.

Изменение степеней окисления в ходе ОВР обусловлено полным или частичным переходом электронов от атомов одного элемента к атомам элемента.

Так, в реакции 4.1.2 каждый атом магния отдает 2 электрона:

Mg0 = Mg+2 + 2ē (или: Mg0 — 2ē = Mg+2) (4.1.4)

Эти электроны переходят к молекуле кислорода. Каждый атом кислорода в молекуле О2 присоединяет 2 электрона, поэтому молекула кислорода присоединяет 4 электрона:

O2 + 4ē = 2O-2  (4.1.5)

В реакции 4.1.3 атомы хлора, которые в молекулах HCl имеют степень окисления —1 , отдают по одному электрону и превращаются в нейтральные атомы хлора, которые соединяются попарно и образуют молекулы хлора Сl2:

Cl-1 = Cl0 + 1ē; Cl0 + Cl0 = Cl2

или суммарно:

2Cl-1 = Cl2 + 2ē  (4.1.6)

Атом марганца, который в исходном веществе (KМnО4) имеет степень окисления +7, присоединяет 5 электронов и превращается в атом марганца со степенью окисления +2 (такую степень окисления он имеет в молекуле продукта реакции MnCl

2):

Mn+7 + 5ē = Mn+2  (4.1.7)

Рассмотренный выше механизм ОВР объясняет, почему эти реакции называют реакциями с переносом электронов. Реакции, при протекании которых степени окисления не изменяются, называются реакциями без переноса электронов. Таким образом, любая ОВР представляет собой совокупность процессов отдачи и присоединения электронов.

Процесс отдачи электронов называется окислением. В результате процесса окисления алгебраическая величи на степени окисления элемента повышается.

В рассмотренных примерах процессы 4.1.4 и 4.1.6 являются процессами окисления.

Процесс присоединения электронов называется восстановлением. В результате процесса восстановления алгебраическая величина степени окисления понижается.

Процессы 4.1.5 и 4.1.7 являются примерами процессов восстановления.

Частицы (атомы, молекулы, ионы), которые отдают электроны, называются восстановителями.

В реакциях 4.1.2 и 4.1.3 восстановителями являются соответственно Mg и НCl.

Частицы, которые присоединяют электроны, называются окислителями.

В реакциях 4.1.2 и 4.1.3 окислителями являются соответственно O2 и KМnО4.

Следовательно, в общем виде окислительно-восстановительную реакцию можно представить следующей схемой:

Восстановитель + Окислитель = Продукты реакции

Восстановитель участвует в процессе окисления, т. е. окисляется. А окислитель участвует в процессе восстановления, т. е. восстанавливается.

Важнейшие окислители и восстановители

Какие же вещества могут быть окислителями и какие восстановителями? Это зависит от величины степеней окисления элементов, которые входят в состав данных веществ. Как известно, некоторые элементы имеют постоянные степени окисления во всех или в большинстве сложных веществ. Для таких элементов изменение степеней окисления нехарактерно. Поэтому свойства веществ обычно не зависят от присутствия этих элементов. Элементы с переменной степенью окисления, как правило, легко ее изменяют, т. е. могут участвовать в процессах отдачи или присоединения электронов. Поэтому свойства сложных веществ обусловлены наличием в их составе элементов с переменной степенью окисления.

Если в состав вещества входит элемент с высшей степенью окисления, он может только понижать ее, т. е. участвовать в процессе восстановления. Следовательно, данное вещество может только присоединять электроны и выступать только в роли окислителя.

Например, свойства перманганата калия KМnО4 определяются степенью окисления марганца (калий и кислород — элементы с постоянной степенью окисления). Марганец в KМnО4 имеет высшую степень окисления +7, поэтому KМnО4 может быть только окислителем.

Если в состав вещества входит элемент с низшей степенью окисления, он может только повышать ее, т. е. участвовать в процессе окисления. Следовательно, данное вещество может только отдавать электроны и выступать только в роли восстановителя.

Например, свойства аммиака NH3 определяются степенью окисления азота (для водорода степень окисления +1 является практически постоянной). Азот в NH3 имеет низшую степень окисления —3, поэтому NH3 может быть только восстановителем.

Если в состав вещества входит элемент с промежуточной степенью окисления, он может как повышать, так и понижать ее, т. е. может участвовать и в процессе окисления, и в процессе восстановления. Следовательно, данное вещество может быть и окислителем, и восстановителем. Это зависит от второго участника реакции.

Например, свойства сульфита натрия Na23 определяются степенью окисления серы, которая имеет промежуточную степень окисления +4. Поэтому Na

2SО3 проявляет окислительно-восстановительную двойственность. В реакции с перманганатом калия:

Окислительно-восстановительные реакции (ОВР)

сульфит натрия окисляется до сульфата натрия, т. е. выступает в роли восстановителя. Это обусловлено тем, что KМnО4 может быть только окислителем (см. выше). А в реакции с сероводородом:

Окислительно-восстановительные реакции (ОВР)

сульфит натрия восстанавливается до свободной серы, т. е. выступает в роли окислителя, так как H2S может быть только восстановителем (сера в H2S находится в низшей степени окисления).

Важнейшими окислителями являются:

а) простые вещества-неметаллы с наибольшими значениями электроотрицательности — фтор F2, кислород О

2;

б) сложные вещества, молекулы которых содержат элементы в высшей степени окисления — перманганат калия KМnО4, хроматы и дихроматы (например, дихромат калия K2СrО7), азотная кислота HNO3 и ее соли — нитраты, концентрированная серная кислота H2SO4, оксид свинца (IV) РbО2, хлорная кислота HClO4 и ее соли — перхлорат и др.

Важнейшими восстановителями являются:

а) все простые вещества-металлы. Наиболее активными восстановителями являются щелочные и щелочноземельные металлы, магний Mg, алюминий Аl, цинк Zn;

б) сложные вещества, молекулы которых содержат элементы в низшей степени окисления — метан силан SiH4, аммиак NH3, фосфин PН3, нитриды и фосфиды металлов (например, Na3N, Са3Р2), сероводород Н2S и сульфиды металлов, гaлогеноводороды HI, НВr НСl и галогениды металлов, гидриды металлов (например, NaH, СаН

2) и др.

Среди веществ, содержащих элементы в промежуточных степенях окисления, есть вещества, для которых более характерными являются или окислительные, или восстановительные свойства. Обычно являются окислителями галогены Сl2 и Br2, хлорноватистая кислота НClО и ее соли — гипохлориты, хлораты (KСlO3 и др.), оксид марганца (IV) МnO2, соли трехвалентного железа (FeCl3 и др.). Как правило, в роли восстановителей выступают водород Н2, углерод С, оксид углерода (II) СО, сульфиты металлов (Na2SO3 и др.), соли двухвалентного железа (FeSO4 и др.).

Типы окислительно-восстановительных реакций

Различают 3 типа окислительно-восстановительных реакций.

1) Межмолекулярные окислительно-восстановительные реакции. В этих реакциях элемент-окислитель и элемент-восстановитель входят в состав молекул различных веществ. Примерами данного типа реакций являются

Окислительно-восстановительные реакции (ОВР)

2) Внутримолекулярные окислительно-восстановительные реакции. В этих реакциях элемент-окислитель и элемент-восстановитель входят в состав одного вещества. Например:

Окислительно-восстановительные реакции (ОВР)

К этому типу ОВР относятся многие реакции термического разложения веществ.

З) Реакции самоокисления-самовосстановления, называемые также реакциями диспропорционирования. Это ОВР, при протекании которых один и тот же элемент, находящийся в промежуточной степени окисления, и окисляется и восстанавливается. Часть атомов данного элемента отдает электроны другой части атомов этого же элемента. Например:

Окислительно-восстановительные реакции (ОВР)

Составление уравнений окислительно-восстановительных реакций

Для составления уравнений окислительно-восстановительных реакций часто используется специальный метод — метод электронного баланса. В основе его лежит следующее правило: общее число электронов, которые отдает восстановитель, должно быть равно общему числу электронов, которые присоединяет окислитель.

Рассмотрим применение метода электронного баланса на примере реакции, которая выражается следующей схемой:

Окислительно-восстановительные реакции (ОВР)

а) Определим степени окисления всех элементов в молекулах исходных веществ и продуктов реакции:

Окислительно-восстановительные реакции (ОВР)

б) Подчеркнем символы элементов, которые изменяют степени окисления в ходе реакции:

Окислительно-восстановительные реакции (ОВР)

в) Составим уравнения процессов окисления и восстановления:

Окислительно-восстановительные реакции (ОВР)

Обратите внимание, что в левой части уравнения процесса окисления взято два атома брома, так как продуктом окисления является двухатомная молекула брома Br2.

г) Находим множители для уравнений процессов окисления и восстановления, при умножении на которые числа отданных и присоединенных электронов будут равны. Так как наименьшим общим кратным чисел «5» и «2» является «10», то уравнение процесса восстановления нужно умножить на «2», а уравнение процесса окисления — на «5»:

Окислительно-восстановительные реакции (ОВР)

Два атома Мn+7 присоединяют 10 электронов, а 10 атомов Br-1 отдают 10 электронов, т. е. выполняется основное правило метода электронного баланса.

д) Найденные множители запишем как коэффициенты перед формулами веществ, которые содержат элементы, участвующие в процессах окисления и восстановления:

Окислительно-восстановительные реакции (ОВР)

е) После этого уравниваем числа атомов элементов, которые не изменяют степени окисления. В данном случае это атомы калия, серы, водорода и кислорода.

Окислительно-восстановительные реакции (ОВР)

Обычно числа атомов водорода и кислорода уравнивают в последнюю очередь. Во многих случаях равенство чисел атомов кислорода в левой и в правой частях уравнения ОВР свидетельствует о том, что это уравнение составлено правильно (в составленном уравнении 40 атомов кислорода и в левой, и в правой частях).

Рассмотрим некоторые более сложные примеры составления уравнений ОВР.

Составим уравнение реакции, которая протекает по следующей схеме:

Окислительно-восстановительные реакции (ОВР)

Определим степени окисления всех элементов и подчеркнем символы элементов, которые изменяют свои степени окисления:

Окислительно-восстановительные реакции (ОВР)

Составим уравнения процессов окисления и восстановления и найдем множители, на которые нужно умножить эти уравнения:

Окислительно-восстановительные реакции (ОВР)

Обратите внимание, что не все атомы азота, которые входят в состав HNО3, изменяют свою степень окисления: часть атомов азота без изменения степени окисления переходит в молекулы Cu(NO3)2 Поэтому найденные методом электронного баланса коэффициенты напишем перед всеми формулами, содержащими Сu и N, кроме формулы HNO3:

Окислительно-восстановительные реакции (ОВР)

Коэффициент перед формулой HNO3 равен общему числу атомов азота в правой части уравнения, т. е. равен 8 (из них 6 атомов, которые не изменяют степень окисления):

Окислительно-восстановительные реакции (ОВР)

В последнюю очередь уравниваем числа атомов водорода и кислорода:

Окислительно-восстановительные реакции (ОВР)

В некоторых ОВР более двух элементов изменяют свои степени окисления. В качестве примера рассмотрим следующую реакцию:

Окислительно-восстановительные реакции (ОВР)

Два элемента — фосфор и сера — в ходе этой реакции окисляются, один элемент — азот — восстанавливается:

Окислительно-восстановительные реакции (ОВР)

Общее число электронов, которые участвуют в процессах окисления, равно 22; в процессе восстановления участвует 1 электрон. Поэтому общий множитель для двух уравнений процессов окисления равен 1, а множитель для уравнения процесса восстановления равен 22. Запишем эти множители в качестве коэффициентов перед формулами соответствующих веществ:

Окислительно-восстановительные реакции (ОВР)

В заключение уравняем числа атомов водорода и кислорода:

Окислительно-восстановительные реакции (ОВР)

Похожее

Окислительно-восстановительные реакции — Википедия

Окисли́тельно-восстанови́тельные реа́кции (ОВР), также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления и не более 2 атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором).

Историческая справка

Издавна ученые полагали, что окисление — это потеря флогистона (особого невидимого горючего вещества), а восстановление — его приобретение. Но, после создания А. Лавуазье в 1777 году кислородной теории горения к началу XIX века, химики стали считать окислением взаимодействие веществ с кислородом, а восстановлением их превращения под действием водорода. Тем не менее в качестве окислителя могут выступать и другие элементы, например

Fe+2HCl→FeCl2+h3↑{\displaystyle {\mathsf {Fe+2HCl\rightarrow FeCl_{2}+H_{2}\uparrow }}}

В этой реакции окислитель — ион водорода[1] — H+, а железо выступает в роли восстановителя.

В соответствии с электронно-ионной теорией окисления-восстановления, разработанной Л. В. Писаржевским в 1914 г., окисление — процесс отщепления электронов от атомов или ионов элемента, который окисляется; Восстановлением называется процесс присоединения электронов к атомам или ионам элемента, каковой восстанавливается. Например, в реакции

Zn0+Cl02→Zn+2Cl−12{\displaystyle {\mathsf {{\stackrel {0}{\mbox{Zn}}}+{\stackrel {0}{\mbox{Cl}}}_{2}\rightarrow {\stackrel {+2}{\mbox{Zn}}}{\stackrel {-1}{\mbox{Cl}}}_{2}}}}

атом цинка теряет два электрона, то есть окисляется, а молекула хлора присоединяет их, то есть восстанавливается.

Описание

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.[2]

Окисление

Окисление — процесс отдачи электронов с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель (сам процесс называется окислением):

восстановитель — eсопряжённый окислитель.

Несвязанный, свободный электрон является сильнейшим восстановителем.

Восстановление

Восстановле́ние — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель (сам процесс называют восстановлением):

окислитель + eсопряжённый восстановитель.

Окислительно-восстановительная пара

Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.

В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, то есть восстановлением, другая — с отдачей электронов, то есть окислением.

Виды окислительно-восстановительных реакций

Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

h3S+Cl2→S+2HCl{\displaystyle {\mathsf {H_{2}S+Cl_{2}\rightarrow S+2HCl}}}

Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2h3O→2h3+O2{\displaystyle {\mathsf {2H_{2}O\rightarrow 2H_{2}+O_{2}}}}

Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

h3O+Cl2→HCl+HOCl{\displaystyle {\mathsf {H_{2}O+Cl_{2}\rightarrow HCl+HOCl}}}

Репропорционирование (конпропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления:

SO2+2h3S→3S+2h3O{\displaystyle {\mathsf {SO_{2}+2H_{2}S\rightarrow 3S+2H_{2}O}}}

Примеры

Окислительно-восстановительная реакция между водородом и фтором

H02+F02→2H+1F−1{\displaystyle {\mathsf {{\stackrel {0}{\mbox{H}}}_{2}+{\stackrel {0}{\mbox{F}}}_{2}\rightarrow 2{\stackrel {+1}{\mbox{H}}}{\stackrel {-1}{\mbox{F}}}}}}

Разделяется на две полу-реакции:

1) Окисление:

h30−2e−→2H+{\displaystyle {\mathsf {{\mbox{H}}_{2}^{0}-2{\mbox{e}}^{-}\rightarrow 2{\mbox{H}}^{+}}}}

2) Восстановление:

F20+2e−→2F−{\displaystyle {\mathsf {{\mbox{F}}_{2}^{0}+2{\mbox{e}}^{-}\rightarrow 2{\mbox{F}}^{-}}}}
h30−2e−→2H+{\displaystyle {\mathsf {{\mbox{H}}_{2}^{0}-2{\mbox{e}}^{-}\rightarrow 2{\mbox{H}}^{+}}}}
S2−−2e−→S0↓{\displaystyle {\mathsf {{\mbox{S}}^{2-}-2{\mbox{e}}^{-}\rightarrow {\mbox{S}}^{0}\downarrow }}}
Al0−3e−→Al3+{\displaystyle {\mathsf {{\mbox{Al}}^{0}-3{\mbox{e}}^{-}\rightarrow {\mbox{Al}}^{3+}}}}
Fe2+−e−→Fe3+{\displaystyle {\mathsf {{\mbox{Fe}}^{2+}-{\mbox{e}}^{-}\rightarrow {\mbox{Fe}}^{3+}}}}
2Hal−−2e−→Hal20{\displaystyle {\mathsf {2{\mbox{Hal}}^{-}-2{\mbox{e}}^{-}\rightarrow {\mbox{Hal}}_{2}^{0}}}}

Процесс присоединения электронов — восстановление. При восстановлении степень окисления понижается:

O20+4e−→2O2−{\displaystyle {\mathsf {{\mbox{O}}_{2}^{0}+4{\mbox{e}}^{-}\rightarrow 2{\mbox{O}}^{2-}}}}
Mn7++5e−→Mn2+{\displaystyle {\mathsf {{\mbox{Mn}}^{7+}+5{\mbox{e}}^{-}\rightarrow {\mbox{Mn}}^{2+}}}}
Mn4++2e−→Mn2+{\displaystyle {\mathsf {{\mbox{Mn}}^{4+}+2{\mbox{e}}^{-}\rightarrow {\mbox{Mn}}^{2+}}}}
Cr6++6e−→Cr0{\displaystyle {\mathsf {{\mbox{Cr}}^{6+}+6{\mbox{e}}^{-}\rightarrow {\mbox{Cr}}^{0}}}}

Атомы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а атомы или ионы, которые отдают электроны — восстановителями.

Для нахождения пропорции веществ, вступающих в химическую реакцию, часто требуется уравнять ОВР. Уравнивание ОВР сводится к нахождению стехиометрических коэффициентов (то есть, количества молей каждого соединения). Стехиометрические коэффициенты могут принимать только значения целых величин от 1 и выше, дробные стехиометрические коэффициенты допускаются лишь в некоторых случаях записи термохимических уравнениях из курса физической химии. Различают два методы уравнивания ОВР: метод полуреакций и метод электронного баланса. Метод электронного баланса более прост и используется в случае протекания реакции в газообразной среде (например, процессы горения или термического разложения соединений). Метод полуреакций более сложен и используется в случае протекания реакции в жидкой среде. Метод полуреакций оперирует не свободными атомами и одноатомными ионами, а реально существующими в растворе частицами, образовавшимися в результате процессов растворения и/или диссоциации реагирующих веществ. Оба метода занимают важное место в базовом курсе общей и неорганической химии, изучаемом студентами различных учебных заведений[3].

Примечания

  1. ↑ В этом, как и во многих других случаях водород рассматривают как помещенный в VII группе периодической системы химических элементов над галогенами-окислителями.
  2. ↑ Несущественно, переходят ли электроны с одного атома на другой вполне (ионная связь) или же только более или менее оттягиваются (полярная ковалентная связь). Поэтому в данном случае мы будем говорить об отдаче или присоединении электронов независимо от действительного типа валентной связи. В общем, окислительно-восстановительные процессы можно определить как реакции, связанные с переходом электронов от одних атомов к другим. То есть валентности [ковалентных молекулярных соединений] в этих реакциях выступают как степени окисления. Более строго, в узком смысле под степенью окисления имеется ввиду в том числе и валентности.
  3. ↑ ОВР методом полуреакций. Химия и химическая технология в жизни (10.07.2013).

Литература

  • Хомченко Г. П., Севастьянова К. И., Окислительно-восстановительные реакции, 2 изд., М., 1980;
  • Кери Ф., Сандберг Р., Углубленный курс органической химии, пер. с англ., кн. 2, М., 1981, с. 119-41, 308-43;
  • Марч Дж., Органическая химия, пер. с англ., т. 4, М., 1988, с. 259—341;
  • Турьяи Я. И., Окислительно-восстановительные реакции и потенциалы в аналитической химии, М., 1989;
  • Тодрес 3. В., Электронный перенос в органической и металлоорганической химии, в сб.: Итоги науки и техники. Сер. Органическая химия, т. 12, М., 1989. С. И. Дракин, З. В. Тодрес.

Окислительно-восстановительные реакции

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

Методические указания к выполнению лабораторной работы

по курсу «Химия» для студентов технических

специальностей и направлений,

по курсу «Общая и неорганическая химия» для студентов

направления ХМТН всех форм обучения

Балаково 2015

Цель работы: ознакомиться с особенностями окислительно-восстано-вительных процессов, установить влияние различных факторов на скорость протекания процессов.

Основные понятия

Окислительно-восстановительными реакциями называются реакции, в которых происходит изменение степени окисления атомов или ионов реагирующих веществ, т.е. происходит переход электронов от одних атомов к другим. В окислительно-восстановительных реакциях протекают одновременно два взаимно-связанных процесса: окисление и восстановление.

Вещества, отдающие электроны в процессе химической реакции, называются восстановителями, сам процесс отдачи электронов атомом, молекулой или ионом – окисление, при этом происходит увеличение степени окисления:

Ca0 – 2e → Ca+2, 2Br-1 – 2e → Br20

Вещества, присоединяющие электроны в процессе химической реакции, называются окислителями, сам процесс присоединения электронов атомом, молекулой или ионом – восстановление, при этом происходит понижение степени окисления:

S+4 + 2e → S+2, Cl20 + 2e → 2Cl-1

Уравнения, которые выражают процессы окисления и восстановления называются электронными уравнениями.

Степенью окисления называется условное число (со знаком + или -), показывающее распределение электронной плотности в данной молекуле, т.е. условный заряд атомов в молекуле, вызванный смещением электронной плотности в сторону атомов с большей электроотрицательностью. При этом количество оттянутых от атома электронных пар соответствует его положительной степени окисления, а количество притянутых к атому электронных пар — отрицательной степени окисления.

Алгебраическая сумма всех степеней окисления атомов, входящих в соединение, всегда равна нулю, т. e. молекулы в целом электронейтральны.

+1 -1 +1 -2 +1 +7 -2 +1 +6 -2 +1+5-2 +1+6 -2

H2O2, H2O, KMnO4, K2Cr 2O7, HNO3 , H2SO4

У молекул с неполярным типом химической связи электронная плотность распределена равномерно между атомами и их степень окисления равна нулю, например: О20, N20, С0, Na0.

Высшей степенью окисления элемента называется наибольшее значение степени окисления, которое может принимать данный элемент, низшей степенью окисления элемента – наименьшее значение. Остальные степени окисления называются промежуточными.

Окислительно-восстановительные свойства атомов зависят от ряда факторов и, прежде всего, от величины степени окисления: если элемент находится в высшей степени окисления, то он может быть только окислителем; если в низшей степени окисления, то – восстановителем; если в промежуточной степени окисления, то может проявлять окислительно- восстановительную двойственность.

S-2 S0 S+6

низшая ст. окисл. промеж. ст. окисл. высшая ст.окисл.

S-2 – 2e → S0 S0 + 2e → S-2 ок-ль S+6 + 2e → S+4

S-2 – 6e → S+4 S0 – 4e → S+4 восст. S+6 + 6e → S0

S-2 – 8e → S+6 S-0 – 6e → S+6 S+6 + 8e → S-2

восстановитель окисл.-восстан. окислитель

двойственность

Окислительно-восстановительные свойства атомов связаны с положением элемента в периодической таблице Д.И. Менделеева. Простые вещества – неметаллы обладают большими окислительными свойствами, а металлы – большими восстановительными свойствами. С уменьшением радиуса атома или иона увеличивается прочность связи электрона с ядром, что приводит к ослаблению восстановительной и усилению окислительной способности. В периодах с увеличением порядкового номера радиус атомов уменьшается, т.е. происходит ослабление восстановительных и усиление окислительных свойств. В главных подгруппах наблюдается усиление восстановительных свойств элементов в направлении сверху вниз. У элементов побочных групп незначительный рост радиуса при значительном увеличении заряда ядра приводит не к увеличению, а к уменьшению восстановительных свойств, т.е. к ослаблению активности металла.

К важнейшим окислителям относятся соединения, имеющие в своем составе металлы и неметаллы в высшей степени окисления (H2SO4, HNO3 , KCIO3, K2Cr2O7, KMnO4 и др.)

К важнейшим восстановителям относятся соединения, имеющие в своем составе неметаллы в низшей степени окисления (HI, KI, HCl, H2S и др.), металлы (Mg, Zn и др.), водород.

Вещества, содержащие атомы в промежуточных степенях окисления (SO2, H2SO3, HNO3, и др.), способны как повышать, так и понижать степень окисления, т.е. могут выполнять роль или окислителя или восстановителя в зависимости от свойства другого вещества, участвующего в реакции.

В пероксиде водорода Н2О2 степень окисления атомов кислорода равна –1. В соответствии со сказанным выше, это соединение может играть роль окислителя: Н2О2 + 2е + 2Н+ = 2Н2О

или роль восстановителя: Н2О2 –2е = О2 + 2Н+

Для составления уравнений реакций окисления-восстановления, при-меняют метод электронного баланса или ионно-электронный метод (метод полуреакций). Коэффициенты в уравнениях окислительно-восстановитель-ных реакций подбирают с таким расчетом, чтобы наступил баланс по электронам, т.е. число электронов, отданных восстановителем, должно равняться числу электронов, присоединенных окислителем.

При использовании метода электронного баланса осуществляется следующая последовательность операций.

1. Составляют схему окислительно-восстановительной реакции и находят атомы, изменяющие степени окисления в результате реакции.

+6 -2 +3 0

K2Cr2O7 +Na2S +H2SO4→ Cr2(SO4)2 +S + K2SO4 + Na2SO4 +H2O

2. Составляют электронные уравнения процессов окисления и восстановления, соблюдая законы сохранения числа атомов и зарядов в каждой полуреакции.

2Cr+6 + 6e →2Cr+3 1 восстановление

6

S-2 – 2e→S0 3 окисление

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которое присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов шесть.

  1. Ставят основные коэффициенты в уравнение перед окислителем и восстановителем и продуктами окисления и восстановления.

K2Cr2O7 +3Na2S +H2SO4 →Cr2(SO4)2 +3S + K2SO4 + Na2SO4 +H2O

  1. Уравнивают продукты, не изменившие степени окисления своих атомов в следующей последовательности:

а) катионы металлов;

б) анионы кислотных остатков;

в) катионы водорода;

г) кислород (по нему проверяется баланс)

K2Cr2O7 +3Na2S +7H2SO4= Cr2(SO4)2 +3S + K2SO4 + Na2SO4 +7H2O

Если молекула окислителя или восстановителя расходуется также на связывание получающихся веществ, например, для реакции:

0 +5 +2 +2

Cu + HNO3 + HNO3 → Cu(NO3)2 + NO + Н2О

Cu0 – 2e → Cu+2 3 восстановитель

6

N+5 + 3e → N+2 2 окислитель

прежде всего, рассчитывают коэффициенты для окислителя и восстановителя и продуктов окисления и восстановления.

0 +5 +2 +2

3Cu + 2HNO3 + HNO3 → 3Cu(NO3)2 + 2NO+ Н2О

восстано- окисли- продукт продукт

витель тель окисления восстановления

Затем определяют то дополнительное количество молей кислоты, которое было израсходовано на образование соли Cu(NO3)2:

3Cu + 2HNO3 + 6HNO3 → 3Cu(NO3)2 + 2NO+ 4Н

на образование

соли

Окончательная запись уравнения:

3Cu + 8HNO3 → 3Cu(NO3)2 + 2NO+ 4Н

Ионно-электронный метод используется для подбора коэффициентов в уравнениях окислительно-восстановительных реакций, протекающих в водном растворе при участии сильных электролитов. Он складывается из следующих этапов:

  1. Записывают уравнение реакции в молекулярном и ионном виде:

KMnO4 +KI +H2SO4 → MnSO4 +I2+K2SO4 + H2O

К+ + MnO4 + К+ + I + 2H+ + SO4-2 → Mn+2 + SO4-2 + I20 +2 К+ + SO4-2 + H2O

2. Записывают формулы ионов и молекул, которые принимают участие в реакции в качестве восстановителя или окислителя в ионном виде:

MnO4 + I+ H+ → Mn+2 +I20 +H20

3. Составляют электронные уравнения полуреакций, подбирают дополнительные множители:

MnO4+5e +8H+ → Mn+2 + 4 H20 2 восстановление

10

2I+ 2e → I20 5 окисление

Если исходный ион или молекула содержит больше атомов кислорода, чем продукт реакции, то избыток атомов кислорода в кислой среде связывается ионами H+ в молекулы воды; в нейтральной или щелочной среде – молекулами воды в гидроксильные группы ОН.

Если исходный ион или молекула содержит меньше атомов кислорода, чем продукт реакции, то недостаток атомов кислорода в кислой и нейтральной среде компенсируется за счет молекул воды; в щелочной среде – за счет гидроксильных групп ОН.

4. Составляют ионное уравнение реакции, суммируя уравнения полуреакций:

2MnO4 +10I+ 16H+ → 2Mn+2 +5I20 +8H20

5. Переносят коэффициенты в молекулярное уравнение, подбирают коэффициенты для веществ, отсутствующих в ионном уравнении и проводят проверку (обычно по числу атомов кислорода)

2KMnO4 +10KI +8H2SO4= 2MnSO4 + 5I2 + 6K2SO4 + 8Н2О

По механизму протекания процессов окислительно-восстановитель-ные реакции делятся на следующие виды: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосста-новления).

Межмолекулярные окислительно-восстановительные реакции

В этом случае окислитель и восстановитель входят в состав молекул различных веществ.

+6 +2 +3 +4

2CrO3 + 3MnO → Cr2O3 +3MnO2

2Cr+6 + 6e =2Cr+3 1 окислитель

6

Mn+2 – 2e = Mn+4 3 восстановитель

Внутримолекулярные окислительно-восстановительные реакции

Окислитель и восстановитель входят в состав молекулы одного и того же вещества, но это атомы различных химических элементов.

-3 +6 0 +3

(NH4)2Cr2O7 → N2+ Cr2O3 + 4H2O

2N-3– 6e = N2 1 восстановитель

6

2Cr+6 + 6e =2Cr+3 1 окислитель

Реакции диспропорционирования (самоокисления-самовосстановления)

Они сопровождаются одновременным увеличением и уменьшением окисления степени окисления атомов одного и того же элемента.

+4 +6 -2

2K2SO3 → 3 K2SO4+ K2S

S+4 – 2e = S+6 3 восстановитель

6

S+4 + 6e = S-2 1 окислитель

На окислительно-восстановительные реакции влияют следующие факторы:

Среда

В зависимости от того, в какой среде протекает реакция, образуются различные продукты окисления или восстановления:

a)нейтральная среда

+7 +3 +4 +5

2KMnO4 + 3NaNO2+ H2O → 2MnO2 + 3NaNO3 +2KOH

Mn+7 + 3e → Mn+2 2

6

N+3 –2e → N+5 3

Окислительно-восстановительные реакции — это… Что такое Окислительно-восстановительные реакции?

Окисли́тельно-восстанови́тельные реа́кции, ОВР, редокс (от англ. redoxreduction-oxidation — окисление-восстановление) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

Описание

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление

Окисление — процесс отдачи электронов, с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:

окислитель + eсопряжённый восстановитель.

Восстановление

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:

восстановитель — eсопряжённый окислитель.

Несвязанный, свободный электрон является сильнейшим восстановителем.

Окислительно-восстановительная пара

Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.

В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, т.е. восстановлением, другая — с отдачей электронов, т.е. окислением.

Виды окислительно-восстановительных реакций

Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н2S + Cl2 → S + 2HCl

Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H2O → 2H2 + O2

Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl2 + H2O → HClO + HCl

Репропорционирование (конпропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH4NO3 → N2O + 2H2O

Примеры

Окислительно-восстановительная реакция между водородом и фтором

Разделяется на две полуреакции:

1) Окисление:

2) Восстановление:

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов — окисление. При окислении степень окисления повышается:

Процесс присоединения электронов — восстановление. При восстановлении степень окисления понижается:

Атомы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а которые отдают электроны — восстановителями.

См. также

Ссылки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *