Оксид плюс кислота что получится. Основные оксиды
Сегодня мы начинаем
знакомство с важнейшими классами неорганических соединений. Неорганические
вещества по составу делятся, как вы уже знаете, на простые и сложные.
ОКСИД | КИСЛОТА | ОСНОВАНИЕ | СОЛЬ |
Э х О у | Н n A А – кислотный остаток | Ме(ОН) b ОН – гидроксильная группа | Me n A b |
Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.
ОКСИДЫ
Оксиды — это сложные вещества, состоящие из двух химических элементов, один из которых
кислород, с валентность равной 2. Лишь один химический элемент — фтор,
соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .
Формула | Название | Формула | Название |
оксид углерода (II) | Fe 2 O 3 | оксид железа (III) | |
оксид азота (II) | CrO 3 | оксид хрома (VI) | |
Al 2 O 3 | оксид алюминия | оксид цинка | |
N 2 O 5 | оксид азота (V) | Mn 2 O 7 | оксид марганца (VII) |
Классификация оксидов
Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.
Оксиды металлов Ме х О у | Оксиды неметаллов неМе х О у | |||
Основные | Кислотные | Амфотерные | Кислотные | Безразличные |
I, II Ме | V-VII Me | ZnO,BeO,Al 2 O 3 , Fe 2 O 3 , Cr 2 O 3 | > II неМе |
nauet.ru
Взаимодействие оксидов с солями
Взаимодействие оксидов с кислотами
С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:
FeO + H2SO4= FeSO4+ H2O
Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.
Когда все-таки кислотный оксид реагирует с кислотой?
Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:
1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:
SiO2+ 6HF = H2[SiF6] + 2H2O,
а в случае недостатка HF:
SiO2+ 4HF = SiF4+ 2H2O
2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:
S+4O2+ 2H2S-2= 3S0+ 2H2O
P2O3 | + | 2H2SO4 | + | H2O | =to=> | 2SO2 | + | 2H3PO4 | ||||||||
(конц.) | ||||||||||||||||
3P2O3 | + | 4HNO3 | + | 7H2O | =to=> | 4NO↑ | + | 6H3PO4 | ||||||||
(разб.) | ||||||||||||||||
P2O3 | + | 4HNO3 | + | H2O | =to=> | 2H3PO4 | + | 4NO2↑ |
(конц.) |
4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.
2HNO3 | + | SO2 | = | H2SO4 | + | 2NO2↑ | ||
(конц.) | ||||||||
2HNO3 | + | 3SO2 | + | 2H2O | =to=> | 3H2SO4 | + | 2NO↑ |
(разб.) |
Взаимодействие оксидов с гидроксидами металлов
С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.
SO3+ 2NaOH = Na2 SO4+ H2O
Кислотные оксиды, которым соответствуют слабые кислоты или кислоты средней силы, с щелочами могут образовывать как нормальные, так и кислые соли:
CO2+ 2NaOH = Na2CO3+ H2O
CO2+ NaOH = NaHCO3
P2O5+ 6KOH = 2K3PO4+ 3H2O
P2O5+ 4KOH = 2K2HPO4+ H2O
P2O5+ 2KOH + H2O = 2KH2PO4
«Привередливые» оксиды CO2 и SO2, активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осн
2Zn(OH)2+ CO2= (ZnOH)2CO3+ H2O (в растворе)
2Cu(OH)2+ CO2= (CuOH)2CO3+ H2O (в растворе)
Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH)3, Cr(OH)3, Fe(OH)3 и т.д., углекислый и сернистый газ не реагируют вовсе.
Следует отметить также особую инертность диоксида кремния (SiO2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:
2NaOH + SiO2=to=> Na2SiO3+ H2O
Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:
ZnO + 2NaOH + H2O = Na2[Zn(OH)4] — тетрагидроксоцинкат натрия
BeO + 2NaOH + H2O = Na2[Be(OH)4] — тетрагидроксобериллат натрия
Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] — тетрагидроксоалюминат натрия
Cr2O3 + 6NaOH + 3H2O = 2Na3[Cr(OH)
А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO2x—, где x = 2 в случае амфотерного оксида типа Me+2O и x = 1 для амфотерного оксида вида Me2+2O3:
ZnO + 2NaOH =to=> Na2ZnO2+ H2O
BeO + 2NaOH =to=> Na2BeO2+ H2O
Al2O3 + 2NaOH =to=> 2NaAlO2 + H2O
Cr2O3 + 2NaOH =to=> 2NaCrO2 + H2O
Fe2O3 + 2NaOH =to=> 2NaFeO2 + H2O
Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:
Na2[Zn(OH)4] =to=> Na2ZnO2+ 2H2O
Na[Al(OH)4] =to=> NaAlO2+ 2H2O
Взаимодействие оксидов с солями
Чаще всего соли с оксидами не реагируют.
Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.
Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO2) и углекислый (CO2) газы соответственно. Например:
Al2O3+ Na2CO3=to=> 2NaAlO2+ CO2
SiO2+ K2SO3=to=> K2SiO3 + SO2
Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:
Na2CO3+ CO2 + H2O = 2NaHCO3
CaCO3+ CO2+ H2O = Ca(HCO3)2
Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:
K2СO3+ SO2= K2SO3+ CO2
ОВР с участием оксидов
Читайте также:
Рекомендуемые страницы:
Поиск по сайту
poisk-ru.ru
Оксиды углерода — урок. Химия, 8–9 класс.
Оксид углерода(\(II\)), или угарный газ
Оксид углерода(\(II\)) CO образуется при неполном сгорании топлива. Это бесцветный газ без запаха. Он плохо растворяется в воде (\(2,3\) см³ в \(100\) см³ при \(20\) °С). Оксид углерода(\(II\)) очень ядовит. При вдыхании его молекулы связываются с гемоглобином крови и препятствуют переносу кислорода.
Оксид углерода(\(II\)) относится к несолеобразующим оксидам. При обычных условиях он не реагирует с водой, кислотами и основаниями.
Является сильным восстановителем. Восстановительные свойства проявляет в реакциях с оксидами металлов и кислородом. Оксид углерода(\(II\)) отнимает кислород от оксидов металлов. В результате реакции образуются металл и углекислый газ:
Cu+2O+C+2O=tCu0+C+4O2.
Оксид углерода(\(II\)) горит на воздухе голубым пламенем:
2C+2O+O02=t2C+4O−22.
В реакции выделяется большое количество тепла.
Оксид углерода(\(IV\)), или углекислый газ
Оксид углерода(\(IV\)) CO2 — бесцветный газ без запаха. Он примерно в \(1,5\) раза тяжелее воздуха. Малорастворим в воде (при комнатной температуре в \(1\) объёме воды растворяется \(0,88\) объёма CO2). При охлаждении и повышенном давлении углекислый газ превращается в твёрдое вещество — «сухой лёд», который способен возгоняться, т. е. из твёрдого состояния переходить сразу в газообразное.
Сухой лёд
Оксид углерода(\(IV\)) — типичный кислотный оксид. Он взаимодействует с водой, основными оксидами и щелочами. В реакции с водой образуется неустойчивая угольная кислота:
CO2+h3O⇄h3CO3.
В реакциях с основными оксидами и щелочами образуются карбонаты:
CO2+CaO=CaCO3,
CO2+2NaOH=Na2CO3+h3O.
При взаимодействии щёлочи с избытком углекислого газа образуются гидрокарбонаты:
CO2+NaOH=NaHCO3.
В углекислом газе степень окисления углерода максимальная, поэтому он может проявлять окислительные свойства. Так, магний горит в атмосфере углекислого газа:
C+4O2+2Mg0=t2Mg+2O+C0.
Получение:
- в лаборатории углекислый газ получают действием кислот на карбонаты:
CaCO3+2HCl=CaCl2+h3O+CO2↑.
- В промышленности для его получения используют обжиг известняка:
CaCO3=tCaO+CO2↑.
В природе углекислый газ образуется при дыхании и сгорании топлива, при гниении и тлении органических веществ, а поглощается растениями в процессе фотосинтеза.
Угарный газ используется:
- в качестве топлива;
- как восстановитель в производстве чугуна;
- для получения метанола.
Углекислый газ применяется:
- в производстве газированных напитков;
- для тушения пожаров;
- для охлаждения пищевых продуктов («сухой лёд»).
www.yaklass.ru