Кислота плюс оксид что получится – Урок №33. Оксиды: классификация, номенклатура, свойства оксидов, получение, применение

Оксид плюс кислота что получится. Основные оксиды

Сегодня мы начинаем знакомство с важнейшими классами неорганических соединений. Неорганические вещества по составу делятся, как вы уже знаете, на простые и сложные.


ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

Э х О у

Н n A

А – кислотный остаток

Ме(ОН) b

ОН – гидроксильная группа

Me n A b

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.

ОКСИДЫ

Оксиды — это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентность равной 2. Лишь один химический элемент — фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .

Называются они просто — «оксид + название элемента» (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

оксид углерода (II)

Fe 2 O 3

оксид железа (III)

оксид азота (II)

CrO 3

оксид хрома (VI)

Al 2 O 3

оксид алюминия

оксид цинка

N 2 O 5

оксид азота (V)

Mn 2 O 7

оксид марганца (VII)

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

Оксиды металлов Ме х О у

Оксиды неметаллов неМе х О у

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al 2 O 3 ,

Fe 2 O 3 , Cr 2 O 3

> II

неМе

nauet.ru

Взаимодействие оксидов с солями

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H2SO4= FeSO4+ H2O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO2+ 6HF = H2[SiF6] + 2H2O,

а в случае недостатка HF:

SiO2+ 4HF = SiF4+ 2H2O

2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:

S+4O2+ 2H2S-2= 3S0+ 2H2O

3) Оксид фосфора (III) P2O3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P2O3 + 2H2SO4 + H2O =to=> 2SO2 + 2H3PO4
    (конц.)            
3P2O3 + 4HNO3 + 7H2O =to=> 4NO↑ + 6H3PO4
    (разб.)            
                                 

 

P2O3 + 4HNO3 + H2O =to=> 2H3PO4 + 4NO2
    (конц.)            

4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.

2HNO3 + SO2 =
to
=>
H2SO4 + 2NO2
(конц.)            
2HNO3 + 3SO2 + 2H2O =to=> 3H2SO4 + 2NO↑
(разб.)                

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO3+ 2NaOH = Na2

SO4+ H2O

Кислотные оксиды, которым соответствуют слабые кислоты или кислоты средней силы, с щелочами могут образовывать как нормальные, так и кислые соли:

CO2+ 2NaOH = Na2CO3+ H2O

CO2+ NaOH = NaHCO3

P2O5+ 6KOH = 2K3PO4+ 3H2O

P2O5+ 4KOH = 2K2HPO4+ H2O

P2O5+ 2KOH + H2O = 2KH2PO4

«Привередливые» оксиды CO2 и SO2, активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осн

овные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH)2+ CO2= (ZnOH)2CO3+ H2O (в растворе)

2Cu(OH)2+ CO2= (CuOH)2CO3+ H2O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH)3, Cr(OH)3, Fe(OH)3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO2=to=> Na2SiO3+ H2O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] — тетрагидроксоцинкат натрия

BeO + 2NaOH + H2O = Na2[Be(OH)4] — тетрагидроксобериллат натрия

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] — тетрагидроксоалюминат натрия

Cr2O3 + 6NaOH + 3H2O = 2Na3[Cr(OH)

6] — гексагидроксохромат (III) натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO2x—, где x = 2 в случае амфотерного оксида типа Me+2O и x = 1 для амфотерного оксида вида Me2+2O3:

ZnO + 2NaOH =to=> Na2ZnO2+ H2O

BeO + 2NaOH =to=> Na2BeO2+ H2O

Al2O3 + 2NaOH =to=> 2NaAlO2 + H2O

Cr2O3 + 2NaOH =to=> 2NaCrO2 + H2O

Fe2O3 + 2NaOH =to=> 2NaFeO2 + H2O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na2[Zn(OH)4] =to=> Na2ZnO2+ 2H2O

Na[Al(OH)4] =to=> NaAlO2+ 2H2O

Взаимодействие оксидов с солями

Чаще всего соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO2) и углекислый (CO2) газы соответственно. Например:

Al2O3+ Na2CO3=to=> 2NaAlO2+ CO2

SiO2+ K2SO3=to=> K2SiO3 + SO2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na2CO3+ CO2 + H2O = 2NaHCO3

CaCO3+ CO2+ H2O = Ca(HCO3)2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K2СO3+ SO2= K2SO3+ CO2

ОВР с участием оксидов


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

poisk-ru.ru

Оксиды углерода — урок. Химия, 8–9 класс.

Оксид углерода(\(II\)), или угарный газ

Оксид углерода(\(II\)) CO образуется при неполном сгорании топлива. Это бесцветный газ без запаха. Он плохо растворяется в воде (\(2,3\) см³ в \(100\) см³ при \(20\) °С). Оксид углерода(\(II\)) очень ядовит. При вдыхании его молекулы связываются с гемоглобином крови и препятствуют переносу кислорода.

  

Оксид углерода(\(II\)) относится к несолеобразующим оксидам. При обычных условиях он не реагирует с водой, кислотами и основаниями.

 

Является сильным восстановителем. Восстановительные свойства проявляет в реакциях с оксидами металлов и кислородом. Оксид углерода(\(II\)) отнимает кислород от оксидов металлов. В результате реакции образуются металл и углекислый газ:

 

Cu+2O+C+2O=tCu0+C+4O2.

 

Оксид углерода(\(II\)) горит на воздухе голубым пламенем:

 

2C+2O+O02=t2C+4O−22.

 

В реакции выделяется большое количество тепла.

Оксид углерода(\(IV\)), или углекислый газ

Оксид углерода(\(IV\)) CO2 — бесцветный газ без запаха. Он примерно в \(1,5\) раза тяжелее воздуха. Малорастворим в воде (при комнатной температуре в \(1\) объёме воды растворяется \(0,88\) объёма CO2). При охлаждении и повышенном давлении углекислый газ превращается в твёрдое вещество — «сухой лёд», который способен возгоняться, т. е. из твёрдого состояния переходить сразу в газообразное.

 

1-6-1250x904.jpg

Сухой лёд

 

Оксид углерода(\(IV\)) — типичный кислотный оксид. Он взаимодействует с водой, основными оксидами и щелочами. В реакции с водой образуется неустойчивая угольная кислота:

 

CO2+h3O⇄h3CO3.

 

В реакциях с основными оксидами и щелочами образуются карбонаты:

 

CO2+CaO=CaCO3,

 

CO2+2NaOH=Na2CO3+h3O.

 

При взаимодействии щёлочи с избытком углекислого газа образуются гидрокарбонаты:

 

CO2+NaOH=NaHCO3.

 

В углекислом газе степень окисления углерода максимальная, поэтому он может проявлять окислительные свойства. Так, магний горит в атмосфере углекислого газа:

 

C+4O2+2Mg0=t2Mg+2O+C0.

 

Получение:

  • в лаборатории углекислый газ получают действием кислот на карбонаты:

CaCO3+2HCl=CaCl2+h3O+CO2↑.

  • В промышленности для его получения используют обжиг известняка:

CaCO3=tCaO+CO2↑.

 

В природе углекислый газ образуется при дыхании и сгорании топлива, при гниении и тлении органических веществ, а поглощается растениями в процессе фотосинтеза.

Угарный газ используется:

  • в качестве топлива;
  • как восстановитель в производстве чугуна;
  • для получения метанола.

Углекислый газ применяется:

  • в производстве газированных напитков;
  • для тушения пожаров;
  • для охлаждения пищевых продуктов («сухой лёд»).

www.yaklass.ru

Добавить комментарий

Ваш адрес email не будет опубликован.