Фотосинтез — Википедия


Фотоси́нтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, складывание, связывание, синтез) — сложный химический процесс преобразования энергии света (в некоторых случаях инфракрасного излучения) в энергию химических связей органических веществ при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл у бактерий и бактериородопсин у архей). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндергонических реакциях, в том числе превращения углекислого газа в органические вещества.
У живых организмов обнаружено два типа пигментов, способных выполнять функцию фотосинтетических антенн. Эти пигменты поглощают кванты видимого света и обеспечивают дальнейшее запасание энергии излучения в виде энергии электрохимического градиента H+ на биологических мембранах. У подавляющего большинства организмов роль антенн играют хлорофиллы; менее распространён случай, при котором в качестве антенны служит производное витамина А ретиналь. В соответствии с этим выделяют хлорофилльный и бесхлорофилльный фотосинтез.
Бесхлорофилльный фотосинтез[править | править код]
Система бесхлорофилльного фотосинтеза отличается значительной простотой организации, в связи с чем предполагается эволюционно первичным механизмом запасания энергии электромагнитного излучения. Эффективность бесхлорофилльного фотосинтеза как механизма преобразования энергии сравнительно низка (на один поглощённый квант переносится лишь один H+).
Открытие у галофильных архей[править | править код]
Dieter Oesterhelt и Walther Stoeckenius идентифицировали в «пурпурных мембранах» представителя галофильных архей Halobacterium salinarium (прежнее название Н. halobium) белок, который позже был назван бактериородопсином. Впоследствии были накоплены факты, указывающие на то, что бактериородопсин является светозависимым генератором протонного градиента. В частности, было продемонстрировано фотофосфорилирование на искусственных везикулах, содержащих бактериородопсин и митохондриальную АТФ-синтазу, фотофосфорилирование в интактных клетках H. salinarium, светоиндуцируемое падение pH среды и подавление дыхания, причём все эти эффекты коррелировали со спектром поглощения бактериородопсина. Таким образом, были получены неопровержимые доказательства существования бесхлорофилльного фотосинтеза.
Механизм[править | править код]
Механизм бесхлорофилльного фотосинтеза галобактерийФотосинтетический аппарат экстремальных галобактерий является наиболее примитивным из ныне известных; в нём отсутствует электронтранспортная цепь. Цитоплазматическая мембрана
- Хромофор бактериородопсина ретиналь поглощает кванты света, что приводит к конформационным изменениям в структуре бактериородопсина и транспорту протона из цитоплазмы в периплазматическое пространство. Таким образом, в результате работы бактериородопсина энергия солнечного излучения трансформируется в энергию электрохимического градиента протонов на мембране.
- При работе АТФ-синтазы энергия трансмембранного градиента трансформируется в энергию химических связей АТФ. Таким образом осуществляется хемиосмотическое сопряжение.
При бесхлорофилльном типе фотосинтеза (как и при реализации циклических потоков в электрон-транспортных цепях) не происходит образования восстановительных эквивалентов (восстановленного ферредоксина или НАД(Ф)Н), необходимых для ассимиляции углекислого газа. Поэтому при бесхлорофилльном фотосинтезе не происходит ассимиляции углекислого газа, а осуществляется исключительно запасание солнечной энергии в форме АТФ (фотофосфорилирование).
Значение[править | править код]
Основной путь получения энергии для галобактерий — аэробное окисление органических соединений (при культивировании используют углеводы и аминокислоты). При дефиците кислорода помимо бесхлорофилльного фотосинтеза источниками энергии для галобактерий может служить анаэробное нитратное дыхание или сбраживание аргинина и цитруллина. Однако в эксперименте было показано, что бесхлорофилльный фотосинтез может служить и единственным источником энергии в анаэробных условиях при подавлении анаэробного дыхания и брожения при обязательном условии, что в среду вносят ретиналь, для синтеза которого необходим кислород.
Хлорофилльный фотосинтез[править | править код]
Хлорофилльный фотосинтез отличается от бактериородопсинового значительно большей эффективностью запасания энергии. На каждый поглощённый квант излучения против градиента переносится не менее одного H
Аноксигенный[править | править код]
Аноксигенный (или бескислородный) фотосинтез протекает без выделения кислорода. К аноксигенному фотосинтезу способны пурпурные и зелёные бактерии, а также гелиобактерии.
При аноксигенном фотосинтезе возможно осуществление:
- Светозависимого циклического транспорта электронов, не сопровождающегося образованием восстановительных эквивалентов и приводящего исключительно к запасанию энергии света в форме АТФ. При циклическом светозависимом электронном транспорте необходимости в экзогенных донорах электронов не возникает. Потребность в восстановительных эквивалентах обеспечивается нефотохимическим путём, как правило, за счёт экзогенных органических соединений.
- Светозависимого нециклического транспорта электронов, сопровождающегося и образованием восстановительных эквивалентов, и синтезом АДФ. При этом возникает потребность в экзогенных донорах электронов, которые необходимы для заполнения электронной вакансии в реакционном центре. В качестве экзогенных доноров электронов могут использоваться как органические, так и неорганические восстановители. Среди неорганических соединений наиболее часто используются различные восстановленные формы серы (сероводород, молекулярная сера, сульфиты, тиосульфаты, тетратионаты, тиогликоляты), также возможно использование молекулярного водорода.
Оксигенный[править | править код]
Оксигенный (или кислородный) фотосинтез сопровождается выделением кислорода в качестве побочного продукта. При оксигенном фотосинтезе осуществляется нециклический электронный транспорт, хотя при определённых физиологических условиях осуществляется исключительно циклический электронный транспорт. В качестве донора электронов при нециклическом потоке используется крайне слабый донор электронов — вода.
Оксигенный фотосинтез распространён гораздо шире. Характерен для высших растений, водорослей, многих протистов и цианобактерий.
Фотосинтез — процесс с крайне сложной пространственно-временной организацией.
Разброс характерных времен различных этапов фотосинтеза составляет 19 порядков: скорость процессов поглощения квантов света и миграции энергии измеряется в фемтосекундном интервале (10−15 с), скорость электронного транспорта имеет характерные времена 10−10—10−2 с, а процессы, связанные с ростом растений, измеряются днями (105—107 с).
Также большой разброс размеров характерен для структур, обеспечивающих протекание фотосинтеза: от молекулярного уровня (10−27 м3) до уровня фитоценозов (105 м3).
В фотосинтезе можно выделить отдельные этапы, различающиеся по природе и характерным скоростям процессов:
- фотофизический;
- фотохимический;
- химический:
- реакции транспорта электронов;
- «темновые» реакции или циклы углерода при фотосинтезе.
На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы (пластохинон).[1].
На втором этапе происходит разделение зарядов в реакционном центре. Молекула воды теряет электрон под воздействием катиона-радикала, образовавшегося из молекулы хлорофилла после потери ей своего электрона и передачи его пластохинону на первом этапе: h3O − e−⟶H++O˙H{\displaystyle {\ce {h3O\ -\ e^{-}->H^{+}{}+{\dot {O}}H}}}. Затем образовавшиеся гидроксильные радикалы под воздействием положительно заряженных ионов марганца преобразуются в кислород и воду: 4O˙H⟶O2+2h3O{\displaystyle {\ce {4{\dot {O}}H->O2{}+2h3O}}}[1]. Одновременно с этим процессом происходит перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН[1]. Первые два этапа вместе называют светозависимой стадией фотосинтеза.
Третий этап заключается в поглощении второй молекулой хлорофилла кванта света и передаче ею электрона ферредоксину. Затем хлорофилл получает электрон после цепи его перемещений на первом и втором этапах. Ферредоксин восстанавливает универсальный восстановитель НАДФ.[1].
Четвёртый этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюконеогенез, образование сахаров и крахмала из углекислого газа воздуха[1].
Лист[править | править код]
Фотосинтез растений осуществляется в хлоропластах — полуавтономных двухмембранных органеллах, относящихся к классу пластид. Хлоропласты могут содержаться в клетках стеблей, плодов, чашелистиков, однако основным органом фотосинтеза является лист. Он анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты. Плоская форма листа, обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания тургора и протекания фотосинтеза, доставляется к листьям из корневой системы по ксилеме — одной из проводящих тканей растения. Потеря воды в результате испарения через устьица и в меньшей степени через кутикулу (транспирация) служит движущей силой транспорта по сосудам. Однако избыточная транспирация является нежелательной, и у растений в ходе эволюции сформировались различные приспособления, направленные на снижение потерь воды. Отток ассимилятов, необходимый для функционирования цикла Кальвина, осуществляется по флоэме. При интенсивном фотосинтезе углеводы могут полимеризоваться, и при этом в хлоропластах формируются крахмальные зёрна. Газообмен (поступление углекислого газа и выделение кислорода) осуществляется путём диффузии через устьица (некоторая часть газов движется через кутикулу).
Поскольку дефицит углекислого газа значительно увеличивает потери ассимилятов при фотодыхании, необходимо поддерживать высокую концентрацию углекислоты в межклеточном пространстве, что возможно при открытых устьицах. Однако поддержание устьиц в открытом состоянии при высокой температуре приводит к усилению испарения воды, что приводит к водному дефициту и также снижает продуктивность фотосинтеза. Этот конфликт решается в соответствии с принципом адаптивного компромисса. Кроме того, первичное поглощения углекислого газа ночью, при низкой температуре, у растений с CAM-фотосинтезом позволяет избежать высоких транспирационных потерь воды.
У некоторых суккулентов с вырожденными листьями (например, у большинства видов кактусов) основная фотосинтетическая активность связана со стеблем.
Фотосинтез на тканевом уровне[править | править код]
На тканевом уровне фотосинтез у высших растений обеспечивается специализированной тканью — хлоренхимой. Она располагается близ поверхности тела растения, где получает достаточно световой энергии. Обычно хлоренхима находится непосредственно под эпидермой. У растений, растущих в условиях повышенной инсоляции, между эпидермой и хлоренхимой может располагаться один или два слоя прозрачных клеток (гиподерма), обеспечивающих рассеивание света. У некоторых тенелюбивых растений хлоропластами богата и эпидерма (например, кислица). Часто хлоренхима мезофилла листа дифференцирована на палисадную (столбчатую) и губчатую, но может состоять и из однородных клеток. В случае дифференцировки наиболее богата хлоропластами палисадная хлоренхима.

Хлоропласты[править | править код]
Хлоропласты отделены от цитоплазмы двойной мембраной, обладающей избирательной проницаемостью. Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые, соединяясь друг с другом, образуют тилакоиды, которые, в свою очередь, группируются в стопки, называемые гранами. На мембранах тилакоидов располагаются молекулы хлорофилла и других вспомогательных пигментов (каротиноиды). Поэтому их называют фотосинтезирующими мембранами. Внутритилакоидное пространство отделено и не сообщается с остальной стромой; предполагается также, что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO2 происходит в строме.
В хлоропластах имеются свои ДНК, РНК, рибосомы (типа 70s), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза.
Фотосинтетические мембраны прокариот[править | править код]
Цианобактерии, таким образом, как бы сами являются хлоропластом, и в их клетке фотосинтетический аппарат не вынесен в особую органеллу. Их тилакоиды не образуют стопок, а формируют различные складчатые структуры (у единственной цианобактерии Gloeobacter violaceus тилакоиды отсутствуют вовсе, а весь фотосинтетический аппарат находится в цитоплазматической мембране, не образующей впячиваний). У них и растений также есть различия в светособирающем комплексе (см. ниже) и пигментном составе.
В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФ, использующийся как восстановитель. В качестве побочного продукта выделяется кислород.
Фотохимическая суть процесса[править | править код]
Хлорофилл имеет два уровня возбуждения (с этим связано наличие двух максимумов на спектре его поглощения): первый связан с переходом на более высокий энергетический уровень электрона системы сопряжённых двойных связей, второй — с возбуждением неспаренных электронов азота и магния порфиринового ядра. При неизменном спине электрона формируются синглетные первое и второе возбуждённые состояния, при изменённом — триплетное первое и второе.
Второе возбуждённое состояние наиболее высокоэнергетично, нестабильно, и хлорофилл за 10−12 с переходит с него на первое с потерей 100 кДж/моль энергии только в виде теплоты. Из первого синглетного и триплетного состояний молекула может переходить в основное с выделением энергии в виде света (флуоресценция и фосфоресценция соответственно) или тепла с переносом энергии на другую молекулу, либо, поскольку электрон на высоком энергетическом уровне слабо связан с ядром, с переносом электрона на другое соединение.
Первая возможность реализуется в светособирающих комплексах, вторая — в реакционных центрах, где под воздействием кванта света переходящий в возбуждённое состояние хлорофилл становится донором электрона (восстановителем) и передаёт его первичным акцепторам. Чтобы предотвратить возвращение электрона на положительно заряженный хлорофилл, первичный акцептор передаёт его вторичному. Кроме того, время жизни полученных соединений выше, чем у возбуждённой молекулы хлорофилла. Происходит стабилизация энергии и разделение зарядов. Для дальнейшей стабилизации вторичный донор электронов восстанавливает положительно заряженный хлорофилл, первичным же донором в случае оксигенного фотосинтеза является вода.
Проблемой, с которой сталкиваются при этом проводящие оксигенный фотосинтез организмы, является различие окислительно-восстановительных потенциалов воды (для полуреакции H2O → O2 (E0 = +0,82 В) и НАДФ+ (E0 = −0,32 В). Хлорофилл при этом должен иметь в основном состоянии потенциал больше +0,83 В, чтобы окислять воду, но при этом иметь в возбуждённом состоянии потенциал меньше −0,32 В, чтобы восстанавливать НАДФ+. Одна молекула хлорофилла не может отвечать обоим требованиям. Поэтому сформировались две фотосистемы, и для полного проведения процесса необходимы два кванта света и два хлорофилла разных типов.
Светособирающие комплексы[править | править код]
Хлорофилл выполняет две функции: поглощения и передачи энергии. Более 87 % всего хлорофилла хлоропластов входит в состав светособирающих комплексов (ССК), выполняющих роль антенны, передающей энергию к реакционному центру фотосистем I или II. Помимо хлорофилла, в ССК имеются каротиноиды, а у некоторых водорослей и цианобактерий — фикобилины, роль которых заключается в поглощении света тех длин волн, которые хлорофилл поглощает сравнительно слабо.
Передача энергии идёт резонансным путём (механизм Фёрстера) и занимает для одной пары молекул 10
ССК растений расположен в мембранах тилакоидов, у цианобактерий основная его часть вынесена за пределы мембран в прикреплённые к ним фикобилисомы — палочковидные полипептидно-пигментные комплексы, в которых находятся различные фикобилины: на периферии фикоэритрины (с максимумом поглощения при 495—565 нм), за ними фикоцианины (550—615 нм) и аллофикоцианины (610—670 нм), последовательно передающие энергию на хлорофилл a (680—700 нм) реакционного центра.
Основные компоненты цепи переноса электронов[править | править код]
Фотосистема II[править | править код]
Фотосистема — совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла-a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется, и возбуждённая молекула П680 становится сильным восстановителем (химический потенциал E0 = −0,7 В).
П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к комплексу b
Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства, и полученные 4 протона выбрасываются в него.
Таким образом, суммарный результат работы ФС II — это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.
Цитохром-b6/f-комплекс[править | править код]
b6f-комплекс — это насос, перекачивающий протоны из стромы во внутритилакоидное пространство и создающий градиент их концентрации за счёт выделяющейся в окислительно-восстановительных реакциях электронтранспортной цепи энергии. 2 пластохинона дают перекачку 4 протонов. В дальнейшем трансмембранный протонный градиент (pH стромы около 8, внутритилакоидного пространства — 5) используется для синтеза АТФ трансмембранным ферментом АТФ-синтазой.
Фотосистема I[править | править код]
Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.
В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор — хлорофилл a, тот — вторичный (витамин K1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.
Белок пластоцианин, восстановленный в b6f-комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.
Циклический и псевдоциклический транспорт электрона[править | править код]
Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.
Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b6f-комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.
При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.
В темновой стадии с участием АТФ и НАДФ происходит восстановление CO2 до глюкозы (C6H12O6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.
С3-фотосинтез, цикл Кальвина[править | править код]
Цикл Кальвина или восстановительный пентозофосфатный цикл состоит из трёх стадий:
- карбоксилирования;
- восстановления;
- регенерация акцептора CO2.
На первой стадии к рибулозо-1,5-бисфосфату присоединяется CO2 под действием фермента рибулозобисфосфат-карбоксилаза/оксигеназа. Этот белок составляет основную фракцию белков хлоропласта и предположительно наиболее распространённый фермент в природе. В результате образуется промежуточное неустойчивое соединение, распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК).
Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназы с образованием 1,3-дифосфоглицериновой кислоты (ДФГК), затем при воздействии триозофосфатдегидрогеназы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фосфат — фосфорилированный углевод (ФГА).
В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.
Наконец, две ФГА необходимы для синтеза глюкозы. Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO2, 12 НАДФН и 18 АТФ.
С4-фотосинтез[править | править код]
Отличие этого механизма фотосинтеза от обычного заключается в том, что фиксация углекислого газа и его использование разделены в пространстве между различными клетками растения[2].
При низкой концентрации растворённого в строме CO2рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания.
Для увеличения концентрации CO2 растения типа С4 изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата, возвращаемого в клетки мезофилла.
С4-фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO2 в лист, а также при рудеральной жизненной стратегии.
Фотосинтез по пути С4 проводят около 7600 видов растений. Все они относятся к цветковым: многие Злаковые (61 % видов, в том числе культурные — кукуруза, сахарный тростник и сорго и др.[3][4]), Гвоздичноцветные (наибольшая доля в семействах Маревые — 40 % видов, Амарантовые — 25 %), некоторые Осоковые, Астровые, Капустные, Молочайные[5][6].
CAM-фотосинтез[править | править код]
При фотосинтезе типа CAM (англ. Crassulaceae acid metabolism — кислотный метаболизм толстянковых) происходит разделение ассимиляции CO2 и цикла Кальвина не в пространстве, как у С4, а во времени[2]. Ночью в вакуолях клеток по аналогичному вышеописанному механизму при открытых устьицах накапливается малат, днём при закрытых устьицах идёт цикл Кальвина. Этот механизм позволяет максимально экономить воду, однако уступает в эффективности и С4, и С3. Он оправдан при стресстолерантной жизненной стратегии.

Фотосинтез составляет энергетическую основу всего живого на планете, кроме хемосинтезирующих бактерий.
Фотосинтез совершается в зеленых частях наземных растений и в водорослях. За один год зеленые водоросли выделяют в атмосферу Земли 3,6∗1011{\displaystyle 3,6*10^{11}} тонн кислорода, что составляет 90%{\displaystyle 90\%} всего кислорода, вырабатываемого в процессе фотосинтеза на Земле. Фотосинтез — самый крупный биохимический процесс на Земле.[7]
Возникновение на Земле более 3 млрд лет назад механизма расщепления молекулы воды квантами солнечного света с образованием O2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником энергии биосферы.
Фототрофы обеспечивают конверсию и запасание энергии термоядерных реакций, протекающих на Солнце, в энергию органических молекул. Солнечная энергия при участии фототрофов конвертируется в энергию химических связей органических веществ. Существование гетеротрофных организмов возможно исключительно за счёт энергии, запасённой фототрофами в органических соединениях. При использовании энергии химических связей органических веществ гетеротрофы высвобождают её в процессах дыхания и брожения.
Фотосинтез является основой продуктивности как сельскохозяйственных растений, так и животной пищи.
Энергия, получаемая человечеством при сжигании биотоплива (дрова, пеллеты, биогаз, биодизель, этанол, метанол) и ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.
Фотосинтез служит главным входом неорганического углерода в биогеохимический цикл.
Большая часть свободного кислорода атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни существовать на суше.
Первые опыты по изучению фотосинтеза были проведены Джозефом Пристли в 1770—1780-х годах, когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал поддерживать горение, а помещённые в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил, что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз.
Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В 1842 году Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В 1877 году В. Пфеффер назвал этот процесс фотосинтезом.
Хлорофиллы были впервые выделены в 1818 году П. Ж. Пеллетье и Ж. Каванту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии. Спектры поглощения хлорофилла были изучены К. А. Тимирязевым, он же, развивая положения Майера, показал, что именно поглощённые лучи позволяют повысить энергию системы, создав вместо слабых связей С−О и О−Н высокоэнергетические С−С (до этого считалось, что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.
Большой вклад в изучение фотосинтеза внёс русский учёный Андрей Сергеевич Фаминцын.[8] В 1868 году он впервые экспериментально доказал и научно обосновал применение искусственного освещения для выращивания растений, использовав керосиновые лампы вместо солнечного света.[9] Фамицын первым системно изучил процессы образования крахмала в тканях растений под воздействием света, а также влияния света на образование хлорофилла, его расположение в листьях растений различных таксонов.[10][11]
Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль, он же в 1931 году доказал, что пурпурные бактерии и зелёные серобактерии осуществляют аноксигенный фотосинтез[12][13]. Окислительно-восстановительный характер фотосинтеза означал, что кислород в оксигенном фотосинтезе образуется полностью из воды, что экспериментально подтвердил в 1941 году А. П. Виноградов в опытах с изотопной меткой. В 1937 году Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO2 можно разобщить. В 1954—1958 годах Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO2 была раскрыта Мелвином Кальвином с использованием изотопов углерода в конце 1940-х годов, за эту работу в 1961 году ему была присуждена Нобелевская премия.
В 1955 году был выделен и очищен фермент рибулозобисфосфат-карбоксилаза/оксигеназа. С4-фотосинтез был описан Ю. С. Карпиловым в 1960 году и М. Д. Хэтчем и Ч. Р. Слэком в 1966 году.
Существующие данные указывают на то, что наиболее древними организмами, запасающими энергию света в форме химической энергии, были археи, осуществляющие бесхлорофилльный фотосинтез, при котором не происходит образования восстановителя (
Что такое фотосинтез? Описание, особенности, фазы и значение фотосинтеза
Со школьной скамьи понятие фотосинтез ассоциируется с зеленым цветом. Это цвет пигмента под названием хлорофилл. Без его скопления в листьях процесс фотосинтеза не возможен. Как же выживает белая секвойя?
Это растение-альбинос. Прочие травы, кусты и деревья без хлорофилла погибают. Секвойя же – паразит, подпитывающийся от корней других растений. Это избавляет дерево от необходимости преобразовывать энергию солнца в пищу для себя. Именно в этом заключается суть фотосинтеза. Ему и посвятим статью.
Процесс фотосинтеза
Фотосинтез растений зиждется на 0,4% световых лучей. Половина из них не доходит до поверхности планеты. Из оставшихся для фотосинтеза подходит только 1/8. Работают ограничения по длине световой волны. Из подходящих лучей растения забирают 0,4%.
Если переводить в энергию, это 1% от ее общего количества. Привычное течение фотосинтеза проходит под действием света солнца. Однако, искусственные лучи растения тоже научились использовать.
Световой фотосинтез сводится к получению глюкозы. Она идет на питание растений. Побочный продукт реакции — кислород. Он выбрасывается представителями флоры во внешнюю среду, пополняя атмосферу Земли.
Получаются кислород и глюкоза в ходе реакции меж углекислым газом и водой. Хлорофилл в этом взаимодействии – своеобразный катализатор. Без него реакция не возможна.
Интересно, что хлорофилл встречается только в растениях. Функции, возложенные на пигмент, напоминают работу крови в организме животных. Хлорофилл подобен молекуле гемоглобина, но с магнием в центре.
В клетках же человеческой крови задействовано железо. Тем не менее, на организмы людей хлорофилл оказывает близкое к гемоглобину действие, а именно, повышает уровень кислорода крови и ускоряет обмен азота.
Реакция фотосинтеза может протекать быстро, или медленно. Все зависит от условий среды. Важны: интенсивность светового потока, температура воздуха, его насыщение углекислым газом и кислородом. Идеалом считается достижение точки компенсации. Так называют совпадение скоростей дыхания растения и выделения им кислорода.
Если свет в клетки хлоропласты, в коих скапливается хлорофилл, поступает сверху, то воду для реакции растения выкачивают из почвы. Вот зачем нужен полив растений. Недостаток влаги тормозит реакции фотосинтеза. В итоге, растение желтеет, то есть теряет хлорофилл.
Полей представителя флоры в этот момент, листья не зазеленеют. Выкачивать воду из почвы тоже помогает хлорофилл. Получается замкнутый круг. Нет полива – нет хлорофилла, нет хлорофилла – нет доставки воды в растение.
Теперь, уделим внимание глюкозе. Раз зелень вырабатывает ее из воды и углекислого газа, значит, из неорганического получается органика. Присоединяя к сахару то фосфор, то серу, то азот, растения производят витамины, жиры, белки, крахмалы. Дополнения к глюкозе травы да деревья берут из почвы. Элементы поступают растворенными в воде.
Фазы фотосинтеза
Фазы фотосинтеза – это деление процесса на фотолиз и восстановительную реакцию. Первый протекает на свету и сводится к выделению водорода. Кислород служит побочным продуктом реакции, однако, тоже нужным растению. Оно использует газ в процессе дыхания.
Световая фаза фотосинтеза возбуждает хлорофилл. От переизбытка энергии, его электрон отрывается и начинает перемещение по цепи органических соединений. В ходе путешествия частица способствует синтезу аденозиндифосфорной кислоты из аденозинтрифосфорной.
На это уходит данная электрону энергия. АДФ нужна для образования растением нуклеотидов. Они входят в нуклеиновые кислоты, без которых не возможен метаболизм представителей флоры.
Растратив энергию, электрон возвращается к молекуле хлорофилла. Эта клетка фотосинтеза вновь захватывает квант света. Уставший от работы электрон подкрепляется ею, опять отправляясь на дело. Такова световая фаза процесса. Однако, он не останавливается и в темноте.
Темновой фотосинтез направлен на захват из внешней среды уже углекислого газа. Вместе с водородом он участвует в образовании 6-углеродного сахара. Это и есть глюкоза. Этот результат фотосинтеза сопровождается, так же, образованием веществ, помогающих захватывать новые порции углекислого газа.
Захватываются они опять же, хлоропластами. Те тратят энергию, накопленную за день. Ресурс идет на связывание углекислого газа с рибулозобисфосфатом. Это 5-углеродный сахар. Реакция дает две молекулы фосфоглицериновой кислоты.
В каждой из них по 3 атома углерода. Это один из этапов цикла Кальвина. Он протекает в строме, то есть подстилке хлоропластов. Состоит цикл из трех реакций. Сначала, углекислый газ присоединяется к рубулозо-1,5-дифосфату.
Для реакции обязательно присутствие рубулозобифосфата-карбоксилазы. Это фермент. В его присутствии рождается гексоза. Из нее и получаются молекулы фосфоглицериновой кислоты.
После получения фосфоглицеринового соединения растение восстанавливает его до глицеральдегида-3-фосфата. Его молекулы идут на два «направления». В первом образуется глюкоза, а во втором рубулозо-1,5-дифосфат. Он, как помним, подхватывает газ углекислый.
Фотосинтез на обеих стадиях протекает в растениях активно, поскольку те приспособились захватывать днем максимальное количество энергии солнца. Вспомним школьные классы. Фотосинтезу посвящены несколько уроков ботаники.
Учителя рассказывают, почему у большинства растений плоские и широкие листья. Так представители флоры увеличивают площадь для улавливания квантов света. Не зря и люди сделали солнечные батареи широкими, но плоскими.
Фотосинтез углекислого газа
Углекислый газ проникает в растения через устица. Это подобие пор в листьях, стволах. Процесс всасывания газа и выпуска после через те же устица кислорода напоминает дыхание у людей.
Разница лишь в чередовании стадий. Люди вдыхают кислород, а выдыхают углекислый газ. У растений все наоборот. Так на планете удерживается равновесие двух газов в атмосфере.
Продукты фотосинтеза несут в себе энергию солнца. Животные перерабатывать ее не умеют. Съесть растения – единственная возможность «зарядиться» от дневного светила.
Перерабатывая углекислое соединение, растения способны давать людям и животным в два раза больше. Представители флоры работают с 0,03% газа в атмосфере. Как видно, углекислый газ в ней не из преобладающих.
В искусственных условиях ученые доводили процент углекислого вещества в воздухе до 0,05%. Огурцы, при этом, давали в 2 раза больше плодов. Так же реагировали на изменения помидоры, картофель, капуста.
Уровень углекислого газа ученые повышали, сжигая в теплицах опилки и прочие отходы деревообрабатывающей промышленности. Интересно, что при концентрации газа в 0,1% растения уже не были рады.
Многие виды начинали болеть. У помидоров, к примеру, в атмосфере с переизбытком углекислого соединения начинали желтеть и скручиваться листья. Это еще одно подтверждение опасности перенасыщения атмосферы CO2. Продолжая вырубку лесов и развитие промышленности, человек рискует поставить оставшиеся растения в непригодные для них условия.
Повышать уровень углекислого газа до оптимального можно не только путем сжигания отходов древесины, но и внося в почву удобрения. Они провоцируют размножение бактерий.
Многие микроорганизмы вырабатывают углекислое соединение. Сосредотачиваясь у земли, оно тут же захватывается растениями, идя на благо представителей флоры и всего населения Земли.
Значение фотосинтеза
Если допустить повышение уровня углекислого газа в нижних слоях атмосферы повсеместно, а не только в экспериментальных теплицах, наступит парниковый эффект. Это то самое глобальное потепление, которое то ли уже приближается, то ли и не «светит».
Ученые не сходятся во мнениях. Если говорить о фактах, говорящих в пользу парникового эффекта, вспоминается таяние льдов Антарктики. Там обитают белые медведи. Уже несколько лет они включены в Красную книгу.
Частью жизни медведей исторически является преодоление водных широт на пути к новым ледникам. Устремляясь к ним, животные все чаще выбиваются из сил, так и не достигнув цели. Водные просторы увеличиваются.
Доплыть до клочков суши становится все сложнее. Порой, медведи гибнут в пути. Порой, краснокнижные хищники добираются до земли, но изможденными. Сил на охоту и переходов уже по твердой почве не остается.
Из вышесказанного делаем вывод: без фотосинтеза или с сокращением его доли, уровень углекислого газа в атмосфере спровоцирует парниковый эффект. Изменится не только климат планеты, но и состав ее обитателей, их облик, приспособления к окружающей среде.
Так будет до тех пор, пока доля углекислого соединения в воздухе не достигнет критического 1%. Далее, под вопрос встает сам фотосинтез. Воды мировых океанов могут остаться единственным его источником. Водоросли ведь тоже «дышат». Клетки, хранящие хлорофилл, у них другие.
Однако, суть процесса фотосинтеза у наземных и водных растений одна. Концентрация углекислого газа в атмосфере не обязательно передается водной среде. В ней баланс может сохраниться.
Некоторые ученые предполагают, что при постепенном увеличении доли углекислого газа в воздухе, представители флоры смогут приспособиться к новым условиям. Помидоры не станут сворачивать листья, капитулируя перед реалиями будущего.
Возможно, растения эволюционируют, научившись перерабатывать большее количество СО2. Догадка ученых относится к категории «лучше не проверять». Слишком рискованно.
Значение фотосинтеза связано не только с поддержанием жизни самих растений и насыщением атмосферы Земли кислородом. Ученые бьются над искусственным проведением реакций.
Расщепляемая под действием радиации солнца на водород и кислород вода – источник энергии. Энергия эта, в отличие от получаемой из нефтепродуктов и каменного угля, экологически чистая, безопасная.
Где происходит фотосинтез – не важно. Важна энергия, которую он несет с собой. Пока, человек получает ресурс, лишь поглощая растительную пищу. Возникает вопрос, как же выживают плотоядные? Они не зря охотятся на травоядных, а не себе подобных. В мясе животных, питающихся травами и листьями, сохраняется часть их энергии.
Кроме энергии фотосинтеза важны и его продукты. Кислород, к примеру, идет не только на дыхание животных, но и на образования озонового слоя. Он располагается в стратосфере Земли, на границе с космосом.
Озон – одна из модификаций кислорода, которую тот принимает, поднимаясь на тысячекилометровые высоты. Здесь элемент борется с радиацией Солнца. Не будь озонового слоя, излучение светила достигало бы поверхности планеты в опасных для всего живого дозах.
Интересно, что в деле поддержания баланса газов на планете могут помочь некоторые беспозвоночные. Слизень Elisia Chloroti, к примеру, научился ассимилировать хлоропласты водорослей.
Обитатель морей съедает их, «приручая» клетки с хлорофиллом в слизистой своего желудка. Геном слизня кодирует белки, необходимые зеленому пигменту для фотосинтеза.
Выработанные вещества поставляются хлоропластам и те «кормят» беспозвоночное сладенькой глюкозой. На ней и люди некоторое время способны выживать. Достаточно вспомнить больницы, где ослабленным вводят глюкозу внутривенно.
Сахар – основной источник энергии и, главное, быстрый. Цепочка преобразования глюкозы в чистую энергию короче, чем цепь преобразований жиров, белков. Конечно, сахар научились синтезировать искусственно.
Но, многие ученые склоняются к мнению, что полезнее для организма глюкоза растений, фруктов и овощей. Это подобно эффекту витаминов. У синтетических и природных один состав, но чуть разниться положение атомов. Опыты доказывают, что аптечный витамин С пользу дает сомнительную, а вот то же вещество из лимона или капусты – бесспорную.
Бесспорна и польза фотосинтеза. Он привычен и, одновременно, хранит еще много тайн. Познавайте их, дабы обеспечить счастливое будущее и себе, и планете в целом.
с3-, с4- и сам-типы фотосинтеза.
Цикл Кальвина (С3-путь) или восстановительный пентозофосфатный цикл
Процесс можно разделить на три фазы:
первая фаза — непосредственная фиксация углекислого газа – карбоксилирование. Образуется 2 фосфоглицерат.
вторая фаза — восстановление. Фосфоглицерат при участии NADPН (восстановитель) и АТР (донор энергии) восстанавливается до 3-фосфоглицеральдегида (ФГА).
третья фаза – образование продуктов фотосинтеза
четвертая стадия- восстановление первоначальных реагентов. Из 12 образовавшихся молекул ФГА только две идут на образование продуктов фотосинтеза, остальные – на восстановление акцептора СО2.
С окончанием этой фазы цикл замыкается. Ферменты цикла находятся в строме хлоропласта, а акцептор СО2 — на наружной стороне тилакоидных мембран.
Суммарное уравнение синтеза глюкозы в цикле Кальвина:
6CO2 + 12НAДФH + 18ATФ → C6H12O6 + 12НAДФ + 18AДФ + 6H2O
Фотосинтез по С3-пути всегда сопровождается фотодыханием – процессом потребления на свету кислорода и выделения СО2. фотодыхание – довольно затратный процесс, т.к. он не сопровождается синтезом АТФ, а, наоборот забирает энергию для восстановления кислорода. (далее более подробно)
Образование продуктов фотосинтеза
Обычно продуктом фотосинтеза называют сахар. На самом деле продуктами фотосинтеза можно считать и другие вещества.
Молекула ФГА:
является основой для синтеза сахара.
может быть использована для синтеза аминокислот.
дает начало циклу превращений некоторых промежуточных продуктов в РДФ, который служит акцептором углекислого газа.
Наряду с углеводами и аминокислотами из промежуточных продуктов цикла Кальвина могут образовываться липиды и другие продукты.
При фиксации СО2 в процессе фотосинтеза используется лишь около 30% энергии света (потребляется 8-10 квантов там, где должно было хватить энергии 2,7 кванта).
Более того средняя эффективность использования фотосинтетически активного солнечного света растениями не превышает 1%.
Фотодыхание – это стимулированное светом быстрое высвобождение СО2 листьями, этот процесс протекает только на свету и сопровождается поглощением О2. Такое изменение хода реакции фотосинтеза объясняется тем, что участвующий в ней фермент (рубиско) обладает двойной каталитической активностью – по отношению к углекислому газу и кислороду.
При высоких концентрациях СО2 и низких О2 преобладает карбоксилирование, соответственно при низких концентрациях СО2 — окисление. Повышение температуры также ускоряет окисление.
Таким образом, на первых этапах фиксации углерода имеет место конкуренция между двумя процессами – фиксацией углерода и фотодыханием.
С4-тип фотосинтеза
Для С4 растений характерна особая морфология листа и они содержат хлоропласты двух различных типов.
Хлоропласты находятся в клетках листа, расположенных вокруг сосудистого пучка двумя концентрическими слоями:
внутренний слой –клетки обкладки сосудистого пучка, хлоропласты довольно крупные, не имеют, как правило гран и содержат много зерен крахмала.
внешний – клетки мезофилла, хлоропласты мезофилла довольно мелкие расположены в клетке беспорядочно, содержат стопки гран и небольшое количество зерен крахмала.
У С4-растений фиксация СО2 может осуществляться двумя путями:
обычный цикл Кальвина, функционирующий в клетках обкладки. Первичный продукт фиксации СО2 – фосфоглицериновая кислота – С3
в хлоропластах мезофилла фиксация углекислоты происходит в результате присоединения СО2 к фосфоенолпирувату, приводящему к образованию кислот четырьмя атомами углерода – оксалоацетата и малат – это «С4-путь» фиксации СО2.
Метаболизм органических кислот по типу толстянковых (МОКТ или CAM — сrassulaceae acid metabolism )
Растения с данным типом фотосинтеза являются в основном суккулентами, которые обитают в засушливых, безводных областях. Для этих растений характерны следующие особенности. 1. Их устьица обычно открыты ночью (т.е. в темноте) и закрыты в течение дня. 2. Фиксация углекислого газа происходит в темное время суток с образованием кислот, содержащих четыре атома углерода – оксалоацетата и малата.
3. Малат запасается в больших вакуолях, которые характерны для клеток МОКТ-растений. 4. В светлое время суток малат переносится в цитоплазму и там декарбоксилируется, образуя пируват и СО2,которая поступает в цикл Кальвина, где превращается в сахарозу или запасной углевод глюкан. 5. В темновой период суток часть запасенного глюкана распадается с образованием молекул-акцепторов для темновой фиксации углекислого газа
Таким образом у МОКТ-растений существует суточный ритм: ночью содержание запасного глюкана падает и содержание яблочной кислоты повышается, а днем происходят противоположные изменения. При достаточном количестве воды эти растения могут вести себя как С3 растения.
1. На сколько стадий делится фотосинтез?2. Назовите стадии…
Опубликовано 27.09.2017 по предмету Биология от Гость >>
2.
Назовите
стадии фотосинтеза.
3.
Какие
живые организмы способны к фотосинтезу?
4.
В
каких органах растений протекает фотосинтез?
5.
В
каких органоидах растений протекает фотосинтез?
6.
Какие
вещества поглощаются растением при фотосинтезе?
7.
Какие
вещества выделяются растением при фотосинтезе?
8.
Какие
вещества синтезируются в световой стадии?
9.
Как устроена фотосистема?
10.
Как отличается фотосистема 1 от фотосистемы 2?
11. Какие вещества синтезируются в
темновой стадии?
12. Может ли световая стадия
протекать в темноте?
13. Может ли темновая стадия
протекать на свету?
14.
В каких органоидах цианобактерий протекает фотосинтез?
15. Какое вещество является
источником кислорода при фотосинтезе?
16. Какое вещество является
источником электронов при фотосинтезе?
17. Какое вещество является
источником электронов при хемосинтезе?
18. Что такое ассимиляция?
19. Что такое диссимиляция?
20. Что такое катаболизм?
21. Что такое анаболизм?
22. Что такое пластический обмен?
23. Что такое энергетический обмен?
24. Назовите синоним термина «обмен
веществ и энергии».
25. Что такое гомеостаз?
26. Соединение простых веществ в
сложные в клетке называется ….?
27. Распад сложных веществ на простые
называется …?
28. Назовите три этапа дыхания.
29. В какой части клетки протекает 1
этап дыхания?
30.
Что такое субстрат дыхания?
31. Какой субстрат дыхания даёт
наибольшее количество энергии?
32. Какой субстрат дыхания
разрушается в первую очередь?
33. В какие вещества превращаются
белки в подготовительном этапе дыхания?
34. В какие вещества превращаются
жиры в подготовительном этапе дыхания?
35. В какие вещества превращаются
углеводы в подготовительном этапе дыхания?
36. В какой части клетки протекает
2-й этап дыхания?
37. Назовите продукт гликолиза у
растений.
38. Назовите продукт гликолиза у
животных.
39. В какой части клетки протекает
3-й этап дыхания?
40. Кто открыл цикл лимонной кислоты?
41. Кто открыл цепь переноса
электронов в митохондрии?
42. Какой ион накапливается в
митохондрии на третьем этапе дыхания?
43. Какое вещество является ловушкой
для электронов в митохондрии?
44. Как называются организмы,
способные производить органические вещества из неорганических?
45. Какие систематические группы
живых организмов относятся к автотрофным?
46. Какие систематические группы
живых организмов относятся к гетеротрофным?
47. Чем фотосинтез похож и отличается от хемосинтеза?
C3-фотосинтез — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 июля 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 июля 2019; проверки требуют 2 правки.
С3-фотосинтез — один из трёх основных метаболических путей для фиксации углерода наряду с С4— и CAM-фотосинтезом. В ходе этого процесса углекислый газ и рибулозобисфосфат (пятиуглеродный сахар) превращаются в две молекулы 3-фосфоглицерата (трёхуглеродного соединения) посредством следующей реакции:
- СО2 + H2O + РуБФ → (2) 3-фосфоглицерат
Эта реакция является первым шагом цикла Кальвина и происходит у всех растений. У С3-растений углекислый газ фиксируется напрямую из воздуха, а у С4— и CAM-растений — после высвобождения из малата.
Поперечное сечение листа арабидопсиса — типичного С3-растения. Хорошо видно строение сосудистых пучков.С3-растения, как правило, процветают в районах с обилием подземных вод, умеренной интенсивностью солнечного света, умеренной температурой и концентрацией углекислого газа около 200 ‰ или выше[1]. Эти растения зародились в мезозое и палеозое, задолго до появления С4-растений, и по-прежнему составляют около 95 % растительной биомассы Земли. В качестве примера можно привести рис и ячмень[2].
С3-растения теряют при транспирации до 97 % воды, закачанной через корни. По этой причине они не могут расти в жарких местах: главный фермент С3-фотосинтеза, рибулозобисфосфаткарбоксилаза, с повышением температуры начинает активнее катализировать побочную реакцию РуБФ с кислородом. Утилизация побочных продуктов этой реакции происходит в ходе фотодыхания, что приводит к потере растением углерода и энергии и, следовательно, может ограничивать его рост. В засушливых районах С3-растения закрывают устьица, чтобы уменьшить потери воды, но это не даёт CО2 попадать в листья и снижает его концентрацию в листьях. В результате падает соотношение СО2:О2, что также усиливает фотодыхание. С4— и CAM-растения имеют приспособления, позволяющие им выживать в засушливых и жарких районах, и поэтому они могут вытеснить С3-растения в этих областях. Изотопная подпись С3-растений обеднена изотопом 13С по сравнению с подписью С4-растений.
1. на сколько ✔ стадий делится фотосинтез? 2. назовите стадии фотосинтеза.
2.крахмал является высокоэнергетическим веществом, которое растение вырабатывают в процессе фотосинтеза и которое они специально запасают впрок, для роста и развития. для процесса его образования необходимо немногое — главное наличие хлоропластов в растении, солнечный свет, вода и углекислый газ. в ходе фотосинтеза углекислый газ соединяется с водой образуя различные органические вещества, в основном полисахариды. то есть сахар в зеленых листьях получается от синтеза углекислого газа и воды под каталитическим действием энергии солнечного света. в дальнейшем из сахаров образуется крахмал, который транспортируется в другие органы растения и там запасается впрок.
1.как известно, фотосинтез — это воздушный способ питания растений, который заключается в поглощении с корней из почвы воды, с устьиц — углекислого газа, с пигмента хлорофилла — солнечного света. этот процесс (фотосинтеза) развивался и совершенствовался постепенно в процессе эволюции растений, то есть у них выработались определенные приспособления для осуществления фотосинтеза.
часть из них связана со строением листа, который является основным органом, осуществляющим фотосинтез.
это — наружный слой клеток поверхности листа, стебля, который не только защищает растение от инфекций, но и пропускает хорошо свет.
они расположены на нижней стоне листа, через них в клетки поступает углекислый газ.
именно в этих клетках осуществляется процесс фотосинтеза у растений.
она включает в себя сосуды ксилемы (проводят воду и минеральные вещества) и флоэму (проводят сахара).
другие приспособления для осуществления фотосинтеза связаны с расположением листа на растении.
листья расположены на ветке так, чтобы были максимально освещены солнечным светом. эта особенность называется —
наконец, существует в черешке листа особый механизм, который осуществляет
поворот листа на черешке к солнцу (фототаксис).
1. На сколько стадий делится фотосинтез? 2. Назовите стадии фотосинтеза. 3. Какие живые организмы способны к фотосинтезу? 4. В каких органах растений протекает фотосинтез? 5. В каких органоидах растений протекает фотосинтез? 6….
1. На сколько стадий делится фотосинтез? 2. Назовите стадии фотосинтеза. 3. Какие живые организмы способны к фотосинтезу? 4. В каких органах растений протекает фотосинтез? 5. В каких органоидах растений протекает фотосинтез? 6. Какие вещества поглощаются растением при фотосинтезе? 7. Какие вещества выделяются растением при фотосинтезе? 8. Какие вещества синтезируются в световой стадии? 9. Как устроена фотосистема? 10. Как отличается фотосистема 1 от фотосистемы 2? 11. Какие вещества синтезируются в темновой стадии? 12. Может ли световая стадия протекать в темноте? 13. Может ли темновая стадия протекать на свету? 14. В каких органоидах цианобактерий протекает фотосинтез? 15. Какое вещество является источником кислорода при фотосинтезе? 16. Какое вещество является источником электронов при фотосинтезе? 17. Какое вещество является источником электронов при хемосинтезе? 18. Что такое ассимиляция? 19. Что такое диссимиляция? 20. Что такое катаболизм? 21. Что такое анаболизм? 22. Что такое пластический обмен? 23. Что такое энергетический обмен? 24. Назовите синоним термина «обмен веществ и энергии». 25. Что такое гомеостаз? 26. Соединение простых веществ в сложные в клетке называется ….? 27. Распад сложных веществ на простые называется …? 28. Назовите три этапа дыхания. 29. В какой части клетки протекает 1 этап дыхания? 30. Что такое субстрат дыхания? 31. Какой субстрат дыхания даёт наибольшее количество энергии? 32. Какой субстрат дыхания разрушается в первую очередь? 33. В какие вещества превращаются белки в подготовительном этапе дыхания? 34. В какие вещества превращаются жиры в подготовительном этапе дыхания? 35. В какие вещества превращаются углеводы в подготовительном этапе дыхания? 36. В какой части клетки протекает 2-й этап дыхания? 37. Назовите продукт гликолиза у растений. 38. Назовите продукт гликолиза у животных. 39. В какой части клетки протекает 3-й этап дыхания? 40. Кто открыл цикл лимонной кислоты? 41. Кто открыл цепь переноса электронов в митохондрии? 42. Какой ион накапливается в митохондрии на третьем этапе дыхания? 43. Какое вещество является ловушкой для электронов в митохондрии? 44. Как называются организмы, способные производить органические вещества из неорганических? 45. Какие систематические группы живых организмов относятся к автотрофным? 46. Какие систематические группы живых организмов относятся к гетеротрофным? 47. Чем фотосинтез похож и отличается от хемосинтеза?
—> ЧИТАТЬ ОТВЕТ