Левитация физика: Магнитная левитация — Википедия – Левитация — Википедия

Содержание

Магнитная левитация — Википедия

Магнитная левитация — технология, метод подъёма объекта с помощью одного только магнитного поля. Магнитное давление используется для компенсации ускорения свободного падения или любых других ускорений.

Теорема Ирншоу утверждает, что, используя только ферромагнетики, невозможно устойчиво удерживать объект в гравитационном поле. Несмотря на это, с помощью сервомеханизмов, диамагнетиков, сверхпроводников и систем с вихревыми токами левитация возможна.

В некоторых случаях подъёмная сила обеспечивается магнитной левитацией, но при этом есть механическая поддержка, дающая устойчивость. В этих случаях явление называется псевдолевитация.

Магнитная левитация используется в маглевах, магнитных подшипниках и показе продукции.

Способы реализации магнитной левитации[править | править код]

  1. С использованием постоянного магнита
  2. С использованием электромагнита
  3. С использованием сверхпроводящего магнита[1]
  1. При помощи электромагнитных систем
  2. При помощи электродинамических систем[1]

Магнитные материалы и системы способны притягивать или отталкивать друг друга с силой, зависящей от магнитного поля и поверхности магнита. Из этого следует, что может быть определено магнитное давление.

Магнитное давление магнитного поля сверхпроводника подсчитывается по формуле:

Pmag=B22μ0{\displaystyle P_{mag}={\frac {B^{2}}{2\mu _{0}}}}

где Pmag{\displaystyle P_{mag}} — сила на единицу площади поверхности в Паскалях, B{\displaystyle B} — магнитная индукция над сверхпроводником в Теслах, и μ0{\displaystyle \mu _{0}} = 4π×10−7 Н·А−2 — магнитная проницаемость вакуума.[2]

Статическая[править | править код]

Статическая устойчивость значит, что любое смещение из состояния равновесия заставляет равнодействующую силу выталкивать объект обратно в состояние равновесия.

Теорема Ирншоу окончательно доказала, что невозможно левитировать объект, используя только статичные макроскопические магнитные поля. Силы, действующие на любой парамагнетик в любой комбинации с гравитационными, электростатическими, и магнитостатическими сделают положение объекта в лучшем случае неустойчивым относительно одной оси и это может дать неустойчивое равновесие относительно всех осей. Тем не менее, существует несколько возможностей сделать левитацию реальной, на примере использования электронной стабилизации или диамагнетиков (так как Магнитная проницаемость меньше[3]) может быть показано, что диамагнитные материалы устойчивы относительно как минимум одной оси и могут быть устойчивы относительно всех осей. Проводники имеют относительную проницаемость к переменным магнитным полям последнего, так что некоторые конфигурации, использующие магниты, работающие на переменном токе, устойчивы сами по себе.

Динамическая[править | править код]

Динамическая устойчивость проявляется в случаях, когда левитирующая система способна подавить любое возможное виброобразное движение.

Магнитные поля являются консервативными силами и поэтому в принципе не могут иметь встроенный способ подавления. Фактически, многие схемы левитации имеют недостаточное подавление.[4] Таким образом, вибрации могут существовать и вывести объект за пределы зоны равновесия.

Подавление движения осуществляется несколькими способами:

  • внешнее механическое подавление, например лобовое сопротивление
  • использование вихревых токов (влияние на проводник полем)
  • инерционный демпфер в левитируемом объекте
  • электромагниты, управляемые посредством электроники

Транспорт с магнитной левитацией[править | править код]

Маглев, или магнитная левитация, — это способ транспортировки, который подвешивает, направляет и приводит в движение транспорт, в основном поезда, используя магнитную левитацию. Данный способ быстрее и тише, чем в случае использования колеса.

Максимальная скорость маглева была зафиксирована в Японии в 2003[5] и составила 581 км/ч, что на 6 км/ч быстрее, чем рекорд TGV.

На начало 2017 года единственным в мире поездом на магнитной подушке, находящимся в коммерческой эксплуатации, является шанхайский маглев[6].

Магнитные подшипники[править | править код]

Левитация (физика) — Википедия

Материал из Википедии — свободной энциклопедии

Левитация в физике — это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле являются: (1) наличие силы, компенсирующей силу тяжести, и (2) наличие возвращающей силы, обеспечивающей устойчивость объекта

[1].

Невозможность левитации в статическом электромагнитном поле

Согласно теореме Ирншоу, являющейся прямым следствием закона Гаусса, левитация статических объектов в статическом электромагнитном поле в вакууме невозможна. Теорема применима не только к точечным зарядам, но и к протяженным упругим телам и говорит, что их свободный подвес в электростатическом, магнитостатическом и (или) гравитационном поле будет всегда неустойчив. Теорема Ирншоу не применима к диамагнетикам, а также в электростатическом поле к телам, у которых диэлектрическая проницаемость меньше, чем у окружающей среды.

Тем не менее, в переменном поле электростатической квадрупольной линзы левитация возможна, например, заряженных пылинок, хотя при этом не обеспечивается стабилизация положения пылинок вдоль оси линзы, поскольку равновесие по этому направлению безразличное. Электростатическая фокусировка переменным электрическим полем применяется при фокусировке пучков заряженных частиц и по своей сути аналогична «маятнику Капицы».

Сверхпроводимость и левитация

В марте 1991 года научный журнал «Nature» опубликовал интересную фотографию: на снимке директор Токийской исследовательской лаборатории сверхпроводимости Дон Тапскотт стоял на блюде из сверхпроводящего керамического материала, и между ним и поверхностью пола был отчётливо виден небольшой зазор. Масса директора вместе с блюдом составляла 120 кг, что не мешало им парить над землёй. Это явление объясняется эффектом Мейснера, который не дает магнитному полю ни проникать внутрь сверхпроводящего образца, ни выходить из него, однако важную роль здесь играет также эффект пиннинга вихрей магнитного потока (вихрей Абрикосова). Причину устойчивости левитирующего магнита легко понять с помощью метода замороженных изображений.

Диамагнитная левитация

Тип левитации в сильном магнитном поле тела, содержащего в себе диамагнетик, например, воду. Использует диамагнитные свойства воды, которая под действием внешнего магнитного поля несколько изменяет параметры движения электронов в её молекулах, что приводит к появлению слабого магнитного поля, направленного противоположно исходному. Возникающий эффект отталкивания позволяет преодолевать действие силы тяжести.

Данный тип левитации использовался в опытах на живых объектах. В ходе экспериментов во внешнем магнитном поле с индукцией порядка 17 Тл достигалось подвешенное состояние лягушек и мышей[2][3].

То же свойство диамагнетиков можно использовать наоборот, в соответствии с третьим законом Ньютона, или для отталкивания магнита от диамагнетика, или для стабилизации левитации магнита в магнитном поле. Например, эффектен эксперимент, в котором магнит висит в поле 11 Тл между большим и указательным пальцами исследователя

[4].

Магнитная левитация

См. также

Примечания

Ссылки

Левитация (физика) — Википедия

Материал из Википедии — свободной энциклопедии

Левитация в физике — это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле являются: (1) наличие силы, компенсирующей силу тяжести, и (2) наличие возвращающей силы, обеспечивающей устойчивость объекта[1].

Невозможность левитации в статическом электромагнитном поле

Согласно теореме Ирншоу, являющейся прямым следствием закона Гаусса, левитация статических объектов в статическом электромагнитном поле в вакууме невозможна. Теорема применима не только к точечным зарядам, но и к протяженным упругим телам и говорит, что их свободный подвес в электростатическом, магнитостатическом и (или) гравитационном поле будет всегда неустойчив. Теорема Ирншоу не применима к диамагнетикам, а также в электростатическом поле к телам, у которых диэлектрическая проницаемость меньше, чем у окружающей среды.

Тем не менее, в переменном поле электростатической квадрупольной линзы левитация возможна, например, заряженных пылинок, хотя при этом не обеспечивается стабилизация положения пылинок вдоль оси линзы, поскольку равновесие по этому направлению безразличное. Электростатическая фокусировка переменным электрическим полем применяется при фокусировке пучков заряженных частиц и по своей сути аналогична «маятнику Капицы».

Видео по теме

Сверхпроводимость и левитация

В марте 1991 года научный журнал «Nature» опубликовал интересную фотографию: на снимке директор Токийской исследовательской лаборатории сверхпроводимости Дон Тапскотт стоял на блюде из сверхпроводящего керамического материала, и между ним и поверхностью пола был отчётливо виден небольшой зазор. Масса директора вместе с блюдом составляла 120 кг, что не мешало им парить над землёй. Это явление объясняется эффектом Мейснера, который не дает магнитному полю ни проникать внутрь сверхпроводящего образца, ни выходить из него, однако важную роль здесь играет также эффект пиннинга вихрей магнитного потока (вихрей Абрикосова). Причину устойчивости левитирующего магнита легко понять с помощью метода замороженных изображений.

Диамагнитная левитация

Тип левитации в сильном магнитном поле тела, содержащего в себе диамагнетик, например, воду. Использует диамагнитные свойства воды, которая под действием внешнего магнитного поля несколько изменяет параметры движения электронов в её молекулах, что приводит к появлению слабого магнитного поля, направленного противоположно исходному. Возникающий эффект отталкивания позволяет преодолевать действие силы тяжести.

Данный тип левитации использовался в опытах на живых объектах. В ходе экспериментов во внешнем магнитном поле с индукцией порядка 17 Тл достигалось подвешенное состояние лягушек и мышей

[2][3].

То же свойство диамагнетиков можно использовать наоборот, в соответствии с третьим законом Ньютона, или для отталкивания магнита от диамагнетика, или для стабилизации левитации магнита в магнитном поле. Например, эффектен эксперимент, в котором магнит висит в поле 11 Тл между большим и указательным пальцами исследователя[4].

Магнитная левитация

См. также

Примечания

Ссылки

Проектная работа по физике «Левитация»

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа № 7»

307170, Курской обл., г. Железногорск, ул. Курская, д.43. Тел. (47148) 4-81-33,

факс: 4-85-36 Электронный адрес: [email protected] ИНН: 4633009544 КПП:463301001 Банковские реквизиты: Лицевой счет 03443008440 в УФК по Курской области, расчетный счет 40204810400000000943 в ГРКЦ ГУ банка России по Курской обл., г. Курск, БИК 043807001 ОГРН 1024601215671

Проектная работа по физике.

Левитация как физическое явление. Виды левитации.

hello_html_52fbabef.jpg

Выполнили: Сакова А., Зарецкая Е. 10 «А»

Руководитель: Лысых Л.А., учитель физики

г. Железногорск

2017

Содержание

2.1Актуальность………………………………………………………….3

2.2Цель проекта………………………………………………….…...……3

2.3Задачи…………………………………………………………….…….3

2.4Методы исследования………………………………………….…….4

5.1Левитрон……………………………………………………….….…5

5.2Магнитные подшипники…………………………………….…..…..6

5.3Маглев………………………………………………………….….……6

6.1Физика звуковой левитации………………………………….…..….7

7.1Кинофильм «Назад в будущее»………………….……………….…8

2. Введение

Задумывались ли вы когда-нибудь над тем, каково это – без опоры парить в воздухе? А жить в доме, где вся мебель висит, не касаясь пола? Звучит скорее как сюжет из научной фантастики, нежели реальное настоящее или ближайшее будущее. Однако уже сейчас технологии позволяют нам реализовать эти футуристические мечты на практике, используя при этом один или несколько способов левитации.

2.1. Актуальность проекта

Актуальность данного проекта связана с перспективами, открывающимися при освоении еще недостаточно изученного явления левитации, а также с многообразием вариантов ее потенциального применения в науке и технике.

2.2. Цель проекта:

Целью данного исследовательского проекта является изучение левитации как физического явления, расширение представлений о ней и определение возможностей ее применения.

2.3. Задачи

Для достижения поставленных целей необходимо решить следующие задачи:

  • Исследовать явление левитации в физике;

  • Классифицировать виды левитации;

  • Объяснить явление левитации с точки зрения физических законов;

  • Установить потенциальные возможности применения левитации .

2.4. Методы исследования

При проведении исследовательской работы были задействованы следующие методы:

3. Определение левитации

Левитация в физике — это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле является наличие силы, компенсирующей силу тяжести; и наличие возвращающей силы, обеспечивающей устойчивость объекта. Проще говоря, тело необходимо не только поднять над землей, но и зафиксировать его в устойчивом положении.

4. Виды левитации

В физике выделяют следующие виды левитации:

  • магнитная левитация;

  • электростатическая левитация;

  • аэродинамическая левитация;

  • оптическая левитация;

  • акустическая (звуковая) левитация;

  • плавучая левитация;

  • эффект Казимира.

На наиболее перспективных и широко используемых видах стоит остановиться подробнее.

5. Магнитная левитация

Магнитная левитация — это метод подъёма объекта с помощью магнитного поля.

То, что одноименные полюса магнитов отталкиваются, можно использовать для подъема с земли огромных тяжестей.

Можно левитировать сверхпроводники и другие диамагнитные материалы, если намагнитить их противоположным зарядом к магнитному полю, в котором они размещены.

Сверхпроводники совершенно диамагнитны — это означает, что их выталкивает само магнитное поле (эффект Мейснера-Оксенфельда).

Поскольку вода является диамагнитным материалом, это свойство было использовано для левитации капель воды и даже животных организмов, таких как кузнечики и лягушки.

5.1. Левитрон

Наиболее простым и наглядным способом демонстрации магнитной левитации служит создание левитрона.

Левитрон — это волчок, который вращаясь, способен зависать в воздухе над специальной коробкой, образующей магнитную подушку. Самый простой с точки зрения изготовления вариант левитрона — два постоянных магнита, один из которых большой (базовый), лежит горизонтально, а над ним висит, вращаясь, другой магнит.

Над центром большого магнита на определённом расстоянии образуется потенциальная яма, то есть небольшая зона, магнитное поле в центре которой несколько слабее, чем у краёв. Это не дает волчку отклониться от центра.

Момент инерции вращающегося тела, в соответствии с законом сохранения момента импульса, удерживает волчок в положении отталкивающим полюсом вниз. Так как волчок испытывает силу трения только о воздух, он может парить довольно долго.

5.2. Магнитные подшипники


На данный момент явление магнитной левитации активно применяется при изготовлении магнитных подшипников. Магнитные подшипники, как и остальные механизмы подшипниковой группы, служат опорой для вращающегося вала, соединение с которым у них является механически бесконтактным. Благодаря использованию явления левитации вращающий вал буквально парит в мощном магнитном поле.

К преимуществам таких подшипников относят отсутствие контакта и вытекающие из этого износостойкость и возможность использования в агрессивных средах при высоких или низких температурах, в том числе в космосе и на других планетах. Кроме того, преимущества магнитных подшипников включают очень низкое и предсказуемое трение, возможность работы без смазки и в вакууме. Они всё чаще используются в промышленных механизмах, таких, как компрессоры, турбины, насосы, моторы и генераторы. Магнитные подшипники используются при генерации электроэнергии, в переработке нефти, в работе станков и при передаче природного газа. Также они используются в газовых центрифугах, для обогащения урана и в турбомолекулярных насосах, где механические подшипники со смазкой были бы источником нежелательного загрязнения.

Недостатки же использования магнитных подшипников включают в себя опасность исчезновения магнитного поля, что может быть катастрофическим для целой механической системы; необходимость использования сложных и громоздких систем управления, а также нагревание обмотки подшипника вследствие прохождения через нее тока. Из-за этого возникает необходимость устанавливать дополнительные страховочные подшипники и обеспечивать довольно сложные системы охлаждения.

5.3. Маглев

Поезд на магнитной подушке, магнитоплан или маглев — это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитного поля. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса.

Скорость, достигаемая поездом на магнитной подушке, сравнима со скоростью самолёта и позволяет составить конкуренцию воздушному транспорту на ближне- и среднемагистральных направлениях.

К достоинствам маглева относят теоретически самую высокую скорость из тех, которые можно получить на серийном наземном транспорте, достаточно низкое потребление электроэнергии и, как следствие, большую экологичность; снижение эксплуатационных затрат в связи со значительным уменьшением трения деталей, а также низкое шумовое загрязнение

Недостатков же на данный момент тоже довольно много, к ним относят высокую стоимость создания и обслуживания колеи, сложную путевую инфраструктуру, потенциальный вред, наносимый электромагнитным полем проездным бригадам и местным жителям и необходимость в сверхбыстродействующих системах управления, позволяющих на высокой скорости контролировать зазор в несколько сантиметров между дорогой и поездом.

Наиболее активные разработки маглевов на данный момент ведут Германия и Япония

6. Акустическая левитация

Способ звуковой левитации основан на использовании звуковых волн для уравновешивания силы тяжести. На Земле это может привести к эффекту всплытия объектов и плавания над поверхностью Земли. В космосе это способ балансировки и стабилизации объектов в невесомости.

6.1. Физика звуковой левитации

Устройство акустической левитации состоит из двух основных частей:

  • преобразователя — вибрирующей поверхности, которая производит звуковые волны;

  • отражателя — пластины, от которой отражается звуковая волна.

Преобразователь и отражатель могут иметь вогнутые поверхности, чтобы фокусировать звук. Чтобы удерживать каплю воды, звуковая волна несколько раз проходит путь от источника к отражателю и обратно.

Когда звуковая волна отражается от поверхности, взаимодействие между ее сгущениями и разрежениями создает помехи. Сжатия звуковой волны встречают сжатия отраженной волны. Таким образом, создаются замкнутые области густого воздуха и области разреженного воздуха, называемые пучностями и узлами. Чтобы капля воды левитировала, необходимо поместить ее в узел звуковой волны, в этом случае создается постоянное давление на каплю снизу, что уравновешивает силу тяжести.

В космосе действует слабая гравитация. Плавающие частицы собираются в узлах звуковых волн и не разлетаются. В условиях земной гравитации частицы располагаются над пучностями, которые препятствуют падению частиц на землю.

Акустическая левитация может применяться в различных сферах: для управления взвешенными в воздухе частицами, поднятия тяжести, стабилизации и координации, позиционирования деталей, устройств на производстве, управления жидкими веществами.

7. Фильм «Назад в будущее»

Знаменитый на весь мир фильм “Назад в будущее“ запомнился зрителям интересным фантастическим сюжетом. В этом фильме был скейтборд или доска Hoverboard, который просто парил в воздухе. Недавно такую доску как бы сделали.

7.1. Ховерборд

Итак, как же устроен ховерборд? Внутри него располагаются сверхпроводники — специальные материалы, имеющие интересное свойство. При низких температурах сопротивление в них падает до нуля. Это, собственно, и называется сверхпроводимостью.

Если же мы помещаем сверхпроводник в магнитное поле, то оно будет полностью вытесняться из объема сверхпроводника. Таким образом у нас и получается та самая “магнитная подушка”, которая не дает сверхпроводнику падать, если мы поместим его вблизи магнита. Называется подобное явление эффектом Мейснера.

Чтобы достигать необходимых низких температур, используется жидкий азот. Температура его кипения составляет  −195,75 °C, так что в нормальных условиях жидкий азот активно кипит и испаряется. Именно так объясняется та самая белая дымка, которая выходит из ховерборда. Это испаряющийся жидкий азот, которым нужно “заправлять” сверхпроводник.

К сожалению, свобода передвижения на таком ховерборде весьма ограничена, так как он способен парить только над специальными рельсами. Парк, показанный на данном видео, был создан специально, рельсы спрятаны под его поверхностью. Однако, несмотря на все ограничения, уже сегодня можно утверждать, что данная технология может и должна использоваться в самых разных сферах.

8. Итоги работы

Подводя итог данной исследовательской работе, можно утверждать, что все ее цели и задачи были выполнены, а именно: было рассмотрено физическое явление левитации и классифицированы ее виды. Кроме того, мы обратили внимание на практические возможности применения левитации, узнали о преимуществах и недостатках технологий, основанных на этом физическом явлении.

9. Заключение

Различные методы физической левитации  используются уже давно и по мере развития техники они становятся все более и более распространенными в самых разных сферах. Существует множество перспективных проектов, основанных на том или ином способе левитирования. Возможно, уже в ближайшем будущем в каждом городе появятся поезда на магнитной подушке, левитирующие лифты, двигающиеся не только вверх и вниз, но и по горизонтали; парящие диваны и кресла, зависшие в воздухе без опоры аквариумы и вазы. Быть может, именно левитация поможет нам в изучении других планет или самых отдаленных морских глубин, а транспорт на магнитной подушке станет более комфортной и экологически чистой заменой уже существующим сейчас средствам передвижения. Научный прогресс стал столь стремительным, что мы давно перестали удивляться бесконечным техническим новинкам. Однако всегда следует помнить, что именно мы, увлеченные своим делом люди, двигаем его вперед. Поэтому не стоит останавливаться на достигнутом, мириться с невозможным; ведь невозможное – возможно, а возможным его делам мы.

10. Ресурсы, использованные при создании проекта:

Основные положения и факты:
https://en.wikipedia.org/wiki/Levitation

Магнитные подшипники:

Магнитный подшипник

Магнитоплан:

http://dic.academic.ru/dic.nsf/ruwiki/7557


Акустическая левитация:

http://www.leforio.narod.ru/lt_acoustic_levitation.htm

Ховерборд:

http://www.theverge.com/2015/8/4/9091951/lexus-hoverboard-video

Левитация (физика) — Википедия

Материал из Википедии — свободной энциклопедии

Левитация в физике — это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле являются: (1) наличие силы, компенсирующей силу тяжести, и (2) наличие возвращающей силы, обеспечивающей устойчивость объекта[1].

Невозможность левитации в статическом электромагнитном поле

Согласно теореме Ирншоу, являющейся прямым следствием закона Гаусса, левитация статических объектов в статическом электромагнитном поле в вакууме невозможна. Теорема применима не только к точечным зарядам, но и к протяженным упругим телам и говорит, что их свободный подвес в электростатическом, магнитостатическом и (или) гравитационном поле будет всегда неустойчив. Теорема Ирншоу не применима к диамагнетикам, а также в электростатическом поле к телам, у которых диэлектрическая проницаемость меньше, чем у окружающей среды.

Тем не менее, в переменном поле электростатической квадрупольной линзы левитация возможна, например, заряженных пылинок, хотя при этом не обеспечивается стабилизация положения пылинок вдоль оси линзы, поскольку равновесие по этому направлению безразличное. Электростатическая фокусировка переменным электрическим полем применяется при фокусировке пучков заряженных частиц и по своей сути аналогична «маятнику Капицы».

Сверхпроводимость и левитация

В марте 1991 года научный журнал «Nature» опубликовал интересную фотографию: на снимке директор Токийской исследовательской лаборатории сверхпроводимости Дон Тапскотт стоял на блюде из сверхпроводящего керамического материала, и между ним и поверхностью пола был отчётливо виден небольшой зазор. Масса директора вместе с блюдом составляла 120 кг, что не мешало им парить над землёй. Это явление объясняется эффектом Мейснера, который не дает магнитному полю ни проникать внутрь сверхпроводящего образца, ни выходить из него, однако важную роль здесь играет также эффект пиннинга вихрей магнитного потока (вихрей Абрикосова). Причину устойчивости левитирующего магнита легко понять с помощью метода замороженных изображений.

Диамагнитная левитация

Тип левитации в сильном магнитном поле тела, содержащего в себе диамагнетик, например, воду. Использует диамагнитные свойства воды, которая под действием внешнего магнитного поля несколько изменяет параметры движения электронов в её молекулах, что приводит к появлению слабого магнитного поля, направленного противоположно исходному. Возникающий эффект отталкивания позволяет преодолевать действие силы тяжести.

Данный тип левитации использовался в опытах на живых объектах. В ходе экспериментов во внешнем магнитном поле с индукцией порядка 17 Тл достигалось подвешенное состояние лягушек и мышей[2][3].

То же свойство диамагнетиков можно использовать наоборот, в соответствии с третьим законом Ньютона, или для отталкивания магнита от диамагнетика, или для стабилизации левитации магнита в магнитном поле. Например, эффектен эксперимент, в котором магнит висит в поле 11 Тл между большим и указательным пальцами исследователя[4].

Магнитная левитация

См. также

Примечания

Ссылки

Левитация (физика) — Википедия. Что такое Левитация (физика)

Левитация в физике — это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле являются: (1) наличие силы, компенсирующей силу тяжести, и (2) наличие возвращающей силы, обеспечивающей устойчивость объекта[1].

Невозможность левитации в статическом электромагнитном поле

Согласно теореме Ирншоу, являющейся прямым следствием закона Гаусса, левитация статических объектов в статическом электромагнитном поле в вакууме невозможна. Теорема применима не только к точечным зарядам, но и к протяженным упругим телам и говорит, что их свободный подвес в электростатическом, магнитостатическом и (или) гравитационном поле будет всегда неустойчив. Теорема Ирншоу не применима к диамагнетикам, а также в электростатическом поле к телам, у которых диэлектрическая проницаемость меньше, чем у окружающей среды.

Тем не менее, в переменном поле электростатической квадрупольной линзы левитация возможна, например, заряженных пылинок, хотя при этом не обеспечивается стабилизация положения пылинок вдоль оси линзы, поскольку равновесие по этому направлению безразличное. Электростатическая фокусировка переменным электрическим полем применяется при фокусировке пучков заряженных частиц и по своей сути аналогична «маятнику Капицы».

Сверхпроводимость и левитация

В марте 1991 года научный журнал «Nature» опубликовал интересную фотографию: на снимке директор Токийской исследовательской лаборатории сверхпроводимости Дон Тапскотт стоял на блюде из сверхпроводящего керамического материала, и между ним и поверхностью пола был отчётливо виден небольшой зазор. Масса директора вместе с блюдом составляла 120 кг, что не мешало им парить над землёй. Это явление объясняется эффектом Мейснера, который не дает магнитному полю ни проникать внутрь сверхпроводящего образца, ни выходить из него, однако важную роль здесь играет также эффект пиннинга вихрей магнитного потока (вихрей Абрикосова). Причину устойчивости левитирующего магнита легко понять с помощью метода замороженных изображений.

Диамагнитная левитация

Тип левитации в сильном магнитном поле тела, содержащего в себе диамагнетик, например, воду. Использует диамагнитные свойства воды, которая под действием внешнего магнитного поля несколько изменяет параметры движения электронов в её молекулах, что приводит к появлению слабого магнитного поля, направленного противоположно исходному. Возникающий эффект отталкивания позволяет преодолевать действие силы тяжести.

Данный тип левитации использовался в опытах на живых объектах. В ходе экспериментов во внешнем магнитном поле с индукцией порядка 17 Тл достигалось подвешенное состояние лягушек и мышей[2][3].

То же свойство диамагнетиков можно использовать наоборот, в соответствии с третьим законом Ньютона, или для отталкивания магнита от диамагнетика, или для стабилизации левитации магнита в магнитном поле. Например, эффектен эксперимент, в котором магнит висит в поле 11 Тл между большим и указательным пальцами исследователя[4].

Магнитная левитация

См. также

Примечания

Ссылки

Левитация (физика) Википедия

Левитация в физике — это устойчивое положение объекта в гравитационном поле без непосредственного контакта с другими объектами. Необходимыми условиями для левитации в этом смысле являются: (1) наличие силы, компенсирующей силу тяжести, и (2) наличие возвращающей силы, обеспечивающей устойчивость объекта[1].

Невозможность левитации в статическом электромагнитном поле[ | ]

Согласно теореме Ирншоу, являющейся прямым следствием закона Гаусса, левитация статических объектов в статическом электромагнитном поле в вакууме невозможна. Теорема применима не только к точечным зарядам, но и к протяженным упругим телам и говорит, что их свободный подвес в электростатическом, магнитостатическом и (или) гравитационном поле будет всегда неустойчив. Теорема Ирншоу не применима к диамагнетикам, а также в электростатическом поле к телам, у которых диэлектрическая проницаемость меньше, чем у окружающей среды.

Тем не менее, в переменном поле электростатической квадрупольной линзы левитация возможна, например, заряженных пылинок, хотя при этом не обеспечивается стабилизация положения пылинок вдоль оси линзы, поскольку равновесие по этому направлению безразличное. Электростатическая фокусировка переменным электрическим полем применяется при фокусировке пучков заряженных частиц и по своей сути аналогична «маятнику Капицы».

Сверхпроводимость и левитация[ | ]

В марте 1991 года научный журнал «Nature» опубликовал интересную фотографию: на снимке директор Токийской исследовательской лаборатории сверхпроводимости Дон Тапскотт стоял на блюде из сверхпроводящего керамического материала, и между ним и поверхностью пола был отчётливо виден небольшой зазор. Масса директора вместе с блюдом составляла 120 кг, что не мешало им парить над землёй. Это явление объясняется эффектом Мейснера, который не дает магнитному полю ни проникать внутрь сверхпроводящего образца, ни выходить из него, однако важную роль здесь играет также эффект пиннинга вихрей магнитного потока (вихрей Абрикосова). Причину устойчивости левитирующего магнита легко понять с помощью метода замороженных изображений.

Диамагнитная левитация[ | ]

Тип левитации в сильном магнитном поле тела, содержащего в себе диамагнетик, например, воду. Использует диамагнитные свойства воды, которая под действием внешнего магнитного поля несколько изменяет параметры движения эл

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *