Моносахариды полисахариды – Характеристика липидов. Углеводы. Моносахариды. Дисахариды. Полисахариды

Содержание

Полисахариды — Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется

гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

ФункцияХарактеристика
ЭнергетическаяОсновной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
СтруктурнаяВходят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
ЗапасающаяНакапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
ЗащитнаяСекреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства[править | править код]

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усваиваемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.

[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Крахмал[править | править код]

Крахмалы — полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген[править | править код]

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген — аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.
  • Схема гликогена в двумерном сечении. В сердцевине находится белок гликогенин, окруженный ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30 000 глюкозных остатков.[19]

Арабиноксиланы[править | править код]

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза[править | править код]

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — почти чистая целлюлоза. Целлюлоза — полимер повторяющихся глюкозных остатков, соединенных вместе

бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин[править | править код]

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины[править | править код]

Пектины — совокупность полисахаридов, состоящих из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды — полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серных сложных эфиров.

Бактериальные капсульные полисахариды[править | править код]

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид — один из самых важных мембранных полисахаридов, играющий ключевую роль для сохранения структурной целостности клетки, а также являющийся важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигено

Моносахариды — Википедия

АльдодиозаGlycolaldehide
гликольальдегид
Альдотриозаglyceraldehyde
D-глицероза (глицераль)
(D-глицеро-триоза)
Альдотетрозыerythrose
D-эритроза
(D-эритро-тетроза)
threose
D-треоза
(D-трео-тетроза)
АльдопентозыD-ribose
D-рибоза
(D-рибо-пентоза)
D-arabinose
D-арабиноза
(D-арабино-пентоза)
D-xylose
D-ксилоза
(D-ксило-пентоза)
D-lyxose
D-ликсоза
(D-ликсо-пентоза)
АльдогексозыD-allose
D-аллоза
(D-алло-гексоза)
D-altrose
D-альтроза
(D-альтро-гексоза)
D-glucose
D-глюкоза
(D-глюко-гексоза)
D-mannose
D-манноза
(D-манно-гексоза)
gulose
D-гулоза
(D-гуло-гексоза)
idose
D-идоза
(D-идо-гексоза)
galactose
D-галактоза
(D-галакто-гексоза)
D=talose
D-талоза
(D-тало-гексоза)
АльдогептозыD-глицеро-D-аллогептоза
D-глицеро-
D-аллогептоза
D-глицеро-D-альтрогептоза
D-глицеро-
D-альтрогептоза
D-глицеро-D-глюкогептоза
D-глицеро-
D-глюкогептоза
D-глицеро-D-манногептоза
D-глицеро-
D-манногептоза
D-глицеро-D-гулоогептоза
D-глицеро-
D-гулогептоза
D-глицеро-D-идогептоза
D-глицеро-
D-идогептоза
D-глицеро-D-галактогептоза
D-глицеро-
D-галактогептоза
D-глицеро-D-талогептоза
D-глицеро-
D-талогептоза
D-глицеро-L-аллогептоза
D-глицеро-
L-аллогептоза
D-глицеро-L-альтрогептоза
D-глицеро-
L-альтрогептоза
D-глицеро-L-глюкогептоза
D-глицеро-
L-глюкогептоза
D-глицеро-L-манногептоза
D-глицеро-
L-манногептоза
D-глицеро-L-гулоогептоза
D-глицеро-
L-гулогептоза
D-глицеро-L-идогептоза
D-глицеро-
L-идогептоза
D-глицеро-L-галактогептоза
D-глицеро-
L-галактогептоза
D-глицеро-L-талогептоза
D-глицеро-
L-талогептоза
АльдооктозыD-эритро-D-аллооктоза
D-эритро-
D-аллооктоза
D-эритро-D-альтрооктоза
D-эритро-
D-альтрооктоза
D-эритро-D-глюкоктоза
D-эритро-
D-глюкооктоза
D-эритро-D-манноктоза
D-эритро-
D-маннооктоза
D-эритро-D-гулооктоза
D-эритро-
D-гулооктоза
D-эритро-D-идооктоза
D-эритро-
D-идооктоза
D-эритро-D-галактоктоза
D-эритро-
D-галактооктоза
D-эритро-D-талооктоза
D-эритро-
D-талооктоза
D-эритро-L-аллооктоза
D-эритро-
L-аллооктоза
D-эритро-L-альтрооктоза
D-эритро-
L-альтрооктоза
D-эритро-L-глюкоктоза
D-эритро-
L-глюкооктоза
D-эритро-L-манноктоза
D-эритро-
L-маннооктоза
D-эритро-L-гулооктоза
D-эритро-
L-гулооктоза
D-эритро-L-идооктоза
D-эритро-
L-идооктоза
D-эритро-L-галактоктоза
D-эритро-
L-галактооктоза
D-эритро-L-талооктоза
D-эритро-
L-талооктоза
D-трео-D-аллооктоза
D-трео-
D-аллооктоза
D-трео-D-альтрооктоза
D-трео-
D-альтрооктоза
D-трео-D-глюкоктоза
D-трео-
D-глюкооктоза
D-трео-D-манноктоза
D-трео-
D-маннооктоза
D-трео-D-гулооктоза
D-трео-
D-гулооктоза
D-трео-D-идооктоза
D-трео-
D-идооктоза
D-трео-D-галактоктоза
D-трео-
D-галактооктоза
D-трео-D-талооктоза
D-трео-
D-талооктоза
D-трео-L-аллооктоза
D-трео-
L-аллооктоза
D-трео-L-альтрооктоза
D-трео-
L-альтрооктоза
D-трео-L-глюкоктоза
D-трео-
L-глюкооктоза
D-трео-L-манноктоза
D-трео-
L-маннооктоза
D-трео-L-гулооктоза
D-трео-
L-гулооктоза
D-трео-L-идооктоза
D-трео-
L-идооктоза
D-трео-L-галактоктоза
D-трео-
L-галактооктоза
D-трео-L-талооктоза
D-трео-
L-талооктоза

Углеводы — Википедия

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Сахара́  — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Моносахариды[править | править код]

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральный pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды[править | править код]

Дисахари́ды (от др.-греч. δία ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды[править | править код]

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды[править | править код]

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Структура гликогена

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве замените

Дисахариды — Википедия

Дисахариды (от др. греч. δύο — два и σάκχαρον — сахар) — органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов.

Молекулы дисахаридов состоят из двух остатков моносахаридов, соединённых друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой) — гликозидной связи. Общая формула дисахаридов, как правило, C12H22O11.

Beta-D-Lactose.svg
Saccharose2.svg
  • Мальтоза — состоит из двух остатков глюкозы.
Maltose structure.svg

Дисахариды — твёрдые, кристаллические вещества, от слегка белого до коричневатого цвета, хорошо растворимые в воде и в 45 — 48°-градусном спирте, плохо растворимы в 96-градусном спирте, имеют оптическую активность; сладкие на вкус[1].

По химическим свойствам дисахариды можно разделить на две группы:

  1. восстанавливающие;
  2. не восстанавливающие.

К первой группе относятся: лактоза, мальтоза, целлобиоза. Ко второй: сахароза, трегалоза[2].

Восстанавливающие (редуцирующие) дисахариды[править | править код]

В данных дисахаридах один из моносахаридных остатков участвует в образовании гликозидной связи за счёт гидроксильной группы чаще всего при С-4 или С-6, реже при С-3. В дисахариде имеется свободная полуацетальная гидроксильная группа, вследствие чего сохраняется способность к раскрытию цикла. Возможностью осуществления цикло-оксо-таутометрии (кольчато-цепной) обусловлены восстановительные свойства таких дисахаридов и мутаротация их свежеприготовленных растворов[3].

Лактоза[править | править код]

Лактоза (от лат. lac — молоко) C12H22O11 — углевод группы дисахаридов, содержится в молоке и молочных продуктах. Молекула лактозы состоит из остатков молекул β- глюкозы и β-галактозы, которые соединены между собой β(1→4)-гликозидной связью. Водные растворы лактозы мутаротируют. Вступает в реакцию с фелинговой жидкостью только после кипячения в течение 15 минут[4] и реактивом Толленса, реагирует с фенилгидразином, образуя озазон. Лактоза отличается от других дисахаридов отсутствием гигроскопичности — она не отсыревает. Это её свойство имеет большое практическое значение в фармации: если нужно приготовить с сахаром какой-либо порошок, содержащий легко гидролизующееся лекарство, то берут молочный сахар; если же взять другой сахар, то он быстро отсыреет и легко гидролизующееся лекарственное вещество быстро разложится. Значение лактозы очень велико, так как она является важным питательным веществом, особенно для растущих организмов человека и млекопитающих[5].

Мальтоза[править | править код]

Мальтоза (от лат. maltum — солод) C12H22O11 — дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. Мальтоза относится к восстанавливающим сахарам, восстанавливает фелингову жидкость, даёт гидразон и озазон и может быть окислена в одноосновную мальтобионовую кислоту, которая при гидролизе даёт α-D-глюкозу и D-глюконовую кислоту. Мальтоза была синтезирована действием мальтазы (энзима дрожжей) на концентрированные растворы глюкозы. Для неё характерно явление мутаротации, сильно вращает плоскость поляризации влево[5]. Мальтоза менее сладка, чем например сахароза, однако, она более чем в 2 раза слаще лактозы.

Целлобиоза[править | править код]

Целлобиоза 4-(β-глюкозидо)-глюкоза — дисахарид, состоящий из двух остатков глюкозы, соединённых β-гликозидной связью; основная структурная единица целлюлозы. Высшие животные не в состоянии усваивать целлюлозу, так как не обладают разлагающим её ферментом. Однако улитки, гусеницы и черви, содержащие ферменты целлобиазу и целлюлазу, способны расщеплять (и тем самым утилизовать) содержащие целлобиозу растительные остатки. Целлобиоза, как и лактоза, имеет 1→4 β-гликозидную связь и является восстанавливающим дисахаридом, но в отличие от лактозы при полном гидролизе даёт только β-D-глюкозу[6].

Невосстанавливающие (нередуцирующие) дисахариды[править | править код]

Невосстанавливающие дисахариды не имеют ОН-группы ни при одном аномерном центре, в результате чего, они не вступают в реакции с фелинговой жидкостью и реактивом Толленса.

Сахароза

Трегалоза

Дисахариды широко распространены в животных и растительных организмах. Они встречаются в свободном состоянии (как продукты биосинтеза или частичного гидролиза полисахаридов), а также как структурные компоненты гликозидов и других соединений. Многие дисахариды получают из природных источников, так, например, для сахарозы основными источниками служат либо сахарная свёкла, либо сахарный тростник.

  • Энергетическая — дисахариды (сахароза, мальтоза) служат источниками глюкозы для организма человека, сахароза к тому же важнейший источник углеводов (она составляет 99,4%, от всех получаемых организмом углеводов), лактоза используются для диетического детского питания.
  • Структурная — целлобиоза имеет важное значение для жизни растений, так как она входит в состав целлюлозы.
  1. ↑ XuMuK.ru — Дисахариды — Большая Советская Энциклопедия (неопр.). Дата обращения 20 апреля 2013.
  2. ↑ А. А. Петров, Х. В. Бальян, А. Т. Трощенко — Органическая химия. Под ред. А. А. Петрова. Изд. 3-е, испр. и доп. Учебник для вузов. М.: «Высш. школа», 1973. 623 с. с ил.
  3. ↑ Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 2-е изд., перераб. и доп. — М.: Медицина, 1991. — 528 с. — (Учебная литература для студентов медицинских институтов). -ISBN 5-225-00863-1
  4. ↑ Полюдек-Фабини Р., Бейрих Т. -Органический анализ — Перевод с нем. — Л.: Химия, 1981. — 624 с.
  5. 1 2 Курс органической химии. Степаненко Б.Н. Учебник для мед. ин-тов. Изд. 2-е, перераб. и доп. М., «Высшая школа», 1974. 440 с. с ил.
  6. ↑ Сорочинская Е.И. — Биоорганическая химия. Поли- и гетерофункциональные соединения. Биополимеры и их структурные компоненты. СПб.: Изд-во СПб-госуниверситета, 1998. — 148 с

Олигосахариды — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июня 2018; проверки требуют 105 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июня 2018; проверки требуют 105 правок.

Олигосахариды — углеводы, содержащие от 2 до 10 моносахаридных остатков (от греч. ὀλίγος — немногий).

Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомоолигосахаридами, а из разных — гетероолигосахаридами.

Наиболее распространёнными из олигосахаридов являются дисахариды и трисахариды. По химической природе дисахариды — это О-гликозиды (ацетали), в которых вторая молекула моносахарида выполняет роль агликона. В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие.

Строгая номенклатура олигосахаридов весьма громоздка. Название олигосахарида образуется по типу О-замещенных производных моносахаридов, исходя из названия восстанавливающего звена с указанием всех имеющихся заместителей; для невосстанавливающих олигосахаридов номенклатура аналогична номенклатуре гликозидов. В названиях линейных олигосахаридов часто применяется последовательное перечисление моносахаридных остатков с указанием типа связи между ними.

1. Дисахариды (диозы) С12H22O11

Структурная формулаТривиальное названиеСистематическое название
Трегалулозаα-D-глюкопиранозил-(1,1)-D-фруктоза
Sucrose structure formula inkscape.svgСахароза (сукроза)α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Turanose.pngТуранозаα-D-глюкопиранозил-(1,3)-β-D-фруктофураноза
Maltulose.svgМальтулозаα-D-глюкопиранозил-(1,4)-D-фруктоза
Isomaltulose.pngИзомальтулоза (палатиноза)α-D-глюкопиранозил-(1,6)-β-D-фруктофураноза
Trehalose skeletal.svgТрегалоза (микоза)1-О-α-D-глюкопиранозил-D-глюкоза
α-D-глюкопиранозил-(1,1)-α-D-глюкопираноза (α,α-трегалоза)>
α-D-глюкопиранозил-(1,1)-β-D-глюкопираноза (β,β-трегалоза)
Kojibiose.pngКойибиозаα-D-глюкопиранозил-(1,2)-D-глюкоза
Sophorose.pngСофороза2-О-β-D-глюкопиранозил-D-глюкоза
β-D-глюкопиранозил-(1,2)-α-D-глюкопираноза (α-софороза)
β-D-глюкопиранозил-(1,2)-β-D-глюкопираноза (β-софороза)
Nigerose structure.svgНигероза (сейкбиоза)α-D-глюкопиранозил-(1,3)-D-глюкоза
Laminaribiose.svgЛаминарибиозаβ-D-глюкопиранозил-(1,3)-β-D-глюкопираноза
Maltose Haworth.svgМальтозаα-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
4-O-α-D-глюкопиранозил-D-глюкоза (α-мальтоза)
α-D-глюкопиранозил-(1-4)-β-D-глюкопираноза
4-O-β-D-глюкопиранозил-D-глюкоза (β-мальтоза)
Cellobiose.svgЦеллобиоза (Целлоза)4-О-β-D-глюкопиранозил-D-глюкоза
β-D-глюкопиранозил-(1,4)-α-D-глюкопираноза (α-целлобиоза)

β-D-глюкопиранозил-(1,4)-β-D-глюкопираноза (β-целлобиоза)

Isomaltose.svgИзомальтозаα-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Gentiobiose.png Генциобиоза (амигдалоза)β-D-глюкопиранозил-(1,6)-β-D-глюкопираноза
Лактоза (лактобиоза,таблеттоза)4-О-β-D-галактопиранозил-D-глюкоза,
β-D-галактопиранозил-(1,4)-α-D-глюкопираноза (α-лактоза)

β-D-галактопиранозил-(1,4)-β-D-глюкопираноза (β-лактоза)

Allolactose.pngАллолактозаβ-D-галактопиранозил (1,6)-β-D-глюкопираноза
Melibiose structure.svgМелибиозаα-D-галактопиранозил (1,6)-D-глюкоза
2alpha-Mannobiose.svg2α-Маннобиозаα-D-маннопиранозил-(1,2)-α-D-маннопираноза,
2-O-α-D-маннопиранозил-D-манноза
3alpha-Mannobiose.png3α-Маннобиозаα-D-маннопиранозил-(1,3)-α-D-маннопираноза,
3-O-α-D-маннопиранозил-D-манноза
Инулобиозаβ-D-фруктофуранозил-(2,1)-D-фруктоза
Леванбиозаβ-D-фруктофуранозил-(2,6)-D-фруктоза
Lactulose.pngЛактулозаβ-D-галактопиранозил-(1,4)-β-D-фруктофураноза
Melibiulose.pngМелибиуозаα-D-галактопиранозил-(1,6)-D-фруктоза
Vicianose.svgВицианозаα-D-арабинопиранозил-(1,6)-D-глюкопираноза
Sambubiose.svgСамбубиозаα-D-ксилофуранозил-(1,2)-β-D-глюкопираноза
Robinobiose.svgРобиноза (робинобиоза)α-D-рамнопиранозил-(1,6)-β-D-галактопираноза
Rutinose.pngРутинозаα-L-рамнопиранозил-(1,6)-β-D-глюкопираноза
Neohesperidose.svgНеогесперидозаα-L-рамнопиранозил-(1,2)-β-D-глюкопираноза
Люкроза
Неотрегалоза

2. Трисахариды (триозы) С18H32O16

Структурная формулаТривиальное названиеСистематическое название
Raffinose.svgРафиноза (раффиноза)α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,5)-β-D-фруктофураноза
Melezitose.pngМелицитозаα-D-глюкопиранозил-(1,3)-β-D-фруктофуранозил-(2,1)-α-D-глюкопираноза
Maltotriose.pngМальтотриозаα-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Изомальтотриозаα-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Gentianose.svgГенцианозаβ-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозид
Солатриозаα-L-рамнопиранозил-(1,2)-[β-D-глюкопиранозил-(1,3)]-D-галактоза
Целлотриозаβ-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-глюкопираноза
Erlose.pngЭрлоза (гликозилсукроза, 4G-α-D-глюкопиранозилсукроза)α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Panose.svgПанозаα-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,4)-α-D-фруктофураноза
150pxНигеротриозаα-D-глюкопиранозил-(1,3)-α-D-глюкопиранозил-(1,3)-α-D-глюкопираноза
1-Кестоза (1F-β-D-фруктозилсахароза, 1F-кестотриоза, изокестоза))β-D-фруктофуранозил-(2,1)-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
6-Кестоза (6F-β-D-фруктозилсахароза, 6F-кестотриоза)β-D-фруктофуранозил-(2,6)-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Неокестоза (6G-β-D-фруктозилсахароза, 6G-кестотриоза)β-D-фруктофуранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Инулотриоза (фруктотриоза)β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2.1)-β-D-фруктофураноза
2-фукозиллактозаα-L-фукопиранозил-(1,2)-β-D-галактопиранозил-(1.4)-D-глюкопираноза
3-фукозиллактозаα-L-фукопиранозил-(1,3)-[β-D-галактопиранозил-(1.4)]-D-глюкопираноза
Маннотриозаα-D-маннопиранозил-(1,4)-α-D-маннопиранозил-(1,4)-α-D-маннопираноза
Декстрантриозаα-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-глюкоза

3. Тетрасахариды (тетраозы) С24H42O21

Структурная формулаТривиальное названиеСистематическое название
Stachyose.svgСтахиоза (маннеотетроза, дигалактозилсахароза))α-D-галактопиранозил-(1,6)-α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозид
Лихиозаα-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозил-(1,1)-α-D-галактопиранозид
Изолихиозаα-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозил-(3,1)-α-D-галактопиранозид
Сезамозаα-D-глюкопиранозил-(1,2)-β-D-фруктофуранозил-(6,1)-α-D-галактопиранозил-(6,1)-α-D-галактопиранозид
Целлотетраозаβ-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза
1,1-Кестотетраоза (нистоза)β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2,1)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Мальтотетраозаα-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Изомальтотетраозаα-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Изомальтотетраозаα-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Рамниноза

4. Пентасахариды (пентаозы) С30H52O26

Структурная формулаТривиальное названиеСистематическое название
1,1,1-Кестопентоза (Фруктозилнистоза)β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2,1)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Мальтопентаозаα-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Целлопентаозаβ-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза
Вербаскоза (тригалактозилсахароза)α-D-галактопиранозил-(1,6)-α-D-галактопиранозил-(1,6)-α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза

5. Гексасахариды (гексаозы) С36H62O31

Структурная формулаТривиальное названиеСистематическое название
Мальтогексаозаα-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Целлогексаозаβ-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза

6. Гептасахариды (гептаозы) С42H72O36

Структурная формулаТривиальное названиеСистематическое название
Целлогептаозаβ-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза

Гомоолигосахариды[править | править код]

Дисахариды:

Трисахариды:

Тетрасахариды:

Пентасахариды:

Гексасахариды:

Гетероолигосахариды[править | править код]

Дисахариды:

Многие олигосахариды — это твёрдые кристаллические вещества или некристаллизующиеся сиропы, белого цвета или бесцветны

Углеводы: моносахариды. Важнейшие представители

Углеводы – это органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.

Само название происходит от слов «гидраты углерода» и было предложено в 1844 году К. Шмидтом. Первые представители этого класса описывались формулой Cx(H2O)y, то есть соотношение атомов водорода и кислорода 2 : 1, то есть такое же, как в воде.

Углеводы делятся на моносахариды, дисахариды и полисахариды в зависимости от числа молекул моносахаридов, которые образуются при гидролизе. Моносахариды гидролизу не подвергаются, дисахариды состоят из двух остатков моносахаридов, полисахариды состоят из большого числа моносахаридов.

Все моносахариды по числу углеродных атомов делят на тетрозы, у которых четыре атома углерода, пентозы, у которых пять атомов углерода и гексозы, у которых шесть атомов углерода. К пентозам относят рибозу5Н10О5) и дезоксирибозу5Н10О4). К гексозам относят глюкозу и фруктозу6Н12О6).

Рассмотрим особенности строения глюкозы. Из структурной формулы глюкозы видно, что это – бифункциональное соединение, которое содержит в молекуле альдегидную группу и пять гидроксильных групп. Линейная форма молекулы глюкозы существует только в растворе, а в твёрдом виде глюкоза существует в циклической α- или β-форме.

Переход линейной формы глюкозы в циклическую происходит, когда альдегидная группа близко подойдет к пятому углеродному атому. Тогда произойдет её взаимодействие с гидроксильной группой и образуется новая гидроксильная группа. Это приводит к замыканию молекулы через кислородный атом в шестичленное кольцо, и альдегидной группы в такой молекуле уже не будет.

Процесс превращения альдегидной формы в циклическую обратим. В растворе существует подвижное равновесие между ними. Оно сильно смещено в сторону образования циклической формы.

α- и β-формы отличаются положением гидроксогруппы при первом атоме углерода, а также температурами плавления.

Фруктоза является изомером глюкозы. В отличие от молекулы глюкозы, в молекуле фруктозы содержится карбонильная группа, в циклической форме фруктозы содержится пять атомов углерода, а не шесть, как в молекуле глюкозы.

Глюкоза – это бесцветное кристаллическое вещество, которое хорошо растворимо в воде, сладкое на вкус (от лат. «глюкос» − сладкий). Глюкоза и фруктоза содержится в плодах и цветках, листьях и корнях. Особенно много её в соке винограда и спелых фруктах. Мёд также состоит из смеси глюкозы и фруктозы.

В крови человека массовая доля глюкозы составляет 0,1 %. Содержание глюкозы в крови регулируется гормоном инсулином. При сахарном диабете глюкоза содержится в крови и моче в повышенной концентрации. Поэтому людям, страдающим от сахарного диабета, следует ежедневно вводить инъекции инсулина.

Фруктоза представляет собой безводные кристаллы, имеющие форму игл. Фруктоза легко растворяется в воде и спирте. Фруктоза вместе с глюкозой содержится в сладких фруктах, мёде. Среди всех моносахаридов фруктоза обладает самым сладким вкусом.

Химические свойства глюкозы обусловлены наличием альдегидной группы и гидроксильных групп. То есть глюкоза – это альдегидоспирт.

Для глюкозы характерны реакции окисления по альдегидной группе. Так, в реакции глюкозы с бромной водой образуется глюконовая кислота и происходит обесцвечивание раствора брома. Поэтому эту реакцию можно использовать для качественного определения альдегидной группы в глюкозе.

Кроме этого, глюкоза вступает в реакцию с аммиачным раствором оксида серебра (I). При этом образуется глюконовая кислота. Эта реакция также является качественной на альдегидную группу и называется реакцией «серебряного зеркала».

Если к свежеприготовленному раствору  гидроксида меди (II) прилить раствор глюкозы, то появляется ярко-синее окрашивание раствора. Эта реакция является качественной на многоатомные спирты, а в молекуле глюкозы 5 гидроксильных групп.

Если же эту смесь нагреть, то реакция идёт по альдегидной группе, образуется глюконовая кислота и выпадает осадок красного цвета – оксид меди (I). Эту реакцию можно использовать для качественного обнаружения глюкозы.

Кроме реакций окисления для глюкозы характерны реакции восстановления. Так, при восстановлении глюкозы водородом в присутствии катализатора, образуется шестиатомный спирт – сорбит.

Глюкоза обладает и специфическими свойствами. К таким реакциям относится реакция брожения. При этом под действием ферментов образуются различные вещества. При спиртовом брожении глюкозы образуется спирт этанол и углекислый газ. Этот процесс используют при производстве спирта, вина, пива, в хлебопечении.

При молочнокислом брожении образуется молочная кислота.

Молочнокислое брожение вызвано бактериями рода Lactobacillus и используется для получения простокваши, кефира, творога, сметаны, сыра, молочной кислоты. Молочная кислоты образуется при квашении капусты, силосовании кормов. Молочная кислота применяется в текстильной и кожевенной промышленности.

Маслянокислое брожение глюкозы идёт с образованием масляной кислоты, водорода и оксида углерода (IV).

В природе глюкоза образуется в процессе фотосинтеза в зелёных растениях под действием солнечного света при участии хлорофилла.

Синтез глюкозы из муравьиного альдегида осуществил в 1861 году А. М. Бутлеров.

В промышленности глюкозу получают гидролизом крахмала в присутствии серной кислоты.

Глюкоза – это ценный энергетический продукт, так как при окислении глюкозы образуется энергия, необходимая для жизнедеятельности организма. Глюкозу применяют в медицине как питательное вещество, её используют для получения аскорбиновой кислоты, сорбита, биополимеров, в кондитерской промышленности (в составе патоки), её используют для изготовления зеркал, ёлочных украшений (серебрение), в текстильной промышленности глюкозу используют для отделки тканей.

Таким образом, молекула глюкозы содержит альдегидную группу и пять гидроксильных групп. Глюкоза образует линейную и циклическую формы. Изомером глюкозы является фруктоза. Для глюкозы характерны реакции окисления, восстановления, брожения. В промышленности глюкозу получают кислотным гидролизом из крахмала. Глюкоза имеет широкое применение.

Углеводы и их виды

 

Углеводы (на англ. carbohydrate, hydrates — гидрат, carbon — углерод) — это органические соединения, которые имеют эмпирическую формулу, состоящую только из углерода, водорода и кислорода.

 

Функции углеводов

 

Углеводы выполняют множество функций в живых организмах. Полисахариды (к примеру, крахмал и гликоген) участвуют в образовании энергии и в качестве конструкционных элементов (к примеру, целлюлоза в растениях и хитин у членистоногих). Рибоза является важнейшим компонентом коферментов и основой генетической молекулы РНК. Дезоксирибоза является компонентом ДНК. Сахариды и их производные включают в себя биомолекулы, играющие ключевую роль в иммунной системе, предотвращении патогенеза, в свертываемости крови и в развитии всего организма.

 

Липогенез — это преобразование небольшой части (около 30%) съеденных углеводов в жировые отложения. Является абсолютно нормальным и естественным процессом.

 

Гиперлипогенез — преобразование значительной части углеводов в жировые отложения. Вызывается вследствие нарушения восприимчивости к инсулину, или нарушения его выработки.

 

Гликемический индекс и нагрузка

 

Термин «гликемический индекс» (ГИ) (на англ. glycemic index или glycaemic index (GI)) применяется как показатель влияния продуктов питания на уровень сахара в крови. Шкала измерения варьируется от 0 до 100. Высшую точку 100 занимает глюкоза.

 

Дополнительно: Таблица гликемического индекса продуктов.

 

Гликемическая нагрузка (ГН) (на англ. glycemic load (GL)) — это система оценки пищевых продуктов на их общую гликемическую реакцию. Чем выше гликемическая нагрузка, тем выше ожидаемое повышение глюкозы в крови и инсулиногенетическое влияние пищи.

 

 

 

ПродуктыГИУглеводы,
г
ГНИнсулиновый
индекс
Французский багет955048
Банан52201081
Морковь477.53.5
Тортилья (кукурузная лепешка)524825
Картофель50199.3121
Белый рис, варенный642415.479
Арбуз7253.6

 

Классификация углеводов и их описание

 

В диетических целях углеводы были разделены на простые (моносахариды и дисахариды) и сложные (олигосахариды и полисахариды). Термин сложный углевод был впервые использован «Специальным комитетом по питанию и потребностям человека при сенате США» (на англ. US Senate Select Committee on Nutrition and Human Needs) в 1977 году в публикации «Диетические цели для США» (на англ. Dietary Goals for the United States). Данный термин был употреблен для обозначения фруктов, овощей и цельных зерен.

 

Простые углеводы

 

Углеводы, которые усваиваются быстро. Многие простые углеводы содержат рафинированные сахара и несколько важных витаминов и минералов. Продукты: фрукты, фруктовые соки, молоко, йогурт, мед, патока и сахар.

 

Моносахариды

 

    • Глюкоза — это составная единица, из которой построены важнейшие полисахариды (такие как гликоген, целлюлоза и крахмал), а также входит в состав сахарозы, мальтозы и лактозы. Очень быстро всасывается в кровь через желудочно-кишечный тракт.

 

    • Фруктоза — моносахарид, присутствующий почти во всех сладких плодах и ягодах. В отличие от глюкозы, фруктоза не поглощается инсулинозависимыми тканями.

 

    • Галактоза входит в состав молочного сахара (лактоза).

 

    • Манноза — компонент многих полисахаридов.

 

    • Рибоза — компонент РНК.

 

    • Дезоксирибоза – производная рибозы. Является компонентом ДНК.

 

Дисахариды

 

Состоят из двух мономеров — моносахаридов.

 

    • Сахароза — это обычный сахар. Ее моносахаридами являются глюкоза и фруктоза. Много содержится в сахарной свекле и сахарном тростнике.

 

    • Мальтоза — солодовый сахар, состоящий из двух остатков глюкозы. В больших количествах содержится в проросших зернах (солоде) ячменя, ржи и в других зерновых культурах.

 

    • Изомальтоза (E953) входит в состав амилопектина растительного и животного крахмала (гликоген).

 

    • Лактоза или молочный сахар — углевод, состоящий из остатков молекул глюкозы и галактозы. У многих людей лактоза не усваивается и вызывает нарушения в пищеварительной системе. Для таких людей выпускают БАДы, не содержащие данного углевода.

 

    • Лактулоза — это дисахарид, состоящий из остатков фруктозы и галактозы. В природе не встречается.

 

Сложные углеводы

 

Требуют больше времени на переваривание, а некоторые вообще не усваиваются, но тем неменее участвуют в жизнедеятельности микрофлоры ЖКТ и выводят вредные вещества из организма. К ним относится клетчатка (целлюлоза) — элемент, являющийся основой клеточных стенок. Продукты: овощи, хлебобулочные изделия, крупы и макаронные изделия.

 

Олигосахариды

 

Состоят из десятков, но не более 20 мономеров — моносахаридов.

 

    • Фруктоолигосахариды (ФОС) (на англ. Fructooligosaccharide (FOS)) (олигофруктоза, олигофруктан) содержатся в большинстве овощах. ФОС был популярен в качестве пищевой добавки в Японии на протяжении многих лет, еще до 90-ых годов прошлого века. Служат субстратом для микрофлоры в толстой кишке. Способствуют усвоению кальция.

 

    • Галактоолигосахариды (ГОС) (на англ. Galactooligosaccharides (GOS)) (олигогалактосиллактоза, олигогалактоза, олиголактоза, трансгалактоолигосахариды) стимулируют рост бактерий в толстой кишке, повышенность которых положительно влияет на здоровье.

 

    • Маннан-олигосахариды (МОС) (на англ. Mannan-oligosaccharides (MOS)) содержатся в дрожжах. Способствуют росту полезных бактерий, регулируют баланс микрофлоры в кишечнике и желудке, а также помогает в поглощении болезнетворных бактерий и в борьбе с болезнями.

 

Полисахариды

 

Состоят из десятков, сотен или тысяч мономеров — моносахаридов.

 

    • Декстрин — полисахарид, продукт гидролиза крахмала.

 

    • Крахмал — основной полисахарид, откладываемый, как энергетический запас у растительных организмов.

 

    • Гликоген — полисахарид, откладываемый, как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений.

 

    • Целлюлоза или клетчатка — структурный компонент клеточных стенок у растений. Это самое распространенное органическое соединение на Земле.

 

    • Хитин — основной структурный полисахарид экзоскелета насекомых и членистоногих, а также клеточных стенок грибов.

 

    • Маннан содержится в высших растениях, в морских водорослях и микроорганизмах (дрожжах).

 

    • Галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева.

 

    • Глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит.

 

    • Амилоид — применяется при производстве пергаментной бумаги.

 

См. также

 

 

 

 

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *