Na соль – Урок №37. Соли: классификация, номенклатура, способы получения.

Хлорид натрия - это... Что такое Хлорид натрия?

Хлорид натрия
Хлорид натрия: химическая формула
Хлорид натрия: вид молекулы
Общие
Традиционные названия обычная соль, поваренная соль, столовая соль, пищевая соль, каменная соль, галит[1]
Химическая формула NaCl
Физические свойства
Молярная масса 58,44277 г/моль
Плотность 2,165 г/см³
Термические свойства
Температура плавления 800,8 °C
Температура кипения
1465 °C
Молярная теплоёмкость (ст. усл.) 50,8 Дж/(моль·К)
Удельная теплота испарения 170,85 кДж/моль Дж/кг
Удельная теплота плавления 28,68 кДж/моль Дж/кг
Химические свойства
pKa 6,7–7,3
Растворимость в воде 35,6 (0 °C)
35,9 (25 °C)
39,1 (100 °C) г/100 мл
Растворимость в метаноле 14,9 г/100 мл
Растворимость в аммиаке 21,5 г/100 мл
Оптические свойства
Показатель преломления 1,5442 (589 нм)
Структура
Координационная геометрия Октаэдральная (Na +)
Октаэдральная (Cl -)
Кристаллическая структура гранецентрированная кубическая, cF8
Классификация
Рег. номер CAS [7647-14-5]
Рег. номер PubChem 5234
Рег. номер EINECS 231-598-3
SMILES [Na+].[Cl-]
RTECS VZ4725000
Безопасность
ЛД50 3000–8000 мг/кг
NFPA 704 NFPA 704.svg

Хлори́д на́трия — химическое соединение NaCl, натриевая соль соляной кислоты, хлористый натрий.

Хлорид натрия известен в быту под названием поваренной соли, основным компонентом которой он является. Хлорид натрия в значительном количестве содержится в морской воде, создавая её солёный вкус. Встречается в природе в виде минерала галита (каменная соль).

Чистый хлорид натрия имеет вид бесцветных кристаллов, но с различными примесями его цвет может принимать голубой, фиолетовый, розовый, жёлтый или серый оттенок.

Нахождение в природе и производство

В природе хлорид натрия встречается в виде минерала галита, который образует залежи каменной соли среди осадочных горных пород, прослойки и линзы на берегах солёных озёр и лиманов, соляные корки в солончаках и на стенках кратеров вулканов и в сольфатарах. Огромное количество хлорида натрия растворено в морской воде. Мировой океан содержит 4 × 10 15 тонн NaCl, то есть из каждой тысячи тонн морской воды можно получить в среднем 1,3 тонны хлорида натрия. Следы NaCl постоянно содержатся в атмосфере в результате испарения брызг морской воды. В облаках на высоте полтора километра 30 % капель, больших 10 мкм по размеру, состоят из NaCl. Также он найден в кристаллах снега[2].

Наиболее вероятно, что первое знакомство человека с солью произошло в лагунах теплых морей или на соляных озёрах, где на мелководье соленая вода интенсивно испарялась под действием высокой температуры и ветра, а в осадке накапливалась соль. По образному выражению Пифагора, «соль была рождена благородными родителями: солнцем и морем»[3].

Галит

В природе хлорид натрия чаще всего встречается в виде минерала галита. Он имеет гранецентрированную кубическую решетку и содержит 39,34 % Na, 60,66 % Cl. Другими химическими элементами, входящими в состав примесей, являются: Br, N, H, Mn, Cu, Ga, As, I, Ag, Ba, Tl, Pb, K, Ca, S, O. Плотность 2,1—2, 2 г / см ³, а твёрдость по шкале Мооса — 2. Бесцветный, прозрачный минерал, со стеклянным блеском. Распространённый минерал соленосных толщ. Образуется при осаждении в замкнутых водоёмах, а также как продукт сгона на стенках кратеров вулканов. Составляет пласты в осадочных породах лагунных и морских фаций, штокоподобные тела в соляных куполах и т. п.

[4]

Каменная соль

Каменной солью называют осадочную горную породу из группы эвапоритов, состоящую более чем на 90 % из галита. Галит также часто называют каменной солью. Эта осадочная горная порода может быть бесцветной или снежно-белой, но чаще она окрашена примесями глин, талька (серый цвет), оксидами и гидроксидами железа (желтый, оранжевый, розовый, красный), битумами (бурая). Каменная соль содержит хлориды и сульфаты натрия, калия, магния и кальция, бромиды, йодиды, бораты, гипс, примеси карбонатно-глинистого материала, доломита, анкериту, магнезита, битумов и т. д.

[4]

По условиям формирования месторождений каменную соль подразделяют на следующие виды[4]:

  • рассолы современных соляных бассейнов
  • соляные подземные воды
  • залежи минеральных солей современных соляных бассейнов
  • ископаемые залежи (важнейшие для промышленности).

Морская соль

Морская соль является смесью солей (хлориды, карбонаты, сульфаты и т. д.), образующейся при полном испарении морской воды. Среднее содержание солей в морской воде составляет:

Соединение Масс. доля, %
NaCl 77,8
MgCl2 10,9
MgSO4 4,7
KCl 2,5
K2SO4 2,5
CaCO3 0,3
Ca(HCO3)2 0,3
другие соли 0,2
NFPA 704.svg Очищенная кристаллическая морская соль

При испарении морской воды при температуре 20 — 35 ° C в осадке сначала кристаллизуются наименее растворимые соли — карбонаты кальция и магния и сульфат кальция. Затем выпадают более растворимые сульфаты натрия и магния, хлориды натрия, калия и магния, и после них — сульфаты калия и магния. Последовательность кристаллизации солей и состав осадка может несколько варьироваться в зависимости от температуры, скорости испарения и других условий. В промышленности морскую соль получают из морской воды, в основном методом обычного выпаривания. Она отличается от каменной соли значительно большим содержанием других химических солей, минералов и различных микроэлементов, в первую очередь йода, калия, магния и марганца. Соответственно, она отличается от хлорида натрия и по вкусу — горько-солёный привкус ей придают соли магния. Она используется в медицине: при лечении кожных заболеваний, таких как псориаз. Как лечебное вещество в аптечной и обычной торговой сети, распространённым продуктом является соль с Мёртвого моря. В очищенном виде этот вид соли также предлагается в продуктовой торговой сети — как натуральная и богатая йодом пищевая

[5].

Залежи

Залежи каменной соли найдены во всех геологических системах. Важнейшие из них сосредоточены в кембрийских, девонских, пермских и третичных отложениях. Каменная соль составляет мощные пластовые залежи и ядра сводчатых структур (соляных куполов и штоков), образует прослойки, линзы, гнезда и вкрапления в других породах

[4]. Среди озёрных месторождений России крупнейшие — Эльтонское, Баскунчак в Прикаспии, Кучукское озеро, о. Кулундинское, Эбейты и др. озера в Зап. Сибири.

Производство

В древности технология добычи соли заключалась в том, что соляную рапу вытаскивали лошадиным приводом из шахт, которые назывались «колодцами» или «окнами», и были достаточно глубокими — 60—90 м. Извлечённую соль выливали в особый резервуар — творило, откуда она через отверстия стекала в нижний резервуар, и системой желобов подавалась в деревянные башни. Там её разливали в большие чаны, на которых соль вываривали.

На Руси поморы вываривали соль на побережье Белого моря и называли её морянка. В 1137 новгородский князь Святослав определил налог на соляные варницы[6]:

« …на мори от чрена и от салгы по пузу…
»

[7]

Беломорской солью, называемой «морянкой», торговали по всей Российской империи до начала XX века, пока её не вытеснила более дешёвая поволжская соль.

Современная добыча хлорида натрия механизирована и автоматизирована. Соль массово добывается выпариванием морской воды (тогда её называют морской солью) или рассола с других ресурсов, таких как соляные источники и соляные озера, а также разработкой соляных шахт и добычей каменной соли. Для добычи хлорида натрия из морской воды необходимы условия жаркого климата с низкой влажностью воздуха, наличие значительных низменных территорий, лежащих ниже уровня моря, или затопляемых приливом, слабая водопроницаемость почвы испарительных бассейнов, малое количество осадков в течение сезона активного испарения, отсутствие влияния пресных речных вод и наличие развитой транспортной инфраструктуры.

Мировое производство соли в 2009 году оценивается в 260 миллионов тонн. Крупнейшими мировыми производителями являются Китай (60,0 млн тонн), США (46,0 млн тонн), Германия (16,5 млн тонн), Индия (15,8 млн тонн) и Канада (14 млн тонн)

[8].

  • »

    Добыча соли в южной части Мертвого моря, Израиль

  • »

    Кристаллы каменной соли

  • »

    Плантация морской соли в Дакаре

  • »

    Соляные кучи на солончаке Уюни, Боливия

Применение

В пищевой промышленности и кулинарии

Соль поваренная

В пищевой промышленности и кулинарии используют хлорид натрия, чистота которого должна быть не менее 97 %. Его применяют как вкусовую добавку и для консервирования пищевых продуктов. Такой хлорид натрия имеет товарное название поваренная соль, порой также употребляются названия пищевая, столовая, а также уточнение названия в зависимости от её происхождения — каменная, морская, и по составу добавок — йодированная, фторированная и т. д. Такая соль является кристаллическим сыпучим продуктом с солёным вкусом без привкуса, без запаха (за исключением йодированной соли), в котором не допускаются посторонние примеси, не связанные с методом добывании соли. Кроме хлорида натрия, поваренная соль содержит небольшое количество солей кальция, магния, калия, которые придают ей гигроскопичности и жёсткости. Чем меньше этих примесей в соли, тем выше её качество.

Выделяют сорта: экстра, высший, первый и второй. Массовая доля хлористого натрия в сортах,%:

  • экстра — не менее 99,5;
  • высший — 98,2;
  • первый — 97,5;
  • второй — 97,0.

Массовая доля влаги в выварочной соли сорта «экстра» 0,1 %, в высшем сорте — 0,7 %. Допускают добавки йодида калия (йодистого калия), йодата калия, фторидов калия и натрия. Массовая доля йода должна составлять (40,0 ± 15,0) × 10 −4 %, фтора (25,0 ± 5,0) × 10 −3 %. Цвет экстра и высшего сортов — белый, однако для первого и второго допускается серый, желтоватый, розовый и голубоватый оттенки в зависимости от происхождения соли. Пищевую поваренную соль производят молотой и сеяной. По размеру зёрен молотую соль подразделяют на номера: 0, 1, 2, 3. Чем больше номер, тем больше зерна соли.

В кулинарии хлорид натрия потребляют как важнейшую приправу. Соль имеет характерный вкус, без которого пища кажется человеку пресной. Такая особенность соли обусловлена ​​физиологией человека. Однако зачастую люди потребляют соли больше, чем нужно для физиологических процессов.

Хлорид натрия имеет слабые антисептические свойства — 10-15 % содержание соли предотвращает размножение гнилостных бактерий. Этот факт обусловливает её широкое применение как консерванта.

В медицине

Изотонический раствор хлорида натрия в воде (0,9 %) применяется как дезинтоксикационное средство, для коррекции состояния систем организма в случае обезвоживания, как растворитель других лекарственных препаратов. Гипертонические растворы (10 % р-р) используют как вспомогательный осмотический диуретик при лёгочных, желудочных и кишечных кровотечениях для обеспечения форсированного диуреза, в состояниях, характеризующихся дефицитом ионов натрия и хлора, при отравлении нитратом серебра, для обработки гнойных ран (местно). В офтальмологии как местное средство раствор хлорида натрия обладает противоотёчным действием[9].

В коммунальном хозяйстве. Техническая соль

Зимой хлорид натрия, смешанный с другими солями, песком или глиной — так называемая техническая соль — применяется как антифриз против гололеда. Ею посыпают тротуары, хотя это отрицательно влияет на кожаную обувь и техническое состояние автотранспорта в виду коррозийных процессов.

Регенерация Nа-катионитовых фильтров

Nа-катионитовые фильтры широко применяются в котельных установках всех мощностей для смягчения воды при водоподготовке. Катионитовым материалом на современных водоподготовительных установках служат в основном глауконит, сульфанованные угли и синтетические смолы. Наиболее распространены сульфоугли.

Регенерацию Nа-катионитовых фильтров осуществляют 6—8%-м раствором поваренной соли, в результате действие сульфоуголя восстанавливается. Реакции идут по уравнениям:

CaR2 + 2NаСl = 2NаR + CaСl2.
МgR2 + 2NаСl = 2NаR + МgСl2.

Химическая промышленность

Соль, наряду с каменным углем, известняками и серой, образует «большую четвёрку» продуктов минерального сырья, которые являются важнейшими для химической промышленности[10]. Из неё получают соду, хлор, соляную кислоту, гидроксид натрия, сульфат натрия и металлический натрий. Кроме этого соль используется также для промышленного получения легкорастворимого в воде хлората натрия, который является средством для уничтожения сорняков[11]. Суммарное уравнение реакции электролиза горячего раствора хлорида натрия[12]:

NaCl + 3 H2O → NaClO3 + 3 H2
Получение хлора и гидроксида натрия

В промышленности путём электролиза раствора хлорида натрия получают хлор. Процессы, происходящие на электродах[13][14]:

  • на катоде как побочный продукт выделяется водород вследствие восстановления ионов H +, образованных в результате электролитической диссоциации воды:
    H2O ⇆ H+ + OH
    2 H+ + 2 e → H2
  • поскольку (вследствие практически полной электролитической диссоциации NaCl), хлор в растворе находится в виде хлорид-ионов, они окисляются на аноде до свободного хлора в виде газа:
    NaCl → Na+ + Cl
    2 Cl − 2 e → Cl2
  • суммарная реакция:
    2 NaCl + 2 H2O → 2 NaOH + Cl2↑ + H2

Как видно из уравнения суммарной реакции, ещё одним продуктом является гидроксид натрия. Расход электроэнергии на 1 т хлора составляет примерно 2700 кВт × час. Полученный хлор сжижается на жёлтую жидкость уже при обычной температуре[15].

Если между анодом и катодом нет диафрагмы, то растворенный в воде хлор начинает реагировать с гидроксидом натрия, образуя хлорид и гипохлорит натрия NaClO[14]:

2 NaOH + Cl2 → NaCl + NaClO + H2O

Поэтому для получения гидроксида натрия применяют диафрагму и соответствующий метод получения NaOH называют диафрагменным. В качестве диафрагмы применяют асбестовый картон. В процессе электролиза раствор хлорида натрия постоянно подается в анодное пространство, а из катодного пространства непрерывно вытекает раствор хлорида и гидроксида натрия. Во время выпаривания последнего хлорид кристаллизуется, поскольку его растворимость в 50 % растворе NaOH ничтожно мала (0,9 %). Полученный раствор NaOH выпаривают в железных чанах, затем сухой остаток переплавляют.

Для получения чистого гидроксида натрия (без добавок хлорида натрия) применяют ртутный метод, где используют графитовый анод и ртутный катод. Вследствие того, что перенапряжение выделения водорода на ртути очень большое, на ней вновь появляются ионы натрия и образуется амальгама натрия[14][16]:

Na+ + e → Na(Hg)

Амальгаму позже разлагают горячей водой с образованием гидроксида натрия и водорода, а ртуть перекачивают насосом обратно в электролизер:

2 Na(Hg) + 2 H2O → 2 NaOH + H2

Суммарная реакция процесса такая же, как и в случае диафрагменного метода.

Получение металлического натрия

Металлический натрий получают электролизом расплава хлорида натрия. Происходят следующие процессы:

  • на катоде выделяется натрий:
    2 Na+ + 2 e → 2 Na
  • на аноде выделяется хлор (как побочный продукт):
    2 Cl − 2 e → Cl2
  • суммарная реакция:
    2 Na+ + 2 Cl → 2 Na + Cl2

Ванна электролизера состоит из стального кожуха с футеровкой, графитового анода и кольцевого железного катода. Между катодом и анодом располагается сетчатая диафрагма. Для снижения температуры плавления NaCl (800 ° C), электролитом является не чистый хлорид натрия, а его смесь с хлоридом кальция CaCl 2 (40:60) с температурой плавления 580 ° C. Металлический натрий, который собирается в верхней части катодного пространства, содержит до 5 % примесь кальция, но последний со временем почти полностью отделяется, поскольку его растворимость в жидком натрии при температуре его плавления (371 ° C) составляет всего 0,01 %. С расходованием NaCl его постоянно добавляют в ванну. Затраты электроэнергии составляют примерно 15 кВт × ч на 1 кг натрия[17].

Получение соляной кислоты и сульфата натрия

Среди многих промышленных методов получения соляной кислоты, то есть водного раствора хлороводорода (HCl), применяется реакция обмена между хлоридом натрия и серной кислотой:

NaCl + H2SO4 → NaHSO4 + HCl↑
NaCl + NaHSO4 → Na2SO4 + HCl↑

Первая реакция происходит в значительной степени уже при обычных условиях, а при слабом нагреве идет почти до конца. Вторая происходит лишь при высоких температурах. Процесс осуществляется в специальных механизированных печах большой мощности. Хлороводород, который выделяется, обеспыливают, охлаждают и поглощают водой с образованием соляной кислоты. Как побочный продукт образуется сульфат натрия Na2SO4[18][19].

Этот метод применяется также для получения хлороводорода в лабораторных условиях.

Физические и физико-химические свойства

Температура плавления 800,8 С, кипения 1465 С.

Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в г на 100 г воды) равен 35,9 при 21 °C и 38,1 при 80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей — хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена. В чистом виде хлорид натрия не гигроскопичен. Однако соль часто бывает загрязнена примесями (преимущественно ионами Ca 2 +, Mg 2 + и SO2−4), и такая соль на воздухе сыреет[20]. Кристаллогидрат NaCl · 2H 2 O можно выделить при температуре ниже +0,15 ° C[21].

Смесь измельченного льда с мелким порошком хлорида натрия является эффективным охладителем. Так, смесь состава 30 г NaCl на 100 г льда охлаждается до температуры −20 ° C. Это происходит потому, что водный раствор соли замерзает при температуре ниже 0 ° C. Лед, имеющий температуру около 0 ° C, плавится в таком растворе, поглощая тепло окружающей среды.

Термодинамические характеристики
ΔfH0g −181,42 кДж/моль
ΔfH0l −385,92 кДж/моль
ΔfH0s −411,12 кДж/моль
ΔfH0aq −407 кДж/моль
S0g, 1 bar 229,79 Дж/(моль·K)
S0l, 1 bar 95,06 Дж/(моль·K)
S0s 72,11 Дж/(моль·K)

Диэлектрическая проницаемость NaCl — 6,3

Плотность и концентрация водных растворов NaCl

Концентрация, % Концентрация, г/л Плотность, г/мл
1 10,05 1,005
2 20,25 1,012
4 41,07 1,027
6 62,47 1,041
8 84,47 1,056
10 107,1 1,071
12 130,2 1,086
14 154,1 1,101
16 178,5 1,116
18 203,7 1,132
20 229,5 1,148
22 256 1,164
24 283,2 1,18
26 311,2 1,197

Лабораторное получение и химические свойства

При действии серной кислоты выделяет хлороводород. С раствором нитрата серебра образует белый осадок хлорида серебра.

Учитывая огромные природные запасы хлорида натрия, необходимости в его промышленном или лабораторном синтезе нет. Однако, его можно получить различными химическими методами как основной или побочный продукт.

  • получение из простых веществ натрия и хлора является экзотермической реакцией[22]:
Na(тв) + 1/2Cl2(г) → NaCl(тв) + 410 кДж
  • нейтрализация щелочи гидроксида натрия соляной кислотой[23]:
NaОН + НCl → NaCl + Н2О

Поскольку хлорид натрия в водном растворе почти полностью диссоциирован на ионы: NaCl → Na+ + Cl, его химические свойства в водном растворе определяются соответствующими химическими свойствами катионов натрия и хлорид-анионов.

Структура

Sodium chloride.JPG Кристаллическая решётка хлорида натрия.
Голубой цвет = Na+
Зелёный цвет = Cl

Хлорид натрия образует бесцветные кристаллы кубической сингонии, пространственная группа F m3m, a = 0,563874 нм, d = 2,17 г/см³. Каждый из ионов Cl окружен шестью ионами Na+ в октаедральний конфигурации, и наоборот. Если мысленно отбросить, например, ионы Na+, то останется плотно упакованная кубическая структура с ионов Cl, называемая гранецентрированной кубической решеткой. Ионы Na+ тоже образуют плотно упакованную кубическую решетку. Таким образом, кристалл состоит из двух подрешеток, сдвинутых друг относительно друга на полупериод. Такая же решетка характерна для многих других минералов.

В кристаллической решетке между атомами преобладает ионная химическая связь, что является следствием действия электростатического взаимодействия противоположных по заряду ионов

См. также

Примечания

  1. Натрия хлорид на сайте Национального института стандартов и технологии (англ. National Institute of Standards and Technology) (англ.)
  2. Б. В. Некрасов. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 218
  3. Пифагор. Золотой канон. Фигуры эзотерики. — М.: Изд-во Эксмо, 2003. — 448 с. (Антология мудрости).
  4. 1 2 3 4 Малая горная энциклопедия. В 3-х т. / Под ред. В. С. Белецкого . — Донецк: «Донбасс», 2004. — ISBN 966-7804-14-3
  5. УНИАН: Морская соль для красоты и здоровья кожи
  6. Российское законодательство Х-ХХ веков. Законодательство Древней Руси. т. 1. М, 1984. С. 224—225.  (рус.)
  7. В переводе с поморской «говори» слово чрен (црен) означает четырёхугольный ящик, кованный из листового железа, а салга — котёл, в котором варили соль. Пузом в беломорских солеварнях называли мешок соли в два четверика, то есть, объёмом около 52 литров.
  8. Соль (PDF), Геологический обзор США на сайте Программы минеральных ресурсов (англ.)
  9. Энциклопедия здоровья
  10. Онлайн Энциклопедия кругосвет. Натрий
  11. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 261
  12. Синтез хлората натрия (англ.)
  13. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 249
  14. 1 2 3 М. Л. Глинка Общая химия (Учебник), изд. 2-е изд., Перераб. и доп .. — С. 608, Киев: «Высшая школа», 1982.
  15. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 254
  16. Б. В. Некрасов. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 231
  17. Б. В. Некрасов. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 219
  18. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 250
  19. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 257—258
  20. Б. В. Некрасов. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 215—216
  21. Б. В. Некрасов. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 234
  22. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 255
  23. Б. В. Некрасов. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп. Москва, издательство «Химия», 1973 г. 656 с.; 160 табл.; 391 рис. С. 191

Ссылки

Шаблон:АТХ код A07

Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

academic.ru

Глауберова соль - это... Что такое Глауберова соль?

Глауберова соль (Мирабилит) — Na2SO4 · 10H2O, десятиводный кристаллогидрат (декагидрат) сульфата натрия. Впервые обнаружена химиком И. Р. Глаубером в составе минеральных вод, а впоследствии синтезирована действием серной кислоты на хлорид натрия. Применяется в стекольном и содовом производстве, в медицине.

Другие названия: Sal glauberi, мирабилит, сибирская соль, гуджир, сернокислый натрий.

Физические свойства

Представляет собой большие прозрачные кристаллы в форме призм. Имеет горький солёный вкус и тает на языке. Не имеет запаха. Хорошо растворима в воде. Не горит, в огне не трещит. При длительном нахождении на воздухе или нагревании выветривается (выпаривается) и теряет массу. При полном выветривании становится обычным сульфатом натрия — порошком белого цвета. Кроме самой десятиводной глауберовой соли известны ромбические кристаллы семиводного кристаллогидрата Na2SO4 · 7H2O и одноводная соль Na2SO4 · H2O.

Нахождение в природе

Природный минерал глауберовой соли называется мирабилит. Его плотность составляет всего 1,49 г/см³, что делает его одним из самых лёгких минералов.

Залежи порядка 100 млн тонн мирабилита обнаружены близ провинции Саскачеван в центральной части Канады.

В Грузии в XIX веке мирабилит был обнаружен в 30 км от г. Тбилиси. Эти залежи представляли собой высохшее солёное озеро площадью около 55 тыс. м². Пласт мирабилита толщиной порядка 5 метров был сверху покрыт пластом песчаной глины толщиной от 30 см до 4,5 м.

В зимнее время, в период примерно с 20 ноября по 15 марта, когда температура воды Каспийского моря опускается до 5,5−6 °C, мирабилит выпадает в больших количествах из вод залива Кара-Богаз-Гол в Туркмении, оседая бесцветными кристаллами на дне и берегах залива. Также содержится в озере Кучук в Западной Сибири, в соляных озёрах Томской области.

В других месторождениях, например, в Калифорнии (США), Сицилии, Германии, в Большом Малиновском озере (Астраханская область), мирабилит встречается с примесями других минералов — астраханита Na2Mg(SO4)2 · 4H2O, левеита Na2Mg(SO4)2 · 2,5H2O, вантгоффита Na6Mg(SO4)4, глауберита Na2Ca(SO4)2, глазерита Na2K6(SO4)4.

В растворённом виде глауберова соль в значительном количестве присутствует в морской воде и во многих минеральных водах, например, курортов Карловы Вары. Мариенбад в Чехии. Карловарская соль, получаемая из минеральных вод Карловых Вар на 44 % состоит из сульфата натрия (глауберовой соли), на 36 % из гидрокарбоната натрия (пищевой соды), на 18 % из хлорида натрия (поваренной соли) и на 2 % из сульфата калия.

Также мирабилит встречается в виде налёта и корок на залежах гипса и каменной соли.

Очень редко в природе встречается безводный сульфат натрия — минерал тенардит, названный в честь французского химика Л. Ж. Тенара. Для его сохранения в безводном виде необходимы засушливые пустынные зоны. Поэтому такие залежи обнаружены в Чили, в Центральной Азии, в штате Аризона (США), а также в Испании в долине реки Эбро.

История открытия

Открытие глауберовой соли датировано зимой 1626 года и непосредственно связано с перенесённой в 1625 году Глаубером болезнью — сыпным тифом, в то время именуемого «венгерской лихорадкой». Вот как сам Глаубер описывал это:

Несколько оправившись от болезни, я прибыл в Неаполис (латинизированное название Нейштадта, по-немецки — «нового города»; он расположен на реке Вид в 25 км юго-восточнее Бонна). Там у меня снова начались приступы, и я должен был остаться в этом городе. Болезнь настолько ослабила мой желудок, что он не мог ни принимать, ни переваривать никакую еду. Местные жители посоветовали мне пойти к источнику, находящемуся вблизи виноградника в часе ходьбы от города. Они сказали, что вода источника вернет мне аппетит. Следуя их совету, я взял с собой большой кусок хлеба; мне сказали, что должен буду весь его съесть, но я мало верил в то, что это мне как-то поможет. Придя к источнику, я намочил хлебный мякиш в воде и съел его — причем с большим удовольствием, хотя перед этим не мог смотреть без отвращения на самые изысканные лакомства. Взяв оставшуюся от хлеба корку, я зачерпнул ею воды из источника и выпил её. Это настолько возбудило мой аппетит, что в конце концов я съел и «чашку» из хлеба, которой черпал воду. Домой я возвратился значительно окрепшим и поделился своими впечатлениями с соседями. Я чувствовал, что если буду и дальше лечиться этой водой, функции моего желудка полностью восстановятся. Я спросил, что это за вода. Мне сказали, что в ней содержится селитра, чему тогда, не будучи искушен в подобных вопросах, я поверил.

Глаубер заинтересовался химическим составом воды источника и посвятил этому изучению всю следующую зиму. Он подружился с местным аптекарем Айснером и использовал его лабораторию для опытов. В ходе исследований он выпаривал минеральную воду и анализировал осадки. Вместо селитры в осадке оказалась ранее неизвестная соль, которую он назвал «чудесной» — по латыни «sal mirabile». В частности, название природного минерала мирабилита происходит именно из латинского названия.

Спустя много лет, в 1648 году, Глаубер проводил опыты с кислотами, а точнее получал соляную кислоту путем нагревания обычной каменной соли с серной кислотой. При слабом нагревании шла реакция образования гидросульфата натрия: NaCl + H2SO4 = NaHSO4 + HCl, а при сильном — сульфата натрия: 2NaCl + H2SO4 = Na2SO4 + 2HCl. Каково же было удивление Глаубера, когда он обнаружил, что большие прозрачные кристаллы, выпавшие в осадок, оказались той самой «чудесной солью», с которой он познакомился в молодости. В результате одной реакцией Глаубер открыл и способ получения соляной кислоты, и синтеза сульфата натрия.

Химические свойства и применение

Литература

  • Химический словарь школьника / Б. Н. Кочергин, Л. Я. Горностаева, В. М. Макаревский, О. С. Аранская. — Мн.: Народная асвета, 1990. — 255 с. — 75 000 экз. — ISBN 5-341-00127-3

Ссылки

dic.academic.ru

ГЛАУБЕРОВА СОЛЬ | Энциклопедия Кругосвет

ГЛАУБЕРОВА СОЛЬ – десятиводный сульфат натрия Na2SO4·10H2O, открыта и впервые описана немецким химиком Иоганном Глаубером. После открытия Глаубером лечебных свойств сульфата натрия это вещество было изучено достаточно подробно. Было обнаружено множество его природных источников.

Самый распространенный минерал сульфата натрия – мирабилит (природная глауберова соль), десятиводный кристаллогидрат (декагидрат) Na2SO4·10H2O. Это один из самых легких минералов (плотность 1,49 г/см3). Он выпадает в осадок из растворов в виде больших бесцветных прозрачных призм, которые на воздухе постепенно выветриваются, теряют воду и рассыпаются в белый порошок. Мирабилит встречается также в виде налетов и корок на гипсе и каменной соли во многих соляных месторождениях. Большие его количества выпадают в зимнее время из воды Кара-Богаз-Гола в Туркмении. Мирабилит содержится в озере Кучук в Западной Сибири, в соляных озерах Томской области. Огромные его залежи (порядка 100 млн. тонн) есть в провинции Саскачеван в центральной части Канады. В 19 в. в 30 км от Тбилиси были найдены богатые залежи мирабилита в виде высохшего озера площадью 55000 м2, при толщине слоя около 5 метров, прикрытого сверху слоем песчаной глины толщиной от 30 см до 4,5 м. В Калифорнии (США), Сицилии, Германии, в Большом Малиновском озере (Астраханская область) вместе с мирабилитом встречаются двойные соли: минералы астраханит Na2Mg(SO4)2·4H2O, левеит Na2Mg(SO4)2·2,5H2O, вантгоффит Na6Mg(SO4)4, глауберит Na2Ca(SO4)2, глазерит Na2K6(SO4)4. Помимо десятиводного, известны также ромбические кристаллы семиводного кристаллогидрата Na2SO4·7H2O и одноводная соль Na2SO4·H2O. Значительные количества сульфата натрия находятся в морской воде и в воде минеральных источников.

Более редок в природе безводный сульфат натрия – минерал тенардит, названный в честь французского химика Л.Ж.Тенара. Богатые залежи тенардита были найдены в Чили, в Центральной Азии, в штате Аризона (США). В Испании в долине реки Эбро был найден слой безводного сульфата (между слоями глины и гипса) толщиной до нескольких метров. Во всех этих местах есть засушливые пустынные зоны, что способствует сохранению безводной соли. Она часто встречается в виде порошка желтоватого или коричневого оттенка (из-за примесей), а иногда – в виде бесцветных прозрачных кристаллов со стеклянным блеском, которые в присутствии влаги становятся мутными и теряют прозрачность. Такие кристаллы могут осаждаться из соляных озер, но только при сильной жаре, когда температура превышает 32,4° С; при более низкой температуре в осадок выпадает кристаллогидрат. Если соляное озеро содержит и поваренную соль, тенардит осаждается при более низких температурах. Так, если раствор насыщен и сульфатом, и хлоридом натрия, безводный сульфат выпадает в осадок уже выше 18° С. Плавится сульфат натрия при 884° С.

Кристаллогидрат Na2SO4·10H2O растворяется в воде с сильным охлаждением; тепловой эффект растворения составляет 78,5 кДж/моль. При нагревании кристаллов до 32,4° С они плавятся (растворяются в собственной кристаллизационной воде). Интересная и редкая особенность сульфата натрия – максимальная его растворимость в воде при 32,4° С, которая составляет 49,8 г в 100 г воды (в расчете на безводную соль). Ниже и выше этой температуры растворимость падает – до 4,5 г при 0° С и до 42,3 г при 100° С. Сульфат натрия замечателен по способности образовывать пересыщенные растворы (См. также КРИСТАЛЛЫ): если приготовить горячий насыщенный раствор этого вещества в дистиллированной воде и медленно и осторожно охладить, то осадок не образуется. Однако небольшие воздействия (сотрясение раствора, внесение затравки – маленького кристалла Na2SO4) вызывают быструю кристаллизацию.

Сульфат натрия находит широкое применение. Он – один из основных компонентов шихты в производстве стекла, используется также при переработке древесины (так называемая сульфатная варка целлюлозы), при крашении хлопчатобумажных тканей, для получения вискозного шелка, различных химических соединений – силиката и сульфида натрия, сульфата аммония, соды, серной кислоты. Растворы сульфата натрия используются в качестве аккумулятора тепла в устройствах, сохраняющих солнечную энергию. Большая потребность в сульфате натрия приводит к его добыче в огромных масштабах. Так, в США за период с 1934 по 1947 добыча сульфата натрия выросла с 20 тысяч до 290 тысяч тонн, а к 90-м годам достигла 750 тыс. тонн.

До сих пор глауберова соль применяется, хотя и ограниченно, в медицинской практике как слабительное. Это вещество солено-холодящего, несколько горьковатого вкуса. Его действие основано на медленном всасывании соли в кишечнике и изменении в нем осмотического давления (См. также МОЛЕКУЛЯРНОЙ МАССЫ ОПРЕДЕЛЕНИЕ. ОСМОС). В результате осмоса происходит перенос воды в кишечник, его содержимое разжижается, увеличивается в объеме, и в результате усиливается перистальтика (сокращение мышц кишечника). Определенную роль играет также непосредственное раздражение рецепторов слизистой оболочки кишечника раствором сульфата натрия. Одновременно заметно усиливается и отделение желчи. Используют глауберову соль и при пищевых отравлениях, поскольку она не только очищает кишечник, но и задерживает всасывание токсинов и поступление их в кровь. При отравлении растворимыми солями бария или свинца глауберова соль способствует образованию нерастворимых сульфатов этих металлов, безвредных для организма (сульфат бария при рентгенографии желудка и кишечника даже специально вводят в пищевой тракт в виде контрастного вещества). На лечебных свойствах глауберовой и других солей основано действие минеральных вод знаменитых курортов Карлсбада (ныне Карловы Вары в Чехии), Мариенбада в Австрии и других источников. О составе этих вод можно судить по составу искусственной карлсбадской (карловарской) соли, которая содержит 44% сульфата натрия, 36% гидрокарбоната натрия, 18% хлорида натрия и 2% сульфата калия.

Илья Леенсон

Проверь себя!
Ответь на вопросы викторины «Неизвестные подробности»

Какой музыкальный инструмент не может звучать в закрытом помещении?

www.krugosvet.ru

соль - это... Что такое соль?

  • Соль - получить на Академике рабочий купон на скидку Галерея Косметики или выгодно соль купить с бесплатной доставкой на распродаже в Галерея Косметики

  • СОЛЬ — ср., муз. пятая нота в порядке, ге. II. СОЛЬ жен. составное вещество, соединение щелочи и кислоты в одно, по химическому сродству; в сем ·знач. селитра и купоросы соли, также гипс, известь, мел и пр. | Соль, поваренная, кухонная, солнокислый натр …   Толковый словарь Даля

  • СОЛЬ — ср., муз. пятая нота в порядке, ге. II. СОЛЬ жен. составное вещество, соединение щелочи и кислоты в одно, по химическому сродству; в сем ·знач. селитра и купоросы соли, также гипс, известь, мел и пр. | Соль, поваренная, кухонная, солнокислый натр …   Толковый словарь Даля

  • СОЛЬ — 1. СОЛЬ1, соли, мн. соли, солей, жен. 1. Химическое соединение, вещество, представляющее собою продукт полного или частичного замещения водорода кислоты металлом (хим.). Основные соли. Двойные соли. Отложение солей в суставах (при подагре).… …   Толковый словарь Ушакова

  • СОЛЬ — 1. СОЛЬ1, соли, мн. соли, солей, жен. 1. Химическое соединение, вещество, представляющее собою продукт полного или частичного замещения водорода кислоты металлом (хим.). Основные соли. Двойные соли. Отложение солей в суставах (при подагре).… …   Толковый словарь Ушакова

  • СОЛЬ — 1. СОЛЬ1, соли, мн. соли, солей, жен. 1. Химическое соединение, вещество, представляющее собою продукт полного или частичного замещения водорода кислоты металлом (хим.). Основные соли. Двойные соли. Отложение солей в суставах (при подагре).… …   Толковый словарь Ушакова

  • соль — См. главный, лучший, остроумие, суть аттическая соль, водить хлеб соль... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. соль сольца, белое золото, эликсир жизни, белая смерть, лизунец;… …   Словарь синонимов

  • соль — 1. СОЛЬ, и; мн. род. ей; ж. 1. только ед. Белое кристаллическое вещество с острым характерным вкусом, употребляемая как приправа к пище. Добыча соли. Очищать, выпаривать с. Крупная, мелкая с. Поваренная, столовая с. Пачка соли. Посыпать с. на… …   Энциклопедический словарь

  • СОЛЬ — (ит.). См. Sol. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. СОЛЬ Перуанская золотая монета и основная монетная единица = 5 франкам. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 …   Словарь иностранных слов русского языка

  • Соль — всем известная приправа к кушаньям, а также оберег, средство против колдовства. Для хранения С. использовали солонки. Солонка с С., как и хлеб, обязательная принадлежность стола: Без С. стол кривой (неправильный). В солонке с С. воплощалась идея… …   Российский гуманитарный энциклопедический словарь

  • СОЛЬ — (др. исл. Sól, «солнце»), в скандинавской мифологии персонификация солнца. С. дочь Мундильфари и сестра Мани (месяца), жена человека по имени Глен. Согласно «Младшей Эдде», боги отправили за гордыню С. и Мани на небо, повелев С. править двумя… …   Энциклопедия мифологии

  • dic.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2015-2019 © Игровая комната «Волшебный лес», Челябинск
    тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск