Онлайн вычисление натурального логарифма – Натуральный логарифм ln — онлайн калькулятор, формула, график

Содержание

Калькулятор логарифмов онлайн

Как решать логарифмы

Логарифм обозначается как loga b и такая запись читается как: логарифм b по основанию a.

При решении логарифмов следует учитывать что, числа a и b должны быть больше 0 и a не должно быть равно 1.

loga b существует при a > 0, a ≠ 1, b > 0

Логарифмы у которых основание a равно 2, 10 или числу e получили свои названия:

loge b у которого основание равно числу Эйлера e (е = 2.7182818284…) называется – натуральный и обозначается ln b. Например, ln 4 это тоже что loge 4, просто сама запись ln говорит что основание равно числу e и поэтому запись сокращают.

log10 b у которого основание равно 10 называется – десятичный и обозначается lg b. Например, lg 6, что тоже самое что log10 6

log2 b у которого основание равно 2 называется – двоичный и обозначается lb b, такие логарифмы часто используется в информатике. Например, lb 3, это тоже самое что log2 3.

Можно легко определить является логарифм log

a b отрицательным или положительным, для этого существует правило: если 0 1 и 0 1 тогда логарифм отрицательный, в остальных случаях положительный

loga b 1 и 0 1

Например, эти логарифмы будут отрицательными log1/3 4, log4 1/3, log2/3 5, log5 2/3 и т.д. То есть либо a либо b должны быть меньше единицы но не оба сразу.

Найти логарифм означает найти показатель степени, в которую необходимо возвести число a, чтобы получить число b. Говоря простым языком, когда мы вычисляем логарифм то всегда находим степень, и если возвести число a в эту степень получим число b.

Обозначим за х искомую степень числа a, тогда можно записать следующее уравнение: ax = b

Приведем примеры:
Дан логарифм log4 64, нам необходимо найти такой показатель степени, что при возведении в нее числа 4 должно получиться 64. Запишем уравнение:

4x = 64
4x = 43
х = 3
Проверим, возведем число 4 в степень 3: 43 = 64.

Вообще любое значение логарифма всегда просто проверить, достаточно число а возвести в степень, равную значению логарифма и если результат будет равен числу b, то ответ верный.

matematika-club.ru

Натуральный логарифм: онлайн калькулятор | BBF.RU

Логарифмирование — арифметическая операция, обратная возведению в степень. Для решения практических задач на поиск количества удвоений, утроений или удесятирений используются стандартные логарифмы. Если же требуется вычислить время, необходимое для роста до выбранного уровня, то математики используют натуральный логарифм.

Возведение в степень и логарифм

Возведение в степень представляет собой операцию повторяющегося умножения числа на само себя. Если нам требуется умножить тройку на себя 7 раз, то мы записываем это как 3 × 3 × 3 × 3 × 3 × 3 × 3. Компактная запись такого выражения выглядит как 37 — это и есть возведение в степень.

Деление — операция, обратная умножению. Если верно выражение A × B = C, то и выражение A = C / B так же верно. Такая взаимосвязь часто используется при решении линейных уравнений вида Ax + B = 0, где мы легко можем выразить неизвестное при помощи операции деления. Но что делать, если уравнение не линейное, а показательное? Например, как решить уравнение вида Ax = B. Икс — показатель степени и он нам неизвестен. Возникает задача, в какую степень требуется возвести A, чтобы получить B?

Для наглядности попробуем решить не абстрактный буквенный пример A

x = B, а числовой. Пусть есть элементарное показательное уравнение 2x = 4. В какую степень нужно возвести двойку, чтобы получить 4? Очевидно, что во вторую. Более сложное уравнение 3x = 243. Для решения такого уравнения можно постепенно умножать тройку на саму себя, пока не получим число 243. Легко подсчитать, что 3 × 3 × 3 = 27, но этого мало. Умножим еще на 3 и получим 81. Умножив еще раз мы получим искомое 243. Мы умножили 3 на себя 5 раз, следовательно, x = 5.

Ну а что делать с уравнением 2x = 5? Небольшое изменение, и элементарное уравнение превращается в практически не разрешимое вручную. Очевидно, что ответ больше 2 и меньше 3, но его точное значение мы можем узнать лишь с заданной точностью. Вот тут нам и пригодятся логарифмы. Для решения уравнения следует записать x = log2 5. Все, это и есть ответ, которого достаточно любому математику.

Понятие натурального логарифма

Таким образом, логарифм log A B – это число, в которое требуется возвести A, чтобы получить B. Число A в данном случае называется основанием, которое может быть любым, однако на практике чаще всего встречаются логарифмы с основанием 10 и e. Первые соответственно называются десятичными, а вторые — натуральными. Несмотря на название, натуральный логарифм — техническая функция.

Экспонента (число е) — иррациональное число, приблизительно равное 2,718281828. Экспонента представляет собой базовое соотношение роста для любых растущих процессов. Число e – это предельная константа, ограничивающая процессы роста так же, как скорость света ограничивает передвижение объектов в пространстве. Именно операции с экспонентой дают возможность определить темпы роста в таких ситуациях, как вычисление прироста населения, процентов по банковскому депозиту или объема полураспада радиоактивного вещества. Так как любой процесс можно описать при помощи математических формул, любой рост можно выразить упрощенной формулой вида:

Рост = ex

Например, если мы положили $100 на банковский депозит поl 9% годовых сроком на 3 года, то прибыль будет рассчитываться как:

Конечный результат: 100e(0,09 × 3) = $130.

Это простая операция возведения числа е в степень. Если же нам требуется обратная операция, то на помощь придет натуральный логарифм. Рассмотрим пример с банковским депозитом.

Вычисление необходимой ставки

В примере выше мы вычислили прибыль, но что делать, если вы инвестор и хотите получить от вклада заданный доход? Пусть у вас есть $1 000 и вы хотите, чтобы через год на банковском депозите было уже $1 500. Какую процентную ставку должен предлагать банк для осуществления этого инвестиционного плана? Составим уравнение:

Требуется найти икс, и нам на помощь спешит натуральный логарифм. Решением данного уравнения будет x = ln1,5, но если для математика такого ответа достаточно, то инвестору придется подсчитать это значение на нашем калькуляторе. Для этого введите значение в ячейку и сделайте один клик мышью. В результате получаем 0,40. Увы, никакой банк не предложит вам депозит под 40% годовых. Но зная необходимый процент вы можете определить произведение годовой ставки на количество лет. Зная, что вам требуется получить прирост в размере 40%, вы можете выбрать несколько вариаций и положить деньги в банк:

  • под 10% годовых на 4 года;
  • под 8% годовых на 5 лет;
  • под 13% годовых на 3 года.

Как видите, экспонента и натуральный логарифм необходимы не только на занятиях по алгебре.

Наш онлайн-калькулятор — это быстрая и точная программа для вычисления значений натурального логарифма. Калькулятор представляет собой сборник из четырех программ для вычисления логарифмов разного типа. Для подсчетов достаточно выбрать в меню натуральный логарифм, ввести значение в ячейки и получить результат. Программа вычисляет как само значение логарифма lnx, так и возвращает величину x при известном значении логарифма.

Использование логарифмов

Логарифмы пришли в нашу жизнь в 17-м веке, когда математики впервые упорядочили знания об арифметических операциях. Логарифмические таблицы значительно упростили масштабные расчеты и позволили ученым оперировать огромными числами.

Логарифмы широко используются для отображения графиков функций, значения которых имеют огромный разброс. Например, если требуется отобразить график, в котором присутствуют значения 1, 100 и 100 000, то на помощь приходит логарифмическая шкала, в которой числа отображаются при помощи десятичных логарифмов.

Натуральный логарифм используется в основном для описания любых процессов непрерывного роста. В целом для этого используется экспоненциальная функция, но, если требуется найти неизвестный параметр, на помощь приходит натуральный логарифм.

Заключение

Логарифм — удобный математический инструмент, который используется не только в высокой математике, но и в реальной жизни. Наш онлайн-калькулятор пригодится для простых вычислений выражений, оперирующих натуральными логарифмами.

bbf.ru

Калькулятор онлайн — Решение логарифмических уравнений

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями

, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о логарифмической функции и логарифмах и некоторые методы решения логарифмических уравнений.

Примеры подробного решения >>

ln(b) или log(b) или log(e,b)- натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x4 = 81
По определению арифметического корня имеем \( x = \sqrt[4]{81} = 3 \)

Задача 2. Решить уравнение 3x = 81
Запишем данное уравнение так: 3x = 34, откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3

x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение ax = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b

Например:

log28 = 3, так как 2
3
= 8
\( \log_3 \frac{1}{9} = -2 \), так как \( 3^{-2} = \frac{1}{9} \)
log77 = 1, так как 71 = 7

Определение логарифма можно записать так:

$$ a^{\log_a b} = b $$ Это равенство справедливо при b > 0, b > 0, \( a \neq 1 \). Его обычно называют основным логарифмическим тождеством.

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64x = 128. Так как 64 = 26, 128 = 27, то 2 6x = 27, откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить \( 3^{-2\log_3 5} \)
Используя свойства степени и основное логарифмическое тождество, находим

$$ 3^{-2\log_3 5} = \left( 3^{\log_3 5} \right)^{-2} = 5^{-2} = \frac{1}{25}$$

Решить уравнение log3(1-x) = 2
По определению логарифма 32 = 1 — x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

1) loga(bc) = logab + logac

2) \( \log_a \frac{b}{c} = \log_a b — \log_a c \)
3) logabr = r logab

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots + \frac{1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} + \dots $$

или $$ e = \sum_{n=0}^{\infty} \frac{1}{n!} $$ $$ e \approx 2,7182818284 $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

$$ \log_a b = \frac{\log_c b}{\log_c a} $$ где b > 0, a > 0, \( a \neq 1 \), c > 0, \( c \neq 1 \)

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac{\lg b}{\lg a} , \;\; \log_a b = \frac{\ln b}{\ln a} $$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0

5) Если a > 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 Если 0 ax принимает положительные значения при 0 отрицательные при х > 1.

Ось Oy является вертикальной асимптотой графика функции y = logax


Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Теорема. Если logax1 = logax2 где a > 0, \( a \neq 1 \), x1 > 0, x2 > 0, то x1 = x2

Логарифмическая функция y = logax и показательная функция y = ax, где a > 0, \( a \neq 1 \), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х2 + 4х + 3 = 8, т.е. х2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x2 — 4x + 12) = lg(x2 + 3x)
откуда
2x2 — 4x + 12 = x2 + 3x
x2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16

www.math-solution.ru

Калькулятор логарифмов и антилогарифмов онлайн

Логарифмирование — это операция, обратная возведению в степень. Если вы задаетесь вопросом, в какую степень нужно возвести 2, чтобы получить 10, то вам на помощь придет логарифм.

Обратная операция для возведения в степень

Возведение в степень — это повторяющееся умножение. Для возведения двойки в третью степень нам потребуется вычислить выражение 2 × 2 × 2. Обратная операция для умножения — это деление. Если верно выражение, что a × b = c, то обратное выражение b = a / c так же верно. Но как обратить возведение в степень? Задача обращения умножения имеет элегантное решение благодаря простому свойству, что a × b = b × a. Однако ab не равно ba, за исключением единственного случая, когда 22 = 42. В выражении ab = с, мы можем выразить a как корень b-ой степени из c, но как выразить b? Вот тут на сцене и появляются логарифмы.

Понятие логарифма

Давайте попробуем решить простое уравнение вида 2x = 16. Это показательное уравнение, так как нам требуется отыскать показатель степени. Для более простого понимания поставим задачу так: сколько раз нужно умножить двойку на саму себя, чтобы в результате получить 16? Очевидно, что 4, поэтому корень данного уравнения x = 4.

Теперь попробуем решить 2x = 20. Сколько раз нужно умножить двойку на саму себя, что бы получить 20? Это сложно, ведь 24 = 16, а 25 = 32. Рассуждая логически, корень этого уравнения располагается между 4 и 5, причем ближе к 4, возможно 4,3? Математики не терпят приблизительных вычислений и хотят знать точный ответ. Для этого они и используют логарифмы, а корнем этого уравнения будет x = log2 20.

Выражение log2 20 читается как логарифм 20 по основанию 2. Это и есть ответ, которого строгим математикам достаточно. Если вы хотите выразить это число точно, то вычислите его при помощи инженерного калькулятора. В этом случае log2 20 = 4,32192809489. Это иррациональное бесконечное число, а log2 20 — его компактная запись.

Таким элегантным способом вы можете решить любое простое показательное уравнение. Например, для уравнений:

  • 4x = 125, x = log4 125;
  • 12x = 432, x = log12 432;
  • 5x = 25, x = log5 25.

Последний ответ x = log5 25 математикам не понравится. Все потому, что log5 25 легко вычисляется и является целым числом, поэтому вы обязаны его определить. Сколько раз требуется умножить 5 на само себя, чтобы получить 25? Элементарно, два раза. 5 × 5 = 52 = 25. Поэтому для уравнения вида 5x = 25, x = 2.

Десятичный логарифм

Десятичный логарифм — это функция по основанию 10. Это популярный математический инструмент, поэтому он записывается иначе. К примеру, в какую степень нужно возвести 10, чтобы получить 30? Ответом был бы log10 30, однако математики сокращают запись десятичных логарифмов и записывают его как lg30. Точно также log10 50 и log10 360 записываются как lg50 и lg360 соответственно.

Натуральный логарифм

Натуральный логарифм — это функция по основанию e. В нем нет ничего натурального, и многих неофитов такая функция попросту пугает. Число e = 2,718281828 представляет собой константу, которая естественным образом возникает при описании процессов непрерывного роста. Как важно число Пи для геометрии, число e играет важную роль в моделировании временных процессов.

В какую степень нужно возвести число e, чтобы получить 10? Ответом был бы loge 10, но математики обозначают натуральный логарифм как ln, поэтому ответ будет записан как ln10. Тоже самое с выражениями loge 35 и loge 40, верная форма записи которых – ln34 и ln40.

Антилогарифм

Антилогарифм — это число, которому соответствует значение выбранного логарифма. Простыми словами, в выражении loga b антилогарифмом считается число ba. Для десятичного логарифма lga, антилогарифм равен 10a, а для натурального lna антилогарифм равняется ea. По сути, это тоже возведение в степень и обратная операция для логарифмирования.

Физический смысл логарифма

Нахождение степеней — чисто математическая задача, но для чего нужны логарифмы в реальной жизни? В начале развития идеи логарифмирования данный математический инструмент использовался для сокращения объемных вычислений. Великий физик и астроном Пьер-Симон Лаплас говорил, что «изобретение логарифмов сократило труд астронома и удвоило его жизнь». С развитием математического инструмента были созданы целые логарифмические таблицы, при помощи которых ученые могли оперировать огромными числами, а свойства функций позволяют преобразовать выражения, оперирующие иррациональным числами в целочисленные выражения. Также логарифмическая запись позволяет представить слишком маленькие и слишком большие числа в компактном виде.

Логарифмы нашли применение и в сфере изображения графических процессов. Если требуется нарисовать график функции, которая принимает значения 1, 10, 1 000 и 100 000, то маленькие значения будут невидны и визуально они сольются в точку около нуля. Для решения подобной проблемы используются десятичный логарифм, которой позволяет построить график функции, адекватно отображающий все ее значения.

Физический же смысл логарифмирования — это описание временных процессов и изменений. Так, логарифм по основанию 2 позволяет определить, сколько требуется удвоений начального значения для достижения определенного результата. Десятичная функция используется для поиска количества необходимых удесятирений, а натуральная представляет собой время, которое необходимо для достижения заданного уровня.

Наша программа представляет собой сборник из четырех онлайн-калькуляторов, которые позволяют вычислить логарифм по любому основанию, десятичную и натуральную логарифмическую функцию, а также десятичный антилогарифм. Для проведения вычислений вам потребуется ввести основание и число, или только число для десятичного и натурального логарифма.

Примеры из реальной жизни

Школьная задача

Как было сказано выше, иррациональные значения по типу log2 345 не требуют дополнительных преобразований, и такой ответ полностью удовлетворит учителя математики. Однако если логарифм вычисляется, вы обязаны представить его в виде целого числа. Пусть вы решили 5 примеров по алгебре, и вам требуется проверить результаты на возможность целочисленного представления. Давайте проверим их при помощи калькулятора логарифма по любому основанию:

  • log7 65 — иррациональное число;
  • log3 243 — целое число 5;
  • log5 95 — иррациональное;
  • log8 512 — целое число 3;
  • log2 2046 — иррациональное.

Таким образом, значения log3 243 и log8 512 вам потребуется переписать как 5 и 3 соответственно.

Потенцирование

Потенцирование — это нахождение антилогарифма числа. Наш калькулятор позволяет найти антилогарифмы по десятичному основанию, что по смыслу означает возведение десятки в степень n. Давайте вычислим антилогарифмы для следующих значений n:

  • для n = 1 antlog = 10;
  • для n = 1,5 antlog = 31,623;
  • для n = 2,71 antlog = 512,861.

Непрерывный рост

Натуральный логарифм позволяет описывать процессы непрерывного роста. Представим, что ВВП страны Кракожия увеличилось с 5,5 миллиардов долларов до 7,8 за 10 лет. Давайте определим ежегодный прирост ВВП в процентах при помощи калькулятора натурального логарифма. Для этого нам надо подсчитать натуральный логарифм ln(7,8/5,5), что равнозначно ln(1,418). Введем это значение в ячейку калькулятора и получим результат 0,882 или 88,2% за все время. Так как ВВП рос в течение 10 лет, то ежегодный его прирост составит 88,2 / 10 = 8,82%.

Поиск количества удесятирений

Допустим, за 30 лет количество персональных компьютеров увеличилось с 250 000 до 1 миллиарда. Сколько раз количество ПК увеличивалось в 10 раз за все это время? Для подсчета такого интересного параметра нам потребуется вычислить десятичный логарифм lg(1 000 000 000 / 250 000) или lg(4 000). Выберем калькулятор десятичного логарифма и посчитаем его значение lg(4 000) = 3,60. Получается, что с течением времени количество персональных компьютеров возрастало в 10 раз каждые 8 лет и 4 месяца.

Заключение

Несмотря на сложность логарифмов и нелюбовь детей к ним в школьные годы, этот математический инструмент находит широкое применение в науке и статистике. Используйте наш сборник онлайн-калькуляторов для решения школьных заданий, а также задач из разных научных сфер.

bbf.ru

Решение логарифмических уравнений онлайн

Логарифмическим называется уравнение в котором неизвестная величина находится под знаком логарифма, например:

Для решения таких уравнений необходимо использовать свойства логарифма:

Из последнего уравнения находим переменную x:

Представленное выше уравнение является простейшим. В более сложных случаях возможно потребуется применение других свойств логарифма. Наш калькулятор, построенный на основе системы Wolfram Alpha позволяет решать любые, даже очень сложные логарифмические уравнения с описанием подробного хода решения.

mathforyou.net

Решение логарифмов в онлайн калькуляторе

Данная страница рассматривает способы решения логарифмов, как еще одну функцию в богатом арсенале, которым располагает бесплатный калькулятор на нашем сайте. Калькулятор, считающий логарифмы онлайн, станет незаменимым помощником для тех, кому нужно простое решение математических выражений. В нашем калькуляторе любой может легко и быстро посчитать логарифм, не зная логарифмических формул, и даже не представляя суть логарифма.

Буквально 20-30 лет назад решение логарифмов требовало серьезных знаний в математике и как минимум умения пользоваться таблицей логарифмов или логарифмической линейкой. Чтобы привести к табличному виду исходное выражение, часто приходилось осуществлять сложные преобразования, учитывая свойства логарифмов и их функций.

Сегодня же достаточно иметь доступ в интернет, чтобы без труда вычислять всевозможные логарифмические уравнения и неравенства любой сложности. Размещенный на нашем сайте онлайн калькулятор может любой логарифм вычислить за одно мгновение!

Решение логарифма logyx сводится к нахождению ответа на вопрос, в какую степень требуется возвести основание логарифма y, чтобы получилось значение равное x. Онлайн калькулятор логарифмов поможет рассчитать все виды логарифмов: двоичные, десятичные и натуральные логарифмы, а также логарифм комплексного числа и логарифм отрицательного числа и др.

Вычисление логарифмов в online калькуляторе записывается как log и выполняется с помощью четырех кнопок: нахождение двоичного логарифма, решение десятичных логарифмов, с произвольным основанием и вычисление натурального логарифма.

решение логарифмов

Некоторые кнопки могут использоваться для записи одного и того же действия. Возьмем, к примеру, расчет логарифмов с произвольным основанием. Понятно что, если указать основание 10, то рассчитается десятичный логарифм, а если 2, то двоичный. Учитывая, что математическое выражение можно и вручную набрать, тогда тот же самый десятичный логарифм посчитать можно тремя способами (точнее записать эту операцию в калькуляторе):

  1. используя кнопку log, тогда нужно указать только число,
  2. с помощью кнопки logyx, через запятую указываются число и основание логарифма,
  3. внести обозначение логарифма вручную.

Подробную информацию о том, как работать с клавиатурой калькулятора, а также обзор всех его возможностей, можно найти на страницах кнопки калькулятора и функции калькулятора.

Логарифм по основанию 2

Используйте эту кнопку, чтобы рассчитать логарифм, основание которого равно двум (его также называют двоичный логарифм).

двоичный логарифм

В строке ввода отобразится запись log2(x), соответственно, вам остается внести число, без указания основания, и произвести расчет. В примере найден ответ, чему равен логарифм 8 по основанию 2.

Логарифм по основанию 2:
логарифм по основанию 2

Десятичный логарифм

Эта кнопка поможет найти логарифм числа по основанию 10.

десятичный логарифм

Логарифм десятичный онлайн калькулятор обозначает записью log(x x,y). На рисунке рассчитано, чему равен десятичный логарифм числа 10000.

Логарифм по основанию 10:
логарифм по основанию 10

Натуральный логарифм

Клавишей ln выполняется решение натуральных логарифмов, основанием которых является число е. Основание натурального логарифма е — число Эйлера — равно 2.71828182845905.

натуральный логарифм

Онлайн калькулятор может определить, чему равен натуральный логарифм любого числа. На рисунках в качестве примера найдены значения натурального логарифма: слева — ln логарифм числа 8, справа — натуральный логарифм от числа 50.

Натуральные логарифмы, примеры решения:
натуральный логарифм пример 1
натуральный логарифм пример 2

Как решать логарифмы с произвольным основанием?

Конечно, калькулятор, позволяет решить логарифм онлайн не только по определенному, но по любому основанию. Чтобы найти значение логарифмов с произвольным основанием для любого числа, используйте предназначенную для этого кнопочку logyx, она подставляет в строке ввода запись log(x x,y).

логарифмы с произвольным основанием

Определение логарифма числа:
логарифм числа

Все функции нашего бесплатного калькулятора собраны в одном разделе. Функции онлайн калькулятора >>

Решение логарифмов в онлайн калькуляторе was last modified: Март 3rd, 2016 by Admin

compuzilla.ru

Инженерный калькулятор онлайн KALKPRO.RU — самый точный калькулятор корней, степеней, синусов, косинусов, логарифмов!

Почему мы так решили? Наш онлайн калькулятор оперирует числами вплоть до 20 знаков после запятой, в отличие от других. Kalkpro.ru способен точно и достоверно совершить любые вычислительные операции, как простые, так и сложные.

Только корректные расчеты по всем правилам математики!

В любой момент и в любом месте под рукой, универсальный инженерный калькулятор онлайн выполнит для вас любую операцию абсолютно бесплатно, практически мгновенно, просто добавьте программу в закладки.

Всё для вашего удобства:

  • быстрые вычисления и загрузка,
  • верные расчеты по всем правилам,
  • полный функционал,
  • понятный интерфейс,
  • адаптация под любой размер устройства
  • бесплатно
  • не надо ничего устанавливать,
  • никакой всплывающей назойливой рекламы,
  • подробная инструкция с примерами

Содержание справки:

1. Комплекс операций инженерного калькулятора

2. Инструкция по функциям инженерного калькулятора

3. Как пользоваться инженерным калькулятором – на примерах

4. Тригонометрический калькулятор онлайн — примеры

Комплекс операций инженерного калькулятора

Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.

Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.

Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.

Ввод цифр производится в двух вариантах:

  • с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
  • с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами

Инструкция по функциям инженерного калькулятора

Для понимания возможностей программы мы даем вам краткую инструкцию, более подробно смотрите в примерах вычислений онлайн. Принцип работы с научным калькулятором такой: вводится число, с которым будет производиться вычисление, затем нажимается кнопка функции или операции, потом, если требуется, то еще цифра, например, степень, в конце — знак равенства.

Инженерный калькулятор онлайн KALKPRO.RU

  • [Inv] – обратная функция для sin, cos, tan, переключает интерфейс на другие функции
  • [Ln] – натуральный логарифм по основанию «e»
  • [ ( ] и [ ) ] — вводит скобки
  • [Int] – отображает целую часть десятичного числа
  • [Sinh] — гиперболический синус
  • [Sin] – синус заданного угла
  • [X2] – возведение в квадрат (формула x^2)
  • [n!] — вычисляет факториал введенного значения — произведение n последовательных чисел, начиная с единицы до самого введенного числа, например 4!=1*2*3*4, то есть 24
  • [Dms] – переводит из десятичного вида в формат в градусы, минуты, секунды.
  • [Cosh] — гиперболический косинус
  • [Cos] – косинус угла
  • [xy] – возведение икса в степ. игрик (формула x^y)
  • [y√x] – извлечение корня в степени y из икс
  • [Pi] – число Пи, выдает значение Pi для расчетов
  • [tanh] — гиперболический тангенс
  • [tan] – тангенс угла онлайн, tg
  • [X3] — помогает возвести в степень 3, в куб (формула x^3)
  • [3√x] — извлечь корень кубический
  • [F – E] — переключает ввод чисел в экспоненциальном представлении и обратно
  • [Exp] — позволяет вводить данные в экспоненциальном представлении.
  • [Mod] — позволяет нам вычислить остаток от деления одного числа на другое
  • [Log] – рассчитывает десятичный логарифм
  • [10^x] – возведение десяти в произвольную степень
  • [1/X] — подсчитывает обратную величину
  • [e^x] – Возведение числа Эйлера в степень
  • [Frac] – отсекает целую часть, оставляет дробную
  • [sinh-1] – обратный гиперболический синус
  • [sin-1] – арксинус или обратный синус, arcsin или 1/sin
  • [deg] – перевод угла в градусах, минутах и секундах в десятичные доли градуса, подробнее
  • [cosh-1] — обратный гиперболический косинус
  • [cos-1] – аркосинус или обрат. косинус arccos или 1/cos
  • [2*Pi] – рассчитывает число Пи, помноженное на два
  • [tanh-1] – обрат. гиперболический тангенс
  • [tan-1] – арктангенс или обратный тангенс, arctg

Как пользоваться MR MC M+ M- MS

Как пользоваться инженерным калькулятором – на примерах

Как возвести в степень

Чтобы возвести, к примеру, 12^3 вводите в следующей последовательности:

12 [xy] 3 [=]

12, клавиша «икс в степени игрик» [xy], 3, знак равенства [=]

Ответ: 1728

Как найти корень кубический

Допустим, что мы извлекаем корень кубический из 729, нажмите в таком порядке:

729 [3√x] [=]

729, [3√x] «кубический корень из икс», равенства [=]

Как найти корень на калькуляторе

Задача: Найти квадратный корень 36.

Решение: всё просто, нажимаем так:

36 [yx] 2 [=]

36, [y√x] «корень из икса, в степени игрик», нужную нам степень 2, равно [=]

Ответ: 6

При помощи этой функции вы можете найти корень в любой степени, не только квадратный.

Как возвести в квадрат

Для возведения в квадрат онлайн вычислительная программа содержит две функции:

[xy] «икс в степени игрик», [X2] «икс в квадрате»

Последовательность ввода данных такая же, как и раньше – сначала исходную величину, затем «x^2» и знак равно, либо если не квадрат, а произвольное число, необходимо нажать функцию «x^y», затем указать необходимую степень и так же нажать знак «равно».

Например: 45 [xy] 6 [=]

Ответ: сорок пять в шестой степ. равно 8303765625

Тригонометрический калькулятор онлайн — примеры

Как произвести онлайн расчет синусов и косинусов, тангенсов

Обратите внимание, что kalkpro.ru способен оперировать как градусами, так радианами и градами.

1 рад = 57,3°; 360° = 2π рад., 1 град = 0,9 градусов или 1 град = 0,015708 радиан.

Для включения того или иного режима измерения нажмите нужную кнопку:

Кнопка Deg на калькуляторе, Rad, Grad

где Deg – градусы, Rad – измерение в радианах, Grad — в градах. По умолчанию включен режим расчета в градусах.

В качестве самого простого примера найдем синус 90 градусов. Нажмите:

90 [sin] [=]

Ответ: единица

Также рассчитываются и другие тригонометрические функции, например, вычислим косинус 60 °:

60 [cos] [=]

Решение: 0,5

Аналогичным способом вычисляются обратные тригонометрические функции онлайн на КАЛКПРО — арксинус , арккосинус, арктангенс, а также гиперболические функции sinh, cosh, tanh.

Для их ввода необходимо переключить интерфейс, нажав [Inv], появятся новые кнопки – asin, acos, atan. Порядок ввода данных прежний: сначала величину, затем символ нужной функции, будь то акрсинус или арккосинус.

Преобразование с кнопкой Dms и Deg на калькуляторе

[Deg] позволяет перевести угол из формата градусы, минуты и секунды в десятичные доли градуса для вычислений. [Dms] производит обратный перевод – в формат «градусы; минуты; секунды».

Например, угол 35 o 14 минут 04 секунды 53 десятые доли секунды переведем в десятые доли:

35,140453 [Deg] [=] 35,23459166666666666666

Переведем в прежний формат: 35,23459166666666666666 [Dms] [=] 35,140453

Десятичный логарифм онлайн

Десятичный логарифм на калькуляторе рассчитывается следующим образом, например, ищем log единицы по основанию 10, log10(1) или lg1:

1 [log] [=]

Получается 0 в итоге. Для подсчета lg100 нажмем так:

100 [log] [=]

Решение: два. Как себя проверить? Что вообще такое десятичный логарифм — log по основанию 10. В нашем примере 2 – это степень в которую необходимо ввести основание логарифма, то есть 10, чтобы получить 100.

Так же вычисляется натуральный логарифм, но кнопкой [ln].

Как пользоваться памятью на калькуляторе

Существующие кнопки памяти: M+, M-, MR, MS, MC.

Добавить данные в память программы, чтобы потом провести с ними дальнейшие вычисления поможет операция MS.

MR выведет вам на дисплей сохраненную в памяти информацию. MC удалит любые данные из памяти. M- вычтет число на онлайн дисплее из запомненного в памяти.

Пример. Внесем сто сорок пять в память программы:

145 [MR]

После проведения других вычислений нам внезапно понадобилось вернуть запомненное число на экран электронного калькулятора, нажимаем просто:

[MR]

На экране отобразится снова 145.

Потом мы снова считаем, считаем, а затем решили сложить, к примеру, 85 с запомненным 145, для этого нажимаем [M+], либо [M-] для вычитания 85 из запомненного 145. В первом случае по возвращению итогового числа из памяти кнопкой [MR] получится 230, а во втором, после нажатия [M-] и [MR] получится 60.

Инженерный калькулятор kalkpro.ru быстро и точно проведет сложные вычисления, значительно упрощая ваши задачи.

  

Перечень калькуляторов и функционал будет расширяться, просто добавьте сайт в закладки и расскажите друзьям!

kalkpro.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о