Определение количества теплоты: Количество теплоты

Содержание

Количество теплоты

Количество теплоты — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q. В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: [Q] = [A] = [E] = 1 Дж. На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Количество теплоты, передаваемое от одного тела к другому, может идти на нагревание тела, плавление, парообразование, либо выделяться при противоположных процессах –

остывании тела, кристаллизации, конденсации. Теплота выделяется при сгорании топлива. Между массой вещества и количеством теплоты, необходимым для его нагревания, существует прямая пропорциональная зависимость.

  • Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры:

  • Q = cmΔT, где с — удельная теплоемкость [Дж/кг·К], m — масса тела [кг], ΔT — изменение температуры [К]
  • Количество теплоты, необходимое для превращения жидкости в пар или выделяющееся при его конденсации, прямо пропорционально массе жидкости:
  • Q = Lm, где L — удельная теплота парообразования [Дж/кг], m — масса тела [кг]
  • Количество теплоты, необходимое для плавления тела или выделяющееся при его кристаллизации, прямо пропорционально массе этого тела:
  • Q = λm, где λ (лямбда) — удельная теплота плавления [Дж/кг], m — масса тела [кг]
  • Количество теплоты, выделяющееся при сгорании топлива, прямо пропорционально его массе:
  • Q = qm, где q — удельная теплота сгорания [Дж/кг], m — масса тела [кг]

Удельная теплоемкость вещества показывает, чему равно количество теплоты, необходимое для нагревания или выделяющееся при охлаждении 1 кг вещества на 1 К.

Удельные теплоты парообразования, плавления, сгорания показывают, какое количество теплоты требуется для парообразования, плавления или выделяется при конденсации, кристаллизации, сгорании 1 кг вещества.


Другие заметки по физике

Формула количества теплоты в физике

Содержание:

Определение и формула количества теплоты

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как $\delta Q$. Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

$$\delta Q=C d T(1)$$

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

$$\delta Q=c m d T=\nu c_{\mu} d T(2)$$

где $c=\frac{C}{m}$ – удельная теплоемкость тела, m – масса тела, $c_{\mu}=c \cdot \mu$ — молярная теплоемкость, $\mu$ – молярная масса вещества, $\nu=\frac{m}{\mu}$ – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты ($\Delta Q$), которое получает тело при увеличении его температуры на величину $\Delta t = t_2 — t_1$ можно вычислить как:

$$\Delta Q=c m \Delta t(3)$$

где t2, t1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности ($\Delta t$) в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты ($\delta Q$) равное:

$$\delta Q=\lambda d m$$

где $\lambda$ – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

$$\delta Q=r d m$$

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура одной массы воды t1=10С, второй массы воды t2=60С?

Решение. Запишем уравнение теплового баланса в виде:

$$Q=Q_{1}+Q_{2}(1.1)$$

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q1=cm1t1 — количество теплоты части воды температурой t1 и массой m1; Q2=cm2t2— количество теплоты части воды температурой t2 и массой m2.

Из уравнения (1.1) следует:

$$ \begin{array}{l} \mathrm{cmt}=\mathrm{cm}_{1} t_{1}+\mathrm{~cm}_{2} t_{2} \rightarrow \mathrm{mt}=\mathrm{m}_{1} t_{1}+\mathrm{~m}_{2} t_{2} \rightarrow \\ \rightarrow \rho \mathrm{Vt}=\rho V_{1} t_{1}+\rho \mathrm{V}_{2} t_{2} \rightarrow \mathrm{Vt}=V_{1} t_{1}+V_{2} t_{2}(1.2) \end{array} $$

При объединении холодной (V1) и горячей (V2) частей воды в единый объем (V) можно принять то, что:

$$$ V=V_{1}+V_{2}(1. 3) $$$

Так, мы получаем систему уравнений:

$$ \left\{\begin{array}{c} V t=V_{1} t_{1}+V_{2} t_{2} \\ V=V_{1}+V_{2} \end{array}\right. $$

Решив ее получим:

$$ \begin{array}{l} V_{1}=\frac{\left(t_{2}-t\right)}{t_{2}-t_{1}} V \\ V_{2}=\frac{\left(t-t_{1}\right)}{t_{2}-t_{1}} V \end{array} $$

Проведем вычисления (это можно сделать, не переходя в систему СИ):

$$ \begin{array}{l} V_{1}=\frac{(60-40)}{60-10} 200=80 \text { (л) } \\ V_{2}=\frac{(40-10)}{60-10} 200=120 \text { (л) } \end{array} $$

Ответ. V1=80 л, V2=120 л.

Слишком сложно?

Формула количества теплоты не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Теплоемкость тела изменяется по линейному закону (рис.1) в зависимости от абсолютной температуры в рассматриваемом интервале $T_{1} \leq T \leq T_{2}$ . Какое количество теплоты получает тело, если T1=300 К, T2=400 К. {*}\right) \end{array} $$

Ответ. $\Delta Q$=1700 Дж

Читать дальше: Формула напряженности магнитного поля.

Количество теплоты: формула, расчет

 

Что быстрее нагреется на плите – чайник или ведро воды? Ответ очевиден – чайник. Тогда второй вопрос – почему?

Ответ не менее очевиден – потому что масса воды в чайнике меньше. Отлично. А теперь вы можете проделать самостоятельно самый настоящий физический опыт в домашних условиях. Для этого вам понадобится две одинаковые небольшие кастрюльки, равное количество воды и растительного масла, например, по пол-литра и плита. На одинаковый огонь ставите кастрюльки с маслом и водой. А теперь просто наблюдайте, что быстрее будет нагреваться. Если есть градусник для жидкостей, можно применить его, если нет, можно просто пробовать температуру время от времени пальцем, только осторожно, чтобы не обжечься. В любом случае вы вскоре убедитесь, что масло нагревается значительно быстрее воды. И еще один вопросик, который тоже можно реализовать в виде опыта. Что быстрее закипит – теплая вода или холодная? Все снова очевидно – теплая будет на финише первой. К чему все эти странные вопросы и опыты? К тому, чтобы определить физическую величину, называемую «количеством теплоты».

Количество теплоты

Количество теплоты – это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании – поглощать. А ответы на наши вопросы показали нам, от чего зависит количество теплоты? Во-первых, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус. Во-вторых, количество теплоты, необходимое для нагревания тела, зависит от того вещества, из которого оно состоит, то есть от рода вещества. И в-третьих, разность температур тела до и после теплопередачи также важна для наших расчетов. Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:

Q=cm(t_2-t_1 )  ,

где Q – количество теплоты,
m – масса тела,
(t_2-t_1 ) – разность между начальной и конечной температурами тела,
c – удельная теплоемкость вещества, находится из соответствующих таблиц.

По этой формуле можно произвести расчет количества теплоты, которое необходимо, чтобы нагреть любое тело или которое это тело выделит при остывании.

Измеряется количество теплоты в джоулях (1 Дж), как и всякий вид энергии. Однако, величину эту ввели не так давно, а измерять количество теплоты люди начали намного раньше. И пользовались они единицей, которая широко используется и в наше время – калория (1 кал). 1 калория – это такое количество теплоты, которое потребуется для нагреванияь 1 грамма воды на 1 градус Цельсия. Руководствуясь этими данными, любители подсчитывать калории в съедаемой пище, могут ради интереса подсчитать, сколько литров воды можно вскипятить той энергией, которую они потребляют с едой в течение дня.

Нужна помощь в учебе?



Предыдущая тема: Излучение: сущность, опыт, энергия
Следующая тема:&nbsp&nbsp&nbspУдельная теплоёмкость: расчет количества теплоты

Количество теплоты

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q.

Количество теплоты – это физическая величина, показывающая, какая энергия передана телу в результате теплообмена.

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: [Q] = [A] = [E] = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Количество теплоты, передаваемое от одного тела к другому, может идти на нагревание тела, плавление, парообразование, либо выделяться при противоположных процессах – остывании тела, кристаллизации, конденсации. Теплота выделяется при сгорании топлива.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

Между массой вещества и количеством теплоты, необходимым для его нагревания, существует прямая пропорциональная зависимость.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c.

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.

Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры.

Количество теплоты, необходимое для превращения жидкости в пар или выделяющееся при его конденсации, прямо пропорционально массе жидкости.

Количество теплоты, необходимое для плавления тела или выделяющееся при его кристаллизации, прямо пропорционально массе этого тела.

Количество теплоты, выделяющееся при сгорании топлива, прямо пропорционально его массе.

Во всех формулах, позволяющих рассчитывать количество теплоты для различных тепловых процессов, стоят коэффициенты пропорциональности, называемые удельными величинами, то есть приходящимися на единицу других величин. Удельные величины являются характеристиками веществ, а не тел.

Удельная теплоемкость вещества показывает, чему равно количество теплоты, необходимое для нагревания или выделяющееся при охлаждении 1 кг вещества на 1 К.


Удельные теплоты парообразования, плавления, сгорания показывают, какое количество теплоты требуется для парообразования, плавления или выделяется при конденсации, кристаллизации, сгорании 1 кг вещества.

Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.

Количество теплоты — Изобретая современный мир

Запиши свои гипотезы в тетрадь.

Спланируй и проведи эксперимент по проверке своих гипотез.

 1. Идея эксперимента.

  2. Физическое явление.

(Подсказка.Как осуществить большее или меньшее количество теплоты?  Или одинаковое?

Пламя ровное, можно считать, что за одинаковое время оно даёт одинаковое количество теплоты. Для изменения можно изменить время нагрева.)

 3. Физическое тело.

 4. Ход экспериментов.

 5. Результаты.

 6. Выводы.

       Сравни полученные результаты с эталоном:

Вывод: изменение температуры зависит от времени горения, т.е. от переданного количества теплоты.

Чем больше масса воды, тем меньше изменение температуры.    

Вывод: изменение температуры при теплообмене обратно пропорционально массе.

∆t~Q, ∆t~1/m   ∆t~Q/ m

Удобней записать Q~ m ∆t.

Вводим коэффициент пропорциональности- с.

                                                                                                                                                        Q= с m ∆t

                с = Q/ m ∆t  коэффициент характеризует свойство тел поглощать какое-то количество теплоты  для     нагрева на определённую разницу температур.

Это физическая величина, характеризующая «способность вмещать тепло»

Эта величина численно равна количеству теплоты, необходимому для нагрева тела массой 1 кг на 1°С — удельная теплоёмкость. 

Сформулируйте определение. Запишите в тетрадь.

Историческая справка

Термин «теплоёмкость» появился в физике более 200 лет назад, во второй половине 18 века, и остался в физике как память о тех кажущихся странными представлениях о тепле, холоде, температуре, которые существовали тогда в науке.

Начиная с 17 века, в физике шла борьба двух представлений о природе теплоты. Борьба эта закончилась сравнительно недавно — в середине прошлого столетия; в результате одно из теорий теплоты была отброшена полностью, а вторая восторжествовала лишь частично.

Первая теория состояла в том, что теплота — это особое вещество, способное проникать в любое тело. Чем больше этого вещества в теле, тем выше его температура. опытным фактом, на котором основывалось это представление служило то, что при контакте двух тел по-разному нагретых более тёплое из них охлаждается, а более холодное нагревается. Дело в самом деле выглядит так, как будто бы нечто переливается из более тёплого тела в более холодное. Это нечто, своего рода тепловое вещество, называли по-разному, но чаще всего -теплородом. Считалось, что всякое тело представляет собой смесь вещества самого тела с теплородом, а температура, измеряемая термометром, характеризует концентрацию теплорода в теле. Слово «температура» по латыни как раз и означает смесь. бронза, например, называлась температурой (смесью) меди и олова.

Вторая теория, впервые предложенная в начале 17 века английским учёным Бэконом, утверждала, что теплота — это движение малых частиц внутри тела (молекул, атомов, или, как говорили, нечувствительных частиц). Эта гипотеза тоже основывалась на опытных наблюдениях, показывающих, например, что движением можно вызвать нагревание. У этой теории было много сторонников, и даже очень знаменитых — Декарт, Бойль, Гук, Ломоносов.

Обе теории при всём их различии имели и кое-что общее. И та и другая сходились на том, что теплота — это нечто, содержащееся в теле. По первой гипотезе, в теле содержится теплород, по второй — частицы с их «живой силой» (так тогда называли кинетическую энергию). Сходились они и в том, что теплота не пропадёт и не появляется: если при контакте двух тел одно из них теряет теплоту, то другое получает её, так что потерянное одним тепло приобретается другим. Тем не менее, подавляющее большинство исследователей вплоть до 19 века придерживались первой теории теплоты. Чем же закончился спор о природе теплоты?

Работы, связанные с теплоёмкостью, да и другие тепловые исследования 18 века спора решить не могли. Понадобились эксперименты, которые показали, что температура тепла может повышаться и без подвода теплоты — за счёт механической работы. Понадобилось получить и более подробные сведения об атомах и молекулах, которых «подозревали» в причастности к теплоте. Всё это было сделано в 19 веке. В результате выяснилось, что теория теплорода не имеет никакого отношения к действительности и что теплота действительно связана с движением частиц внутри тел, но не так, как это себе представляли раньше. То, что «содержится» внутри тел, — это внутренняя энергия. Теплота — это энергия беспорядочного движения частиц тела, передаваемая другому телу.

    

Чем выше температура, тем сильнее происходит теплообмен с окружающей средой. (Излучение, конвекция, теплопроводность).

Скорость теплообмена тем больше, чем больше разница температур.

Закрепляем

Количество теплоты

Домашнее задание

1. Определите удельную теплоёмкость металла, если для изменения температуры от 20 до 24 С у бруска массой 100 г, 

сделанного из этого металла, внутренняя энергия увеличивается на 152 Дж.

2. Чтобы вымыть посуду, мальчик налил в таз 3 л воды, температура которой равна 10 С. сколько литров кипятка (при 100 С) нужно долить в таз, чтобы температура воды в нём стала равной 50 С?

Количество теплоты: нагревание, охлаждение, плавление, кристаллизация, парообразование, конденсация, горение. Термодинамическая система

Тестирование онлайн

  • Количество теплоты. Основные понятия

  • Количество теплоты

Термодинамика

Раздел молекулярной физики, который изучает передачу энергии, закономерности превращения одних видов энергии в другие. В отличие от молекулярно-кинетической теории, в термодинамике не учитывается внутреннее строение веществ и микропараметры.

Термодинамическая система

Это совокупность тел, которые обмениваются энергией (в форме работы или теплоты) друг с другом или с окружающей средой. Например, вода в чайнике остывает, происходит обмен теплотой воды с чайником и чайника с окружающей средой. Цилиндр с газом под поршнем: поршень выполняет работу, в результате чего, газ получает энергию, и изменяются его макропараметры.

Количество теплоты

Это энергия, которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях.

В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.

Нагревание и охлаждение

Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле

Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость — известная, уже вычисленная для всех веществ величина, значение смотреть в физических таблицах.

Теплоемкость вещества С — это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.

Плавление и кристаллизация

Плавление — переход вещества из твердого состояния в жидкое. Обратный переход называется кристаллизацией.

Энергия, которая тратится на разрушение кристаллической решетки вещества, определяется по формуле

Удельная теплота плавления известная для каждого вещества величина, значение смотреть в физических таблицах.

Парообразование (испарение или кипение) и конденсация

Парообразование — это переход вещества из жидкого (твердого) состояния в газообразное. Обратный процесс называется конденсацией.

Удельная теплота парообразования известная для каждого вещества величина, значение смотреть в физических таблицах.

Горение

Количество теплоты, которое выделяется при сгорании вещества

Удельная теплота сгорания известная для каждого вещества величина, значение смотреть в физических таблицах.

Для замкнутой и адиабатически изолированной системы тел выполняется уравнение теплового баланса. Алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующим в теплообмене, равна нулю:

Q1+Q2+…+Qn=0

Определение количества теплоты.

Содержание:

Определение количества теплоты.

  • Ключевое определение Наиболее важным моментом при расчете теплового оборудования является определение количества тепла, участвующего в процессе. Его точное определение дает правильную оценку работы устройства с экономической точки зрения. Это особенно ценно в сравнительных испытаниях. Если процесс передает

тепло организму, его состояние изменяется, что обычно сопровождается изменением температуры, которое получается единичным количеством вещества с бесконечно малыми изменениями состояния, называется удельной теплотой тела в этом процессе. СХ =

. Отношение теплоты dq к изменению температуры dt Людмила Фирмаль

dqjdt. (6-1) Величина q в Формуле (6-1) зависит не только от диапазона температур, но и от вида процесса теплоснабжения, который характеризуется постоянным параметром X. Это объем тела y, давление p и др. Общее количество тепла, полученного в этом процессе, определяется уравнением . dqp / КДС = cLdTp / АКДС + Т(ДП /

ДТ) V и ДВП / dTpr с учетом dqp = cpdTp 4 СР-СV = Т(<др / ДТ)Н (Ди / ДТ) р. (6-16)) Если известны уравнения состояния фактического газа и КП (это можно определить по опыту), то последняя формула имеет вид Очень трудно идентифицировать СС, и также очень трудно идентифицировать любой опыт. Для реального газа、 Вода-cv> R Это

  • неравенство объясняется тем, что при расширении реального газа (Р = const) не только внешняя, но и внутренняя работа осуществляется в связи с изменением внутренней потенциальной энергии вне тела, что вызывает больший расход тепла. Формула (6-9)- теплоемкость cp и Cv ’ Для идеального газа (du / dv) T = 0, а из уравнения состояния p

= RT, p (di / dT)p = R, (6-10) СР-С0-Ф-Р-и СР-СV-Р Это уравнение называется уравнением Майера. Можно записать в 1 кмоль. \ xsr = / xcv + / xR, или\ lsr-ycv = 8.3142 кДж / (кмоль-град). Таким образом, для идеального газа разница между\ xcp и \ xcv является постоянной величиной. Формула удельной теплоемкости cp получена путем получения давления p и температуры T в качестве независимых

параметров. йд = Ди-ВДП Или йд =(не) р ДТ — \ в-(Ди! ДП) Т \ ДП(6-11) Вот почему p = const dqp = Поэтому теплоемкость при постоянном давлении СР =(Ди / ДТ) ПФ; (6-12) I для температуры T и является функцией p и T. Поскольку энтальпия идеального газа не зависит от давления и объема и является

То есть удельная теплоемкость тела при p = const cp равна частной производной энтальпии Людмила Фирмаль

температуры 1, удельная теплоемкость идеального газа в любом процессе равна СР = Ди / ДТ. «» Тогда уравнение первого закона термодинамики dq = di-идеальный газ vdp может быть переписан как: и DQ = cpdt аппликации-ВДП. * ’(6-13)) Первые законы термодинамики с независимыми переменными v и T выражаются в различных формах. йд = Ct4T + машины CNC специальной Но p = RT /

v = T (dp / dTU, где R / v =(dr / dT) 0 И»dq = c-JT + T (dr / dT)0 dv. (6-14)) Используя последнее уравнение, можно найти зависимость между определенной емкостью cp и cv. Для изобарного процесса(p-const) формула (6-14) принимает вид: dqp = c, dTr,+ T (другое! ДТ) 1 ДВП. 。 (6-15) разделите левую и правую части уравнения (6-15) на dTp:>. dqp / lsr-ycv = 8.3142 кДж / (кмоль-град). Таким образом, для идеального газа

разница между\ xcp и \ xcv является постоянной величиной. Формула удельной теплоемкости cp получена путем получения давления p и температуры T в качестве независимых параметров. йд = Ди-ВДП Или йд =(не) р ДТ — \ в-(Ди! ДП) Т \ ДП(6-11) Вот почему p = const dqp = Поэтому теплое КДС = cLdTp / АКДС + Т(ДП / ДТ) V и ДВП / dTpr с учетом dqp = cpdTp 4 СР-СV = Т(<др / ДТ)Н (Ди / ДТ) р. (6-16)) Если известны уравнения состояния фактического газа и КП (это можно определить

по опыту), то последняя формула имеет вид Очень трудно идентифицировать СС, и также очень трудно идентифицировать любой опыт. Для реального газа、 Вода-cv> R Это неравенство ичина ценно в сравнительных испытаниях. Если процесс передает тепло организму, его состояние изменяется, что обычно сопровождается изменением температуры. Отношение теплоты dq к изменению

температуры dt, которое получается единичным количеством вещества с бесконечно малыми изменениями состояния, называется удельной теплотой тела в этом процессе. СХ = dqjdt. (6-1) Величина q в Формуле (6-1) зависит не т q в Формуле (6-1) зависит не только от диапазона температур, но и от ви объясняется тем, что при расширении реального газа (Р = const) не только внешняя, но и внутренняя работа осуществляется в связи с изменением внутренней потенциальной энергии вне тела, что вызывает больший расход тепла.

Смотрите также:

Решение задач по термодинамике

Учебное пособие по физике

На предыдущей странице мы узнали, что тепло делает с объектом, когда оно накапливается или выделяется. Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы. Тепло — это передача энергии. Когда объект приобретает или теряет его, внутри этого объекта будут соответствующие изменения энергии. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта. Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект.А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется. В этой части Урока 2 мы рассмотрим вопрос . Как измерить количество тепла, полученного или выделенного объектом?

Удельная теплоемкость

Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково. Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет.Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Удельная теплоемкость относится к количеству тепла, необходимому для изменения температуры единицы массы (скажем, грамма или килограмма) на 1 ° C. В учебниках часто указывается удельная теплоемкость различных материалов. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения — Дж / г / ° C. Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов.Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.) И нажмите кнопку «Отправить»; результаты будут отображаться в отдельном окне.


Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.

Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они перечислены на основе на сумму , указывает на то, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько вещества имеется.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при температуре 100 ° C на уровне моря и при слегка пониженной температуре на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечается, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется значительно больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.

Удельная теплоемкость также указана из расчета на K или на ° C. Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.

Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» в некоторой степени похож на неправильное обозначение . Этот термин означает, что вещества могут иметь способность содержать вещь , называемую теплотой. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с разной температурой, мы называем переданную энергию тепловой или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.


Связь количества тепла с изменением температуры

Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества, с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

Q = м • C • ΔT

где Q — количество тепла, переданного объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины вычисляется путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T конечный — T начальный .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает на то, что объект выделяет тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.

Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Обычная задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

Пример задачи 1
Какое количество тепла требуется для повышения температуры 450 граммов воды с 15 ° C до 85 ° C? Удельная теплоемкость воды 4.18 Дж / г / ° C.

Как и любая проблема в физике, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

м = 450 г
C = 4,18 Дж / г / ° C
Т начальная = 15 ° С
T окончательная = 85 ° C

Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.

T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C

Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить для Q.

Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
Q = 131670 Дж
Q = 1.3×10 5 J = 130 кДж (округлено до двух значащих цифр)

Пример задачи 2
Образец 12,9 грамма неизвестного металла при температуре 26,5 ° C помещают в чашку из пенополистирола, содержащую 50,0 граммов воды при температуре 88,6 ° C. Вода охлаждается, и металл нагревается, пока не будет достигнуто тепловое равновесие при 87,1 ° C. Предполагая, что все тепло, теряемое водой, передается металлу, а чашка идеально изолирована, определите удельную теплоемкость неизвестного металла.Удельная теплоемкость воды составляет 4,18 Дж / г / ° C.


По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, теряемого водой (Q вода ), равно количеству тепла, полученного металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно вычислить Q water .Это значение воды Q равно значению металла Q . Как только значение металла Q известно, его можно использовать со значением m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:

Часть 1: Определение потерь тепла водой

Дано:

м = 50,0 г
C = 4,18 Дж / г / ° C
Т начальная = 88,6 ° С
Т финал = 87.1 ° С
ΔT = -1,5 ° C (T конечный — T начальный )

Решение для воды Q :

Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
Q вода = -313,5 Дж (без заземления)
(Знак — означает, что вода теряет тепло)

Часть 2: Определите стоимость металла C

Дано:

Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
m = 12,9 г
Т начальная = 26,5 ° С
T окончательная = 87,1 ° C
ΔT = (T конечный — T начальный )

Решить для металла C :

Переставьте металл Q = m металл • C металл • ΔT металл , чтобы получить металл C = Q металл / (м металл • ΔT металл )

C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
C металл = 0,40103 Дж / г / ° C
C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)


Тепло и изменения состояния

Приведенное выше обсуждение и соответствующее уравнение (Q = m • C • ∆T) связывает тепло, получаемое или теряемое объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.

Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.

Процесс

Изменение состояния

Плавка

От твердого до жидкого

Заморозка

От жидкости к твердому веществу

Испарение

От жидкости к газу

Конденсация

Газ — жидкость

Сублимация

Твердое тело в газ

Депонирование

Газ — твердое вещество


В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена ​​энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.

Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое субстанция, от того, сколько субстанции претерпевает изменение состояния, и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)


Значения удельной теплоты плавления и удельной теплоты парообразования указаны из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 граммов льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.

Для плавления и замораживания: Q = m • ΔH сварка
Для испарения и конденсации: Q = m • ΔH испарение

где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH плавления представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоемкость плавления. испарение (из расчета на грамм).Подобно обсуждению Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.

В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

Пример задачи 3
Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и высвобождено напитком) в процессе таяния? Теплота плавления воды 333 Дж / г.

Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.

Q = м • ΔH сварка = (48,2 г) • (333 Дж / г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

Пример Задачи 3 включает в себя довольно простое вычисление типа «подключай и исправляй». Теперь мы попробуем пример задачи 4, который потребует более глубокого анализа.

Пример задачи 4
Какое минимальное количество жидкой воды на 26.5 градусов, которые потребуются, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды составляет 4,18 Дж / г / ° C, а удельная теплота плавления льда — 333 Дж / г.

В этой задаче тает лед и остывает жидкая вода. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.

Мы знаем следующее о льду и жидкой воде:

Информация о льду:

м = 50,0 г
ΔH плавление = 333 Дж / г

Информация о жидкой воде:

С = 4.18 Дж / г / ° C
Т начальная = 26,5 ° С
T окончательная = 0,0 ° C
ΔT = -26,5 ° C (T конечный — T начальный )

Энергия, полученная льдом, равна энергии, потерянной из воды.

Q лед = -Q жидкая вода

Знак — указывает, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

Q лед = m • ΔH плавление = (50.0 г) • (333 Дж / г)
Q лед = 16650 Дж

Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

16650 Дж = -Q жидкая вода
16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)


Еще раз о кривых нагрева и охлаждения

На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.

Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена ​​кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.


Три диагональных участка представляют собой изменения температуры пробы воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Две горизонтальные секции представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, переданного воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения формулами Q = m • ΔH fusion (раздел 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:

Твердая вода: C = 2,00 Дж / г / ° C
Жидкая вода: C = 4,18 Дж / г / ° C
Газообразная вода: C = 2.01 Дж / г / ° C

Наконец, мы будем использовать ранее сообщенные значения ΔH fusion (333 Дж / г) и ΔH испарения (2,23 кДж / г).

Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.

Используйте Q 1 = m • C • ΔT

, где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C

Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
Q 1 = 2,00 x10 3 J = 2,00 кДж

Раздел 2 : Таяние льда при 0,0 ° C.

Используйте Q 2 = m • ΔH сварка

, где m = 50,0 г и ΔH плавление = 333 Дж / г

Q 2 = м • ΔH плавление = (50,0 г) • (333 Дж / г)
Q 2 = 1,665 x10 4 Дж = 16.65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.

Используйте Q 3 = m • C • ΔT

, где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальная = 0,0 ° C и T конечная = 100,0 ° C

Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
Q 3 = 2.09 x10 4 J = 20,9 кДж

Раздел 4 : Кипячение воды при 100,0 ° C.

Использовать Q 4 = m • ΔH испарение

, где m = 50,0 г и ΔH испарение = 2,23 кДж / г

Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)

Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.

Используйте Q 5 = m • C • ΔT

, где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальная = 100,0 ° C и T конечная = 120,0 ° C

Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
Q 5 = 2,01 x10 3 J = 2,01 кДж

Общее количество тепла, необходимое для превращения твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, является суммой значений Q для каждого участка графика.То есть

Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.


В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

  • Первое: длинная задача была разделена на части, каждая из которых представляет собой одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были обозначены как Q 1 , Q 2 и т. Д. Такой уровень организации требуется в многоступенчатой ​​задаче, такой как эта.
  • Секунда: Внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины за вычетом начального значения этой величины.
  • Третий: На протяжении всей задачи внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина сбоев в подобных проблемах.
  • Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

Мы узнали здесь, на этой странице, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

Проверьте свое понимание

1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?

а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что она хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы изменить ее температуру на небольшое количество.

2. Объясните, почему в больших водоемах, таких как озеро Мичиган, в начале июля может быть довольно прохладно, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).

3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

Процесс

Получено или потеряно тепло?

Эндо- или экзотермический?

Вопрос: + или -?

а.

Кубик льда помещают в стакан с лимонадом комнатной температуры, чтобы охладить напиток.

г.

Холодный стакан лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F.

г.

Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры.

г.

Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода.

e.

Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды).

4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.

5. Джейк берет из туалета банку с газировкой и выливает ее в чашку со льдом. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).

6. Теплота сублимации (ΔH сублимации ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).

3.12: Расчеты энергоемкости и теплоемкости

Цели обучения

  • Для связи теплопередачи с изменением температуры.

Тепло — знакомое проявление передачи энергии. Когда мы прикасаемся к горячему объекту, энергия перетекает от горячего объекта к нашим пальцам, и мы воспринимаем эту поступающую энергию как «горячий» объект. И наоборот, когда мы держим кубик льда в ладонях, энергия перетекает из руки в кубик льда, и мы воспринимаем эту потерю энергии как «холод».«В обоих случаях температура объекта отличается от температуры нашей руки, поэтому мы можем сделать вывод, что разница температур является основной причиной теплопередачи.

Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении. Уравнение, связывающее тепло \ (\ left (q \ right) \) с удельной теплоемкостью \ (\ left (c_p \ right) \), массой \ (\ left (m \ right) \) и изменением температуры \ (\ left (\ Delta T \ right) \) показан ниже.

\ [q = c_p \ times m \ times \ Delta T \]

Поглощаемое или выделяемое тепло измеряется в джоулях. Масса измеряется в граммах. Изменение температуры определяется выражением \ (\ Delta T = T_f — T_i \), где \ (T_f \) — конечная температура, а \ (T_i \) — начальная температура.

Каждое вещество имеет характерную удельную теплоемкость, которая выражается в единицах кал / г • ° C или кал / г • К, в зависимости от единиц, используемых для выражения Δ T .\text{o} \text{C} \right)\)»> 0.233

Направление теплового потока не отображается в heat = mc Δ T . Если энергия поступает в объект, общая энергия объекта увеличивается, и значения тепла Δ T положительны. Если энергия исходит из объекта, общая энергия объекта уменьшается, а значения тепла и Δ T отрицательны.

Пример \ (\ PageIndex {1} \)

A \ (15.0 \: \ text {g} \) кусок металлического кадмия поглощает \ (134 \: \ text {J} \) тепла, поднимаясь из \ (24.\ text {o} \ text {C} \]

Пример \ (\ PageIndex {2} \)

Какое количество тепла передается при нагревании блока металлического железа весом 150,0 г с 25,0 ° C до 73,3 ° C? Какое направление теплового потока?

Решение

Мы можем использовать heat = mc Δ T , чтобы определить количество тепла, но сначала нам нужно определить Δ T . Поскольку конечная температура утюга составляет 73,3 ° C, а начальная температура составляет 25,0 ° C, Δ T имеет следующий вид:

Δ T = T конечный T начальный = 73.\ circ C) = 782 \: cal} \]

Обратите внимание, как единицы измерения грамм и ° C отменяются алгебраически, оставляя только единицу калорий, которая является единицей тепла. Поскольку температура железа увеличивается, энергия (в виде тепла) должна переходить в металл .

Упражнение \ (\ PageIndex {1} \)

Какое количество тепла передается при охлаждении блока металлического алюминия массой 295,5 г с 128,0 ° C до 22,5 ° C? Какое направление теплового потока?

Ответ
Тепло уходит из алюминиевого блока.

Пример \ (\ PageIndex {2} \)

Образец красновато-коричневого металла массой 10,3 г выделил 71,7 кал тепла при снижении его температуры с 97,5 ° C до 22,0 ° C. Какова удельная теплоемкость металла? Можете ли вы идентифицировать металл по данным в Таблице \ (\ PageIndex {1} \)?

Решение

Вопрос дает нам тепло, конечную и начальную температуры и массу образца. Значение Δ T составляет:

Δ T = T конечный T начальный = 22.\ circ C)}} \)

c = 0,0923 кал / г • ° C

Это значение удельной теплоемкости очень близко к значению, приведенному для меди в таблице 7.3.

Упражнение \ (\ PageIndex {2} \)

Кристалл хлорида натрия (NaCl) массой 10,7 г имеет начальную температуру 37,0 ° C. Какова конечная температура кристалла, если на него было подано 147 кал тепла?

Ответ

Сводка

Проиллюстрированы расчеты теплоемкости.

Материалы и авторство

Эта страница была создана на основе содержимого следующими участниками и отредактирована (тематически или всесторонне) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:

Удельная теплоемкость | Безграничная физика

Тепловая мощность

Теплоемкость измеряет количество тепла, необходимое для повышения температуры объекта или системы на один градус Цельсия.

Цели обучения

Объясните энтальпию в системе с постоянным объемом и давлением

Основные выводы

Ключевые моменты
  • Теплоемкость — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры вещества на заданную величину. Он измеряется в джоулях на Кельвин и выражается в.
  • Теплоемкость — это обширное свойство, которое зависит от размера системы.
  • Теплоемкость большинства систем непостоянна (хотя ее часто можно рассматривать как таковую).Это зависит от температуры, давления и объема рассматриваемой системы.
Ключевые термины
  • теплоемкость : количество тепловой энергии, необходимое для повышения температуры объекта или единицы материи на один градус Цельсия; в джоулях на кельвин (Дж / К).
  • энтальпия : общее количество энергии в системе, включая внутреннюю энергию и энергию, необходимую для вытеснения окружающей среды

Тепловая мощность

Теплоемкость (обычно обозначается заглавной буквой C, часто с индексами) или теплоемкость — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры вещества на заданную величину.В единицах СИ теплоемкость выражается в джоулях на кельвин (Дж / К).

Теплоемкость объекта (обозначение C ) определяется как отношение количества тепловой энергии, переданной объекту, к результирующему увеличению температуры объекта.

[латекс] \ displaystyle {\ text {C} = \ frac {\ text {Q}} {\ Delta \ text {T}}.} [/ Latex]

Теплоемкость — это обширное свойство, поэтому она масштабируется в зависимости от размера системы. Образец, содержащий в два раза больше вещества, чем другой образец, требует передачи вдвое большего количества тепла (Q) для достижения такого же изменения температуры (ΔT).Например, если для нагрева блока железа требуется 1000 Дж, то для нагрева второго блока железа, масса которого в два раза больше массы первого, потребуется 2000 Дж.

Измерение теплоемкости

Тепловая мощность большинства систем непостоянна. Скорее, это зависит от переменных состояния исследуемой термодинамической системы. В частности, это зависит от самой температуры, а также от давления и объема системы, а также от способов изменения давлений и объемов при переходе системы от одной температуры к другой.Причина этого заключается в том, что работа давления и объема, выполняемая в системе, повышает ее температуру с помощью механизма, отличного от нагрева, в то время как работа объема давления, выполняемая системой, поглощает тепло, не повышая температуру системы. (Из-за температурной зависимости калория формально определяется как энергия, необходимая для нагрева 1 г воды с 14,5 до 15,5 ° C, а не обычно на 1 ° C.)

Таким образом, можно выполнять различные измерения теплоемкости, чаще всего при постоянном давлении и постоянном объеме.Измеренные таким образом значения обычно имеют нижний индекс (соответственно p и V) для обозначения определения. Газы и жидкости обычно также измеряются при постоянном объеме. Измерения при постоянном давлении дают большие значения, чем при постоянном объеме, потому что значения постоянного давления также включают тепловую энергию, которая используется для выполнения работы по расширению вещества против постоянного давления при повышении его температуры. Эта разница особенно заметна для газов, где значения при постоянном давлении обычно составляют от 30% до 66.На 7% больше, чем при постоянной громкости.

Термодинамические соотношения и определение теплоемкости

Внутренняя энергия замкнутой системы изменяется либо за счет добавления тепла в систему, либо за счет выполнения системой работы. Вспоминая первый закон термодинамики,

[латекс] \ text {dU} = \ delta \ text {Q} — \ delta \ text {W} [/ latex].

Для работы в результате увеличения объема системы можно написать

[латекс] \ text {dU} = \ delta \ text {Q} — \ text {PdV} [/ latex].

Если тепло добавляется при постоянном объеме, то второй член этого соотношения исчезает и легко получается

[латекс] \ displaystyle {\ left (\ frac {\ partial \ text {U}} {\ partial \ text {T}} \ right) _ {\ text {V}} = \ left (\ frac {\ partial \ text {Q}} {\ partial \ text {T}} \ right) _ {\ text {V}} = \ text {C} _ {\ text {V}}} [/ latex].

Это определяет тепловую мощность при постоянном объеме , C V . Еще одна полезная величина — теплоемкость при постоянном давлении , C P .При энтальпии системы, заданной

[латекс] \ text {H} = \ text {U} + \ text {PV} [/ latex],

наше уравнение для d U меняется на

[латекс] \ text {dH} = \ delta \ text {Q} + \ text {VdP} [/ latex],

и, следовательно, при постоянном давлении имеем

[латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {P}} = (\ frac {\ partial \ text {Q}} {\ partial \ text {T}}) _ {\ text {P}} = \ text {C} _ {\ text {P}} [/ latex].

Удельная теплоемкость

Удельная теплоемкость — это интенсивное свойство, которое описывает, сколько тепла необходимо добавить к определенному веществу, чтобы повысить его температуру.

Цели обучения

Обобщите количественную взаимосвязь между теплопередачей и изменением температуры

Основные выводы

Ключевые моменты
  • В отличие от полной теплоемкости, удельная теплоемкость не зависит от массы или объема. Он описывает, сколько тепла необходимо добавить к единице массы данного вещества, чтобы повысить его температуру на один градус Цельсия. Единицы измерения удельной теплоемкости — Дж / (кг ° C) или эквивалентно Дж / (кг · K).
  • Теплоемкость и удельная теплоемкость связаны соотношением C = см или c = C / м.
  • Масса m, удельная теплоемкость c, изменение температуры ΔT и добавленное (или вычитаемое) тепло Q связаны уравнением: Q = mcΔT.
  • Значения удельной теплоемкости зависят от свойств и фазы данного вещества. Поскольку их нелегко рассчитать, они измеряются эмпирическим путем и доступны для справки в таблицах.
Ключевые термины
  • Удельная теплоемкость : Количество тепла, которое должно быть добавлено (или удалено) из единицы массы вещества, чтобы изменить его температуру на один градус Цельсия.Это интенсивное свойство.

Удельная теплоемкость

Теплоемкость — это обширное свойство, которое описывает, сколько тепловой энергии требуется для повышения температуры данной системы. Однако было бы довольно неудобно измерять теплоемкость каждой единицы вещества. Нам нужно интенсивное свойство, которое зависит только от типа и фазы вещества и может быть применено к системам произвольного размера. Эта величина известна как удельная теплоемкость (или просто удельная теплоемкость), которая представляет собой теплоемкость на единицу массы материала.Эксперименты показывают, что передаваемое тепло зависит от трех факторов: (1) изменения температуры, (2) массы системы и (3) вещества и фазы вещества. Последние два фактора заключены в значении удельной теплоемкости.

Теплопередача и удельная теплоемкость : Тепло Q, передаваемое для изменения температуры, зависит от величины изменения температуры, массы системы, а также от вещества и фазы. (а) Количество переданного тепла прямо пропорционально изменению температуры.Чтобы удвоить изменение температуры массы m, вам нужно добавить в два раза больше тепла. (б) Количество переданного тепла также прямо пропорционально массе. Чтобы вызвать эквивалентное изменение температуры в удвоенной массе, вам нужно добавить в два раза больше тепла. (c) Количество передаваемого тепла зависит от вещества и его фазы. Если требуется количество тепла Q, чтобы вызвать изменение температуры ΔT в данной массе меди, потребуется в 10,8 раз больше тепла, чтобы вызвать эквивалентное изменение температуры в той же массе воды, при условии отсутствия фазовых изменений ни в одном из веществ.

Удельная теплоемкость : В этом уроке тепло связано с изменением температуры. Мы обсуждаем, как количество тепла, необходимое для изменения температуры, зависит от массы и вещества, и это соотношение представлено удельной теплоемкостью вещества C.

Зависимость от изменения температуры и массы легко понять. Поскольку (средняя) кинетическая энергия атома или молекулы пропорциональна абсолютной температуре, внутренняя энергия системы пропорциональна абсолютной температуре и количеству атомов или молекул.Поскольку переданное тепло равно изменению внутренней энергии, тепло пропорционально массе вещества и изменению температуры. Передаваемое тепло также зависит от вещества, так что, например, количество тепла, необходимое для повышения температуры, меньше для спирта, чем для воды. Для одного и того же вещества передаваемое тепло также зависит от фазы (газ, жидкость или твердое тело).

Количественная связь между теплопередачей и изменением температуры включает все три фактора:

[латекс] \ text {Q} = \ text {mc} \ Delta \ text {T} [/ latex],

где Q — символ теплопередачи, m — масса вещества, а ΔT — изменение температуры.Символ c обозначает удельную теплоемкость и зависит от материала и фазы.

Удельная теплоемкость — это количество тепла, необходимое для изменения температуры 1,00 кг массы на 1,00 ° C. Удельная теплоемкость c — это свойство вещества; его единица СИ — Дж / (кг⋅К) или Дж / (кг⋅К). Напомним, что изменение температуры (ΔT) одинаково в единицах кельвина и градусов Цельсия. Обратите внимание, что общая теплоемкость C — это просто произведение удельной теплоемкости c и массы вещества m, i.е.,

[латекс] \ text {C} = \ text {mc} [/ latex] или [латекс] \ text {c} = \ frac {\ text {C}} {\ text {m}} = \ frac {\ текст {C}} {\ rho \ text {V}} [/ latex],

где ϱ — плотность вещества, V — его объем.

Значения удельной теплоемкости обычно нужно искать в таблицах, потому что нет простого способа их вычислить. Вместо этого они измеряются эмпирически. Как правило, удельная теплоемкость также зависит от температуры. В таблице ниже приведены типичные значения теплоемкости для различных веществ.За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая. Удельная теплоемкость воды в пять раз больше, чем у стекла, и в десять раз больше, чем у железа, что означает, что для повышения температуры воды на такое же количество тепла требуется в пять раз больше тепла, чем у стекла, и в десять раз больше тепла для повышения температуры. воды как для железа. Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.

Удельная теплоемкость : Указана удельная теплоемкость различных веществ.Эти значения идентичны в единицах кал / (г⋅C) .3. cv при постоянном объеме и 20,0 ° C, если не указано иное, и среднем давлении 1,00 атм. В скобках указаны значения cp при постоянном давлении 1,00 атм.

Калориметрия

Калориметрия — это измерение теплоты химических реакций или физических изменений.

Цели обучения

Проанализировать взаимосвязь между газовой постоянной для получения идеального выхода газа и объемом

Основные выводы

Ключевые моменты
  • Калориметр используется для измерения тепла, выделяемого (или поглощаемого) в результате физических изменений или химической реакции.Наука об измерении этих изменений известна как калориметрия.
  • Для проведения калориметрии очень важно знать удельную теплоемкость измеряемых веществ.
  • Калориметрия может выполняться при постоянном объеме или постоянном давлении. Тип выполняемого расчета зависит от условий эксперимента.
Ключевые термины
  • Калориметр постоянного давления : прибор, используемый для измерения тепла, выделяемого во время изменений, не связанных с изменениями давления.
  • калориметр : Устройство для измерения тепла, выделяемого или поглощаемого в результате химической реакции, изменения фазы или какого-либо другого физического изменения.
  • Калориметр постоянного объема : прибор, используемый для измерения тепла, выделяемого во время изменений, не связанных с изменением объема.

Калориметрия

Обзор

Калориметрия — это наука об измерении теплоты химических реакций или физических изменений. Калориметрия выполняется калориметром.Простой калориметр состоит из термометра, прикрепленного к металлическому контейнеру с водой, подвешенному над камерой сгорания. Слово калориметрия происходит от латинского слова калор , что означает тепло. Шотландский врач и ученый Джозеф Блэк, который первым осознал разницу между теплом и температурой, считается основоположником калориметрии.

Калориметрия требует, чтобы нагреваемый материал имел известные тепловые свойства, то есть удельную теплоемкость.Классическое правило, признанное Клаузиусом и Кельвином, состоит в том, что давление, оказываемое калориметрическим материалом, полностью и быстро определяется исключительно его температурой и объемом; это правило применяется для изменений, не связанных с фазовым переходом, таких как таяние льда. Есть много материалов, которые не соответствуют этому правилу, и для них требуются более сложные уравнения, чем приведенные ниже.

Ледяной калориметр : первый в мире ледяной калориметр, использованный зимой 1782-83 гг. Антуаном Лавуазье и Пьером-Симоном Лапласом для определения тепла, выделяющегося при различных химических изменениях; расчеты, основанные на предыдущем открытии скрытой теплоты Джозефом Блэком.Эти эксперименты составляют основу термохимии.

Базовая калориметрия при постоянном значении

Калориметрия постоянного объема — это калориметрия, выполняемая при постоянном объеме. Это предполагает использование калориметра постоянного объема (один из типов называется калориметром бомбы). Для калориметрии постоянного объема:

[латекс] \ delta \ text {Q} = \ text {C} _ {\ text {V}} \ Delta \ text {T} = \ text {mc} _ {\ text {V}} \ Delta \ text {T} [/ латекс]

, где δQ — приращение тепла, полученного образцом, C V — теплоемкость при постоянном объеме, c v — удельная теплоемкость при постоянном объеме, а ΔT — изменение температуры.

Измерение изменения энтальпии

Чтобы найти изменение энтальпии на массу (или на моль) вещества A в реакции между двумя веществами A и B, эти вещества добавляются в калориметр, а начальная и конечная температуры (до начала реакции и после ее завершения) ) отмечены. Умножение изменения температуры на массу и удельную теплоемкость веществ дает значение энергии, выделяемой или поглощаемой во время реакции:

[латекс] \ delta \ text {Q} = \ Delta \ text {T} (\ text {m} _ {\ text {A}} \ text {c} _ {\ text {A}} + \ text { m} _ {\ text {B}} \ text {c} _ {\ text {B}}) [/ latex]

Разделение изменения энергии на количество присутствующих граммов (или молей) A дает изменение энтальпии реакции.Этот метод используется в основном в академическом обучении, поскольку он описывает теорию калориметрии. Он не учитывает потери тепла через контейнер или теплоемкость термометра и самого контейнера. Кроме того, объект, помещенный внутри калориметра, показывает, что объекты передают свое тепло калориметру и жидкости, а тепло, поглощаемое калориметром и жидкостью, равно теплу, отдаваемому металлами.

Калориметрия постоянного давления

Калориметр постоянного давления измеряет изменение энтальпии реакции, протекающей в растворе, в течение которой атмосферное давление остается постоянным.Примером может служить калориметр кофейной чашки, который состоит из двух вложенных друг в друга чашек из пенополистирола и крышки с двумя отверстиями, в которую можно вставить термометр и стержень для перемешивания. Внутренняя чашка содержит известное количество растворенного вещества, обычно воды, которое поглощает тепло от реакции. Когда происходит реакция, внешняя чашка обеспечивает изоляцию. Тогда

[латекс] \ text {C} _ {\ text {P}} = \ frac {\ text {W} \ Delta \ text {H}} {\ text {M} \ Delta \ text {T}} [/ латекс]

, где C p — удельная теплоемкость при постоянном давлении, ΔH — энтальпия раствора, ΔT — изменение температуры, W — масса растворенного вещества, а M — молекулярная масса растворенного вещества.Измерение тепла с помощью простого калориметра, такого как калориметр для кофейной чашки, является примером калориметрии постоянного давления, поскольку давление (атмосферное давление) остается постоянным во время процесса. Калориметрия постоянного давления используется для определения изменений энтальпии, происходящих в растворе. В этих условиях изменение энтальпии равно теплоте (Q = ΔH).

Удельная теплоемкость идеального газа при постоянном давлении и объеме

Идеальный газ имеет различную удельную теплоемкость при постоянном объеме или постоянном давлении.

Цели обучения

Объясните, как рассчитать индекс адиабаты

Основные выводы

Ключевые моменты
  • Удельная теплоемкость газа при постоянном объеме задается как [латекс] (\ frac {\ partial \ text {U}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {v}} [/ latex].
  • Удельная теплоемкость при постоянном давлении для идеального газа задается как [latex] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {p}} = \ text {c} _ {\ text {v}} + \ text {R} [/ latex].
  • Коэффициент теплоемкости (или индекс адиабаты) — это отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.
Ключевые термины
  • Фундаментальное термодинамическое соотношение : В термодинамике фундаментальное термодинамическое соотношение выражает бесконечно малое изменение внутренней энергии в терминах бесконечно малых изменений энтропии и объема для замкнутой системы, находящейся в тепловом равновесии, следующим образом: dU = TdS-PdV. Здесь U — внутренняя энергия, T — абсолютная температура, S — энтропия, P — давление, V — объем.
  • Индекс адиабаты : Отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.
  • удельная теплоемкость : Отношение количества тепла, необходимого для повышения температуры единицы массы вещества на единицу градуса, к количеству тепла, необходимому для повышения температуры той же массы воды на такое же количество.

Удельная теплоемкость идеального газа при постоянном давлении и объеме

Теплоемкость при постоянном объеме nR = 1 Дж · К −1 любого газа, включая идеальный газ, составляет:

[латекс] (\ frac {\ partial \ text {U}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {v}} [/ латекс]

Это безразмерная теплоемкость при постоянном объеме; обычно это функция температуры из-за межмолекулярных сил.При умеренных температурах постоянная для одноатомного газа c v = 3/2, а для двухатомного газа c v = 5/2 (см.). Макроскопические измерения теплоемкости дают информацию о микроскопической структуре молекул.

Молекулярные внутренние колебания : Когда газ нагревается, поступательная киентная энергия молекул в газе увеличивается. Кроме того, молекулы газа могут улавливать множество характерных внутренних колебаний. Потенциальная энергия, накопленная в этих внутренних степенях свободы, вносит вклад в удельную теплоемкость газа.

Теплоемкость при постоянном давлении 1 Дж · К −1 идеального газа составляет:

[латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {p}} = \ текст {c} _ {\ text {v}} + \ text {R} [/ latex]

где H = U + pV — энтальпия газа.

Измерение теплоемкости при постоянном объеме может быть чрезвычайно трудным для жидкостей и твердых тел. То есть небольшие изменения температуры обычно требуют большого давления для поддержания постоянного объема жидкости или твердого вещества (это означает, что содержащий сосуд должен быть почти жестким или, по крайней мере, очень прочным).Легче измерить теплоемкость при постоянном давлении (позволяющем материалу свободно расширяться или сжиматься) и определить теплоемкость при постоянном объеме, используя математические соотношения, выведенные из основных законов термодинамики.

Используя фундаментальную термодинамическую связь, мы можем показать:

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = \ text {T} (\ frac {\ partial \ text {P}} { \ partial \ text {T}}) _ {\ text {V}, \ text {N}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text { p}, \ text {N}} [/ latex]

, где частные производные взяты при постоянном объеме и постоянном количестве частиц, а также при постоянном давлении и постоянном количестве частиц, соответственно.

Коэффициент теплоемкости или показатель адиабаты — это отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме. Иногда его также называют коэффициентом изоэнтропического расширения:

.

[латекс] \ gamma = \ frac {\ text {C} _ {\ text {P}}} {\ text {C} _ {\ text {V}}} = \ frac {\ text {c} _ { \ text {p}}} {\ text {c} _ {\ text {v}}} [/ latex]

Для идеального газа оценка приведенных выше частных производных в соответствии с уравнением состояния, где R — газовая постоянная для идеального газа, дает:

[латекс] \ text {pV} = \ text {RT} [/ латекс]

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = \ text {T} (\ frac {\ partial \ text {P}} { \ partial \ text {T}}) _ {\ text {V}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text {p}} [/ latex ]

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = — \ text {T} (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {V}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text {p}} ^ { 2} [/ латекс]

[латекс] \ text {P} = \ frac {\ text {RT}} {\ text {V}} \ text {n} \ to (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {T}} = \ frac {- \ text {RT}} {\ text {V} ^ {2}} = \ frac {- \ text {P}} {\ text { V}} [/ латекс]

[латекс] \ text {V} = \ frac {\ text {RT}} {\ text {P}} \ text {n} \ to (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) ^ {2} _ {\ text {p}} = \ frac {\ text {R} ^ {2}} {\ text {P} ^ {2}} [/ latex]

заменяющий:

[латекс] — \ text {T} (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {V}} (\ frac {\ partial \ text {V }} {\ partial \ text {T}}) _ {\ text {p}} ^ {2} = — \ text {T} \ frac {- \ text {P}} {\ text {V}} \ frac {\ text {R} ^ {2}} {\ text {P} ^ {2}} = \ text {R} [/ latex]

Это уравнение сводится просто к тому, что известно как соотношение Майера:

Юлиус Роберт Майер : Юлиус Роберт фон Майер (25 ноября 1814 г. — 20 марта 1878 г.), немецкий врач и физик, был одним из основоположников термодинамики.Он известен прежде всего тем, что в 1841 году сформулировал одно из первоначальных заявлений о сохранении энергии (или то, что сейчас известно как одна из первых версий первого закона термодинамики): «Энергия не может быть ни создана, ни уничтожена. В 1842 году Майер описал жизненно важный химический процесс, который теперь называют окислением, как основной источник энергии для любого живого существа. Его достижения не были замечены, и заслуга в открытии механического эквивалента тепла была приписана Джеймсу Джоулю в следующем году.фон Майер также предположил, что растения превращают свет в химическую энергию.

[латекс] \ text {C} _ {\ text {P}} — \ text {C} _ {\ text {V}} = \ text {R} [/ latex].

Это простое уравнение, связывающее теплоемкость при постоянной температуре и при постоянном давлении.

Решение задач калориметрии

Калориметрия используется для измерения количества тепла, выделяемого или потребляемого в химической реакции.

Цели обучения

Объясните, что калориметр бомбы используется для измерения тепла, выделяемого в реакции горения

Основные выводы

Ключевые моменты
  • Калориметрия используется для измерения количества тепла, передаваемого веществу или от него.
  • Калориметр — это устройство, используемое для измерения количества тепла, участвующего в химическом или физическом процессе.
  • Это означает, что количество тепла, производимого или потребляемого в реакции, равно количеству тепла, поглощаемого или теряемого раствором.
Ключевые термины
  • теплота реакции : изменение энтальпии в химической реакции; количество тепла, которое система отдает своему окружению, чтобы она могла вернуться к исходной температуре.
  • горение : процесс, в котором два химических вещества объединяются для получения тепла.
Калориметры

предназначены для минимизации обмена энергией между исследуемой системой и ее окружением. Они варьируются от простых калориметров для кофейных чашек, используемых студентами начального курса химии, до сложных калориметров-бомб, используемых для определения энергетической ценности пищи.

Калориметрия используется для измерения количества тепла, передаваемого веществу или от него. Для этого происходит обмен тепла с калиброванным объектом (калориметром).Изменение температуры измерительной части калориметра преобразуется в количество тепла (поскольку предыдущая калибровка использовалась для определения его теплоемкости). Измерение теплопередачи с использованием этого подхода требует определения системы (вещества или веществ, подвергающихся химическому или физическому изменению) и ее окружения (других компонентов измерительного устройства, которые служат либо для обеспечения теплом системы, либо для поглощения тепла от система). Знание теплоемкости окружающей среды и тщательные измерения масс системы и окружающей среды, а также их температуры до и после процесса позволяют рассчитать передаваемое тепло, как описано в этом разделе.

Калориметр — это устройство, используемое для измерения количества тепла, участвующего в химическом или физическом процессе. Например, когда в растворе в калориметре происходит экзотермическая реакция, тепло, выделяемое в результате реакции, поглощается раствором, что увеличивает его температуру. Когда происходит эндотермическая реакция, необходимое тепло поглощается тепловой энергией раствора, что снижает его температуру. Затем изменение температуры, а также удельная теплоемкость и масса раствора можно использовать для расчета количества тепла, задействованного в любом случае.

Калориметры для кофейных чашек

Студенты-общехимики часто используют простые калориметры, изготовленные из полистирольных стаканчиков. Эти простые в использовании калориметры типа «кофейная чашка» обеспечивают больший теплообмен с окружающей средой и, следовательно, дают менее точные значения энергии.

Устройство калориметра постоянного объема (или «бомбы»)

Калориметр бомбы : Это изображение типичной установки калориметра бомбы.

Калориметр другого типа, который работает с постоянным объемом, в просторечии известный как калориметр бомбы, используется для измерения энергии, производимой реакциями, которые дают большое количество тепла и газообразных продуктов, таких как реакции горения.(Термин «бомба» происходит из наблюдения, что эти реакции могут быть достаточно интенсивными, чтобы напоминать взрывы, которые могут повредить другие калориметры.) Этот тип калориметра состоит из прочного стального контейнера («бомба»), который содержит реагенты и сам является погружен в воду. Образец помещается в бомбу, которая затем заполняется кислородом под высоким давлением. Для воспламенения образца используется небольшая электрическая искра. Энергия, произведенная в результате реакции, улавливается стальной бомбой и окружающей водой.Повышение температуры измеряется и, наряду с известной теплоемкостью калориметра, используется для расчета энергии, производимой в результате реакции. Калориметры бомбы требуют калибровки для определения теплоемкости калориметра и обеспечения точных результатов. Калибровка выполняется с использованием реакции с известным q, например измеренного количества бензойной кислоты, воспламененного искрой от никелевой плавкой проволоки, которая взвешивается до и после реакции. Изменение температуры, вызванное известной реакцией, используется для определения теплоемкости калориметра.Калибровка обычно выполняется каждый раз перед использованием калориметра для сбора данных исследования.

Пример: идентификация металла путем измерения удельной теплоемкости

Кусок металла весом 59,7 г, погруженный в кипящую воду, был быстро перенесен в 60,0 мл воды при начальной температуре 22,0 ° C. Конечная температура составляет 28,5 ° C. Используйте эти данные, чтобы определить удельную теплоемкость металла. Используйте этот результат, чтобы идентифицировать металл.

Решение

Предполагая идеальную теплопередачу, тепло, выделяемое металлом, является отрицательной величиной тепла, поглощаемого водой, или:

[латекс] \ text {q} _ {\ text {metal}} = — \ text {q} _ {\ text {water}} [/ latex]

В развернутом виде это:

[латекс] \ text {c} _ {\ text {metal}} \ times \ text {m} _ {\ text {metal}} \ times \ left (\ text {T} _ {\ text {f, металл }} — \ text {T} _ {\ text {i, metal}} \ right) = \ text {c} _ {\ text {water}} \ times \ text {m} _ {\ text {water}} \ times \ left (\ text {T} _ {\ text {f, water}} — \ text {T} _ {\ text {i, water}} \ right) [/ latex]

Отметим, что, поскольку металл был погружен в кипящую воду, его начальная температура была 100.{\ text {o}} \ text {C} [/ latex]

Наша экспериментальная удельная теплоемкость наиболее близка к значению для меди (0,39 Дж / г ° C), поэтому мы идентифицируем металл как медь.

Калориметрия | Безграничная химия

Удельная теплоемкость и теплоемкость

Теплоемкость — это количество тепловой энергии, необходимой для изменения температуры чистого вещества на заданную величину.

Цели обучения

Вычислить изменение температуры вещества с учетом его теплоемкости и энергии, используемой для его нагрева.

Основные выводы

Ключевые моменты
  • Теплоемкость — это отношение количества тепловой энергии, переданной объекту, к результирующему увеличению его температуры.
  • Молярная теплоемкость — это количество тепла, необходимое для повышения температуры одного моля чистого вещества на один градус К.
  • Удельная теплоемкость — это количество тепла, необходимое для повышения температуры одного грамма чистого вещества на один градус К. {- 1} \ right) [/ latex].Теплоемкость — это обширное свойство, что означает, что она зависит от размера / массы образца. Например, для образца, содержащего в два раза больше вещества, чем для другого образца, потребуется вдвое больше тепловой энергии (Q) для достижения такого же изменения температуры ([латекс] \ Delta T [/ latex]), которое требуется для изменения температура первого образца.

    Молярная и удельная теплоемкость

    Есть две производные величины, которые определяют теплоемкость как интенсивное свойство (т.е., независимо от размера образца) вещества. Их:

    • молярная теплоемкость, которая представляет собой теплоемкость на моль чистого вещества. Молярная теплоемкость часто обозначается CP для обозначения теплоемкости в условиях постоянного давления, а также CV для обозначения теплоемкости в условиях постоянного объема. Единицы измерения молярной теплоемкости: [латекс] \ frac {J} {K \ cdot \ text {mol}} [/ latex].
    • — удельная теплоемкость, часто называемая просто удельной теплоемкостью, которая представляет собой теплоемкость на единицу массы чистого вещества.Он обозначен как c P и c V , и его единицы измерения указаны в [латексе] \ frac {J} {g \ cdot K} [/ latex].

    Тепло, энтальпия и температура

    Зная молярную теплоемкость или удельную теплоемкость чистого вещества, можно рассчитать количество тепла, необходимое для повышения / понижения температуры этого вещества на заданную величину. Применяются следующие две формулы:

    [латекс] q = mc_p \ Delta T [/ латекс]

    [латекс] q = nC_P \ Delta T [/ латекс]

    В этих уравнениях м — это масса вещества в граммах (используется при расчетах с удельной теплоемкостью), а n — это количество молей вещества (используется при расчетах с молярной теплоемкостью).

    Пример

    Молярная теплоемкость воды CP равна [латекс] 75,2 \ frac {J} {\ text {mol} \ cdot K} [/ latex] . Сколько тепла нужно, чтобы поднять температуру 36 граммов воды с 300 до 310 К?

    Нам дана молярная теплоемкость воды, поэтому нам нужно преобразовать данную массу воды в моль:

    [латекс] \ text {36 грамм} \ times \ frac {\ text {1 mol} \ text {H} _2 \ text {O}} {\ text {18 г}} = \ text {2.0 mol H} _2 \ text {O} [/ latex]

    Теперь мы можем подставить наши значения в формулу, которая связывает тепло и теплоемкость:

    [латекс] q = nC_P \ Delta T [/ латекс]

    [латекс] q = (2.0 \; \ text {mol}) \ left (75.2 \; \ frac {J} {\ text {mol} \ cdot K} \ right) (10 \; K) [/ latex]

    [латекс] q = 1504 \; J [/ латекс]

    Interactive: определение удельной и скрытой теплоты : удельная теплоемкость — это мера тепловой энергии, необходимой для повышения температуры определенного количества вещества на один кельвин. Скрытая теплота плавления описывает количество тепла, необходимое для плавления твердого вещества. Когда твердое тело плавится, температура в основном остается постоянной до тех пор, пока все твердое вещество не расплавится.Вышеупомянутое моделирование демонстрирует удельную теплоемкость и скрытую теплоту.

    Учебник по удельной теплоемкости : Этот урок связывает тепло с изменением температуры. В нем обсуждается, как количество тепла, необходимое для изменения температуры, зависит от массы и задействованного вещества, и эта взаимосвязь представлена ​​удельной теплоемкостью вещества C.

    Калориметрия постоянного объема

    Калориметры постоянного объема, такие как калориметры бомбы, используются для измерения теплоты сгорания реакции.

    Цели обучения

    Опишите, как работает калориметр бомбы

    Основные выводы

    Ключевые моменты
    • Калориметр бомбы используется для измерения изменения внутренней энергии [латекс] \ Delta U [/ латекс] реакции. При постоянном объеме это равно q V , теплоте реакции.
    • Калориметр имеет собственную теплоемкость, которую необходимо учитывать при проведении расчетов.
    Ключевые термины
    • калориметр бомбы : калориметр бомбы — тип калориметра постоянного объема, используемого для измерения теплоты сгорания определенной реакции.
    • калорий : количество энергии, необходимое для повышения температуры 1 грамма воды на 1 ° C. Это внесистемная единица измерения энергии, эквивалентная примерно 4,18 джоулей. Калория (с большой буквы) = 1000 калорий.

    Калориметр бомбы

    Бомбовая калориметрия используется для измерения тепла, которое реакция поглощает или выделяет, и практически используется для измерения калорийности пищи. Бомбовый калориметр — это тип калориметра постоянного объема, используемый для измерения теплоты сгорания конкретной реакции.Например, если бы нас интересовало определение теплосодержания суши-ролла, например, мы бы хотели узнать количество содержащихся в нем калорий. Для этого мы помещаем суши-ролл в контейнер, называемый «бомбой», герметизируем его и затем погружаем в воду внутри калориметра. Затем мы откачиваем весь воздух из бомбы перед закачкой чистого газообразного кислорода (O 2 ). После добавления кислорода плавкий предохранитель воспламенит образец, вызывая его возгорание, что приведет к выделению углекислого газа, газообразной воды и тепла.Таким образом, калориметры бомбы сконструированы так, чтобы выдерживать большое давление, создаваемое газообразными продуктами в этих реакциях сгорания.

    Калориметр бомбы : схематическое изображение калориметра бомбы, используемого для измерения теплоты сгорания. Навеска помещается в тигель, который, в свою очередь, помещается в бомбу. Образец полностью сгорает в кислороде под давлением. Образец зажигается катушкой зажигания из железной проволоки, которая светится при нагревании.Калориметр заполнен жидкостью, обычно водой, и изолирован рубашкой. Температура воды измеряется термометром. По изменению температуры можно рассчитать теплоту реакции.

    Когда образец полностью сгорит, тепло, выделяющееся при реакции, передается воде и калориметру. Изменение температуры воды измеряется термометром. Общее количество тепла, выделяемого в реакции, будет равно теплу, полученному водой и калориметром:

    [латекс] q_ {rxn} = — q_ {cal} [/ latex]

    Имейте в виду, что тепло, выделяемое калориметром, складывается из тепла, полученного водой, а также самим калориметром.{\ circ} \ text {C}} [/ latex]). Следовательно, при проведении экспериментов по калориметрии бомбы необходимо откалибровать калориметр, чтобы определить C cal .

    Поскольку объем для калориметра бомбы постоянный, работа давление-объем отсутствует. В итоге:

    ΔU = q В

    , где ΔU — изменение внутренней энергии, а q V обозначает тепло, поглощаемое или выделяемое реакцией, измеренное в условиях постоянного объема .(Это выражение было ранее выведено в разделе «Внутренняя энергия и энтальпия».) Таким образом, общее тепло, выделяемое реакцией, связано с изменением внутренней энергии (ΔU), а не изменением энтальпии (ΔH), которое измеряется. в условиях постоянного давления .

    Ценность таких экспериментов не полностью отражает то, как наш организм сжигает пищу. Например, мы не можем переваривать клетчатку, поэтому полученные значения необходимо скорректировать, чтобы учесть такие различия между экспериментальными (общими) и фактическими (то, что человеческое тело может поглотить) значениями.

    Калориметрия постоянного давления

    Калориметр постоянного давления измеряет изменение энтальпии реакции при постоянном давлении.

    Цели обучения

    Обсудить, как работает калориметр постоянного давления

    Основные выводы

    Ключевые моменты
    • Калориметр постоянного давления измеряет изменение энтальпии ([латекс] \ Delta H [/ латекс]) реакции, протекающей в растворе, во время которой давление остается постоянным.В этих условиях изменение энтальпии реакции равно измеренной теплоте.
    • Изменение энтальпии можно рассчитать на основе изменения температуры раствора, его удельной теплоемкости и массы.
    Ключевые термины
    • Калориметр постоянного давления : Измеряет изменение энтальпии реакции, протекающей в растворе, во время которой давление остается постоянным.
    • адиабатический : не допускает передачи тепловой энергии; отлично изолирующий.
    • калориметр для кофейных чашек : Пример калориметра постоянного давления.

    Калориметрия постоянного давления

    Калориметр постоянного давления измеряет изменение энтальпии реакции, протекающей в жидком растворе. В этом случае давление газа над раствором остается постоянным, и мы говорим, что реакция происходит в условиях постоянного давления. Тепло, передаваемое раствору / от раствора для того, чтобы реакция произошла, равно изменению энтальпии ([латекс] \ Delta H = q_P [/ latex]), и калориметр постоянного давления, таким образом, измеряет эту теплоту реакции.Напротив, объем калориметра бомбы постоянен, поэтому нет работы по давлению и объему, а измеренное тепло связано с изменением внутренней энергии ([латекс] \ Delta U = q_V [/ latex]).

    Простым примером калориметра постоянного давления является калориметр в виде кофейной чашки, который состоит из двух вложенных друг в друга чашек из пенополистирола и крышки с двумя отверстиями, в которую можно вставить термометр и стержень для перемешивания. Внутренняя чашка содержит известное количество жидкости, обычно воды, которая поглощает тепло реакции.Предполагается, что внешняя чашка является абсолютно адиабатической, что означает, что она не поглощает никакого тепла. Таким образом, внешняя чашка считается идеальным изолятором.

    Калориметр для кофейных чашек : Чашку из пенополистирола со вставленным термометром можно использовать в качестве калориметра для измерения изменения энтальпии / теплоты реакции при постоянном давлении.

    Расчет удельной теплоемкости

    Данные, собранные во время эксперимента по калориметрии при постоянном давлении, можно использовать для расчета теплоемкости неизвестного вещества.\ circ C} [/ latex])

    Стенки калориметра кофейной чашки считаются идеально адиабатическими, поэтому мы можем предположить, что все тепло от металла было передано воде:

    [латекс] -q _ {\ text {metal}} = q _ {\ text {вода}} [/ latex]

    Подставляя в вышеприведенное уравнение, получаем:

    [латекс] -m _ {\ text {metal}} C _ {\ text {metal}} \ Delta T _ {\ text {metal}} = m _ {\ text {вода}} C _ {\ text {вода}} \ Delta Т _ {\ text {вода}} [/ латекс]

    Затем мы можем вставить наши известные значения:

    [латекс] — (5.\ circ \ text {C}} [/ латекс].

    Пример 2

    Для определения стандартной энтальпии реакции H + (вод. 25 ° С.

    Этот процесс является экзотермическим, и в результате в раствор выделяется определенное количество тепла q P . Количество джоулей тепла, выделяемого на каждый грамм раствора, рассчитывается как произведение повышения температуры и удельной теплоемкости воды (при условии, что раствор достаточно разбавлен, так что его удельная теплоемкость составляет , то же , что и чистая вода).Затем можно рассчитать общее количество переданного тепла, умножив результат на массу раствора.

    [латекс] \ Delta H = q_P = m _ {\ text {sol’n}} C _ {\ text {water}} \ Delta T _ {\ text {sol’n}} [/ latex]

    Обратите внимание, что ΔH = q P , потому что процесс осуществляется при постоянном давлении.

    Расчет теплоемкости Учебник по химии

    Пожалуйста, не блокируйте рекламу на этом сайте.
    Без рекламы = для нас нет денег = для вас нет бесплатных вещей!

    Удельная теплоемкость

    Если вы осторожно нагреете воду с помощью источника тепла, например, горелки Бунзена, температура воды повысится.
    Энергия, поставляемая горелкой Бунзена, заставляет молекулы воды двигаться быстрее, увеличивая их кинетическую энергию.
    Мы можем измерить результат этой повышенной кинетической энергии как повышение температуры.
    Количество энергии, поглощаемой молекулами воды для увеличения их кинетической энергии, называется «тепловой энергией». 3
    Тепловая энергия частиц воды q пропорциональна изменению температуры ΔT.
    ΔT = конечная температура — начальная температура

    q ∝ ΔT

    Это означает, что если вы используете ту же массу воды, но удвоите тепловую энергию (q), то изменение температуры (ΔT) также удвоится.
    Точно так же, если вы уменьшите вдвое тепловую энергию (q), то изменение температуры (ΔT) также уменьшится вдвое.

    Вы также можете нагреть «холодную» воду, добавив в нее немного «горячей» воды.

    Представьте, что у вас есть стакан с водой, содержащий 100 г воды с температурой 25,0 ° C.
    Что произойдет с температурой воды, если вы добавите 10 г кипятка (100 ° C)?
    Тепло перейдет от горячей воды к холодной. 4
    Кинетическая энергия молекул «горячей» воды будет уменьшаться, а кинетическая энергия молекул «холодной» воды будет увеличиваться, пока все молекулы воды не будут иметь одинаковую среднюю кинетическую энергию. 5
    Поскольку температура является мерой средней кинетической энергии всех молекул воды, мы находим, что температура воды станет постоянной.
    В этом примере будет достигнута постоянная температура 6 31,8 ° C.
    Изменение температуры ΔT равно
    ΔT = конечная температура — начальная температура = 31.8 — 25,0 = 6,8 ° С

    А теперь представьте, что вы повторяете эксперимент, но на этот раз с использованием 20 г кипящей воды.
    Какая будет конечная температура воды?
    И снова тепло перейдет от горячей воды к холодной, горячая вода охладится, а холодная вода нагреется до тех пор, пока во всем объеме воды не будет достигнута постоянная температура.
    Но на этот раз температура будет выше, 37,5 ° C.
    Изменение температуры ΔT равно
    ΔT = конечная температура — начальная температура = 37.5 — 25,0 = 12,5 ° С

    Добавление большей массы горячей воды к той же массе холодной воды приводит к еще большему повышению температуры.
    Это говорит нам о том, что количество тепловой энергии, которая может быть передана от горячего вещества к холодному, зависит от массы используемого вещества.
    Тепловая энергия (q) пропорциональна массе используемого вещества (m) и изменению температуры (ΔT):

    q ∝ м × ΔT

    Мы могли бы превратить это соотношение в математическое уравнение, используя коэффициент пропорциональности.
    Пусть C будет константой пропорциональности, тогда:

    q = C × м × ΔT

    Давайте посмотрим, что произойдет с этой константой пропорциональности C, когда мы изменим вещество, используемое для нагрева воды.

    Что произойдет с температурой 100 г воды при исходной температуре 25,0 ° C, если мы добавим 20 г другого вещества вместо воды, скажем, 20 г металлической меди при 100 ° C?
    Тепло перейдет от горячей меди к более холодной воде, медь остынет, а вода будет нагреваться, пока не будет достигнута постоянная температура.
    Конечная температура воды составляет всего 26,5 ° C, что ниже температуры при добавлении 20 г воды!
    Изменение температуры ΔT равно
    ΔT = конечная температура — начальная температура = 26,5 — 25,0 = 1,5 ° C

    При равных массах горячей воды и горячей меди при одинаковой температуре горячая вода может передавать больше тепловой энергии холодной воде, чем горячая медь. 7
    То есть значение коэффициента пропорциональности C для воды больше, чем для меди.
    Термин, который используется для описания этой способности (или способности) передавать тепловую энергию, — «теплоемкость».
    При сравнении масс граммов веществ, эта «теплоемкость» обозначается как удельная теплоемкость .
    Итак, удельная теплоемкость воды больше удельной теплоемкости меди.
    Удельная теплоемкость обозначена символом C г (считайте «г» граммами, то есть массой).

    Теперь мы можем заменить константу пропорциональности (C) в приведенном выше математическом уравнении на удельную теплоемкость (C г ):

    q = C г × м × ΔT

    Мы можем изменить это уравнение, разделив обе части уравнения на m × ΔT:

    q
    м × ΔT
    = C г × м × ΔT
    м × ΔT
    q
    м × ΔT
    = C г

    Теперь, если я хочу сравнить удельную теплоемкость различных веществ, мне нужно поддерживать постоянную массу, скажем, 1 грамм, и я бы использовал достаточно тепловой энергии, чтобы вызвать изменение температуры на 1 ° C (или 1K),
    Подставляя эти значения в уравнение:

    q
    1 × 1
    = C г
    q = C г

    То есть удельная теплоемкость вещества — это энергия (q), необходимая для повышения температуры 1 грамма вещества на 1 ° C (или 1K)!

    Различные вещества имеют разную удельную теплоемкость.Удельная теплоемкость некоторых веществ приведена в таблице ниже: 8

    Удельная теплоемкость некоторых веществ
    Элементы C г
    (J K ​​-1 г -1
    или J ° C -1 г -1 )
    Соединения C г
    (J K ​​-1 г -1
    или J ° C -1 г -1 )
    алюминий C г = 0.90 вода (жидкость) C г = 4,18
    углерод C г = 0,72 этанол (жидкость) C г = 2,44
    медь C г = 0,39 серная кислота (жидкость) C г = 1,42
    свинец C г = 0,13 хлорид натрия (твердый) C г = 0.85
    ртуть (жидкость) C г = 0,14 гидроксид калия (твердый) C г = 1,18

    Из приведенной выше таблицы видно, что удельная теплоемкость меди составляет 0,39 Дж ° C -1 г -1 , в то время как удельная теплоемкость воды намного выше, 4,18 Дж ° C -1 г — 1 .
    Требуется 0,39 Дж энергии, чтобы изменить температуру 1 грамма металлической меди на 1 ° C (или 1 K).
    Для изменения температуры 1 грамма жидкой воды на 1 ° C (или 1 K) требуется 4,18 Дж энергии.

    Удельная теплоемкость, C г , как описано выше, полезно, потому что мы можем легко измерить массу многих веществ.
    Однако, когда мы смотрим на таблицу значений, некоторые из этих значений кажутся нелогичными.
    Почему требуется 0,13 Дж энергии для повышения температуры 1 г свинца на 1 ° C, но почти в 7 раз больше энергии для повышения температуры 1 г алюминия на 1 ° C?
    А почему углерод должен иметь более высокую теплоемкость, чем металлическая медь или свинец?

    Возможно, сравнение по массе — не лучший вариант…..

    Молярная теплоемкость

    Одинаковые массы разных веществ содержат разное количество «частиц» (атомов, ионов или молекул).
    Химики используют «моль» как меру «количества» вещества, потому что моль чистого вещества всегда содержит одинаковое количество частиц (число Авогадро, N A = 6,02 × 10 23 ).

    Масса 1 моля чистого вещества равна его относительной молекулярной массе, выраженной в граммах:

    масса 1 моля = относительная молекулярная масса в граммах

    Напомним, что удельная теплоемкость — это энергия, необходимая для повышения температуры 1 грамма вещества на 1 ° C (или 1 K).

    пример: C г для металлической меди, Cu (s) , составляет 0,39 Дж ° C -1 г -1

    Если мы хотим найти теплоемкость 1 моля вещества, нам нужно умножить удельную теплоемкость C г на относительную молекулярную массу (M r ) или молярную массу (M) вещества:

    теплоемкость 1 моля = M r × C (г)
    или
    теплоемкость 1 моля = M × C (г)

    Величина «M × C г » называется молярной теплоемкостью и обозначается символом C n (n — символ, используемый для молей).

    Молярная теплоемкость вещества — это энергия, необходимая для повышения температуры 1 моль вещества на 1 ° C (или 1K).

    Например, удельная теплоемкость металлической меди: C г = 0,39 Дж ° C -1 г -1
    Относительная атомная масса меди из Периодической таблицы: M r = 63,55
    Молярная теплоемкость металлической меди = C г × M r = 0.39 × 63,55 = 24,8 Дж ° C -1 моль -1

    Вы можете выполнить этот расчет самостоятельно для каждого из веществ, перечисленных в таблице удельной теплоемкости выше.
    Вы можете сравнить свои расчеты с расчетами, приведенными в таблице молярных теплоемкостей, приведенной ниже:

    Молярная теплоемкость некоторых веществ
    Элементы C n
    (J K ​​-1 моль -1
    или Дж ° C -1 моль -1 )
    Соединения C n
    (J K ​​-1 моль -1
    или J ° C -1 моль -1 )
    ртуть C n = 28.1 серная кислота (жидкость) C n = 139
    свинец C n = 27,0 вода C n = 75
    медь C n = 24,8 гидроксид калия (твердый) C n = 66
    алюминий C n = 24,3 хлорид натрия (твердый) C n = 50
    углеродистый C n = 8.6 этанол (этиловый спирт) C n = 22

    Эта таблица позволяет сравнивать теплоемкости одного и того же количества частиц, то есть 1 моль, разных веществ.
    Мы обнаружили, что молярная теплоемкость металлов очень похожа, в то время как молярная теплоемкость углерода намного ниже.
    Требуется около 25 Дж энергии для повышения температуры 1 моля металла на 1 ° C (или 1 K), но требуется всего около 9 Дж энергии для повышения температуры 1 моля углерода на 1 ° C ( или 1 К).

    Мы могли бы написать новое уравнение для расчета количества тепла, необходимого (q) для повышения температуры (ΔT) количества вещества в молях (n):

    q = C n × n × ΔT


    Сноски

    1. Поскольку деления шкалы температур по шкале Цельсия и Кельвина одинаковы, и поскольку здесь нас не интересует ни начальная, ни конечная температура, а только разница между ними, можно увидеть, что разница в 1 ° C такая же, как разница в 1 K.
    Тщательные эксперименты показывают, что удельная теплоемкость вещества сама по себе является функцией температуры, поэтому в девятнадцатом веке был установлен стандарт, то есть теплоемкость — это тепло, необходимое для повышения температуры 1 г воды с 14,5 °. С до 15,5 ° С.

    2. В 1960 году Генеральная конференция мер и весов согласовала единую версию метрической системы. Единицы в этой системе известны как единицы СИ (Systèm International d’Unités). Семь базовых единиц составляют основу системы СИ:

    Физическая величина Название единицы Обозначение
    масса килограмм кг
    длина метр м
    время с с
    электрический ток ампер A
    температура кельвин K
    сила света кандела кд
    количество вещества моль моль

    Производные единицы основаны на вышеуказанных единицах СИ.
    Единицей силы является ньютаун (Н), это производная единица, 1 Н = 1 кг мс -2
    Единица измерения энергии также является производной единицей, джоуль (Дж), 1 Дж = 1 Н m = 1 кг m 2 s -2
    Электрические измерения обладают большей точностью, чем калориметрические измерения, как описано в этом обсуждении, поэтому джоуль также можно определить как вольт-кулон.

    3. Тепло или тепловая энергия — это энергия, непосредственно передаваемая от одного объекта к другому.
    Тепло — это энергия в пути, такое вещество, как вода при постоянной температуре, не имеет «теплосодержания», но имеет «энергосодержание».
    Энергетическая составляющая вещества складывается из кинетической энергии (движения) его частиц и потенциальной энергии, такой как запасенная химическая потенциальная энергия в его химических связях.
    Температура — это мера средней кинетической энергии частиц.

    4. Тепло всегда течет от «горячего» к «холодному».
    В 1803 году, через 4 года после его смерти, была опубликована работа Джозефа Блэка по калориметрии (измерению тепловых изменений). В нем он показал, что равенство температуры не означает, что существует также «равенство тепла» в различных веществах. Он исследовал способность к теплу или количество тепла, необходимое для повышения температуры различных тел на заданное количество градусов. Объясняя свои эксперименты, он относился к теплу как к веществу, которое может течь от одного тела к другому.

    5. Частицы не будут иметь точно такую ​​же кинетическую энергию. Существует распределение кинетических энергий для частиц, поэтому мы говорим о «средней» кинетической энергии частиц в системе.

    6. Это называется тепловым равновесием.

    7. Точнее сказать, что теплоемкость — это способность вещества передавать тепло другому веществу, поскольку тепло — это энергия при передаче.
    То есть теплоемкость — это способность или способность вещества передавать тепло другому веществу.
    Но поскольку слово емкость обычно понимается как «сдерживание», например мерная колба на 250 мл имеет емкость 250 мл, мы часто думаем, что теплоемкость вещества — это его способность удерживать тепловую энергию.
    Мы не можем на самом деле относиться к «теплу» как к аккумулированному, то есть тепло может поглощаться молекулами для увеличения их кинетической энергии, но оно не «накапливается», потому что оно проделало работу по ускорению частиц. Тепловая энергия может «храниться» как потенциальная энергия в химических связях, если происходит химическая реакция, но в этих примерах это не так.

    8. Значения удельной теплоемкости относятся к условиям постоянного атмосферного давления.

    Онлайн-калькулятор: Количество тепла

    Начнем с пары определений:

    • Тепло — это количество энергии, перетекающее от одного тела материи к другому, спонтанно из-за разницы температур или любым другим способом, кроме работы или передачи материи. Исторически для измерения тепла использовалось много единиц энергии.Единицей измерения в Международной системе единиц (СИ) является джоуль (Дж).
    • Теплоемкость или теплоемкость — это измеримая физическая величина, равная отношению тепла, добавленного (или удаленного) к объекту, к результирующему изменению температуры. Удельная теплоемкость, часто называемая просто , удельная теплоемкость — это теплоемкость на единицу массы материала.

    Из этого определения имеем следующую формулу для удельной теплоемкости:
    ,
    где c — удельная теплоемкость,
    Q — тепло, добавленное или отведенное к телу,
    m — масса тела,
    ΔT — изменение температуры.

    На теплоемкость могут влиять многие переменные состояния, которые описывают исследуемую термодинамическую систему. К ним относятся начальная и конечная температура, а также давление и объем системы до и после добавления тепла. Таким образом, приведенная ниже формула будет несколько более правильной:

    Однако в школьных задачах мы обычно используем постоянную удельную теплоемкость при стандартном давлении. Таким образом, взаимосвязь между теплом и изменением температуры обычно выражается в форме, показанной ниже:

    Обратите внимание, что это соотношение не применяется, если происходит фазовое изменение, потому что тепло, добавленное или удаленное во время фазового перехода, не изменяет температуру.

    Калькулятор ниже может найти пропущенное значение в приведенной выше формуле, если указаны все остальные значения. Он может найти добавленное или отведенное тепло, удельную теплоемкость, массу, начальную или конечную температуру:

    Количество тепла
    Значение для поиска ТеплоУдельная теплоемкость Масса Начальная температура Конечная температура Точность вычисления

    Цифры после десятичной точки: 1

    content_copy Ссылка сохранить Сохранить расширение Виджет

    Измерение тепла с помощью термометра

    Для измерения тепла используются два класса приборов, а именно, термометры и пирометры.Термометры используются только для измерения сравнительно низких температур, и в данной статье мы полностью ограничимся этим классом. Современная физика продемонстрировала, что тепло — это просто способ движения в материи, и принципы, от которых зависит его измерение, возможно, труднее понять, чем ложная теория, преобладавшая до утверждения этой доктрины. До тех пор, пока тепло считалось веществом, пусть даже невесомым, было нетрудно понять, как его поглощение телом могло определенно увеличивать это тело, поскольку древесина увеличивается за счет поглощения воды.Труднее понять, почему тело увеличивается из-за увеличения движения его частиц. Если мы, однако, откажемся от рассмотрения вопроса «почему» в данном случае и ограничимся законом или способом, которым происходит это расширение, мы можем прийти к определенным и практическим результатам. Тем не менее уместно заявить, что ультиматум, которого достигла наука в отношении причины этого расширения, состоит в том, что хедт в некотором роде противостоит сплоченности. В настоящее время совершенно бесполезно пытаться пойти дальше этого.Однако тот факт, что такое расширение имеет место как в твердых телах, так и в жидкостях, и что оно в определенных пределах достаточно однородно по определению в веществах, чтобы стать средством измерения температур, которым эти вещества подвергаются, является основой термометрических измерений. Но следует отчетливо иметь в виду еще один момент; термометры измеряют только физическое тепло. Таким образом, один фунт пара при 313 Fah. содержит достаточно тепла, чтобы нагреть пять с половиной фунтов воды до той же температуры, что легко продемонстрировать экспериментально.Отсюда следует, что абсолютное или общее количество единиц тепла, содержащихся в любом веществе, должно определяться каким-либо другим способом, кроме термометра, и что градус на термометре не может считаться единицей тепла. Что тогда такое единица тепла. Было решено учитывать количество тепла, необходимое для подъема одного фунта воды с 33 Fah. до 33 Фах. как единица тепла, и хотя, несомненно, есть некоторые небольшие источники ошибок в методе, он достаточно точен, чтобы учесть количество тепла, необходимое для поднятия одного фунта воды на один градус, где-то между 33 Fah.и 313 Fah. как постоянная величина. Это также правильный вывод, что любое конкретное вещество в однородном состоянии, что касается когезионной способности его частиц, должно иметь одну и ту же температуру, пока оно поддерживает это состояние, поскольку тепло является силой, противоположной когезии. Чем больше тепла, тем меньше сцепление, и наоборот. Вода, переходя из жидкого в твердое состояние, поддерживает такую ​​однородность состояния; поэтому его температуру можно считать постоянной. Он также поддерживает такую ​​же однородность состояния при переходе из жидкого состояния в пар при температуре кипения.Таким образом, точки замерзания и кипения воды можно рассматривать как два характерных ориентира температуры, от которых степень расширения некоторого однородно или почти равномерно расширяющегося вещества, например ртути, погруженной в воду в двух названных условиях, отмечается шкала, деления могут быть произвольно сделаны в каждом направлении по одной и той же шкале, которая будет указывать температуры выше или ниже этих точек. По шкале Цельсия высота столбика ртути, погруженного в ледяную воду, равна нулю, а расстояние между этой точкой и высотой того же столбца, погруженного в кипящую воду, делится на сто градусов, а по шкале Фаренгейта — первая указанная высота. 33 градуса выше нуля, и делит пространство между этой высотой и высотой, на которой ртуть стоит в кипящей воде, на сто восемьдесят делений, или градусов.Наше внимание требует то, как можно определить количество тепла в любом теле по термометрическим показаниям. Установлен следующий закон. Общее количество тепла в любом теле — это сумма его скрытого тепла и его ощутимого тепла. Скрытое тепло определяется известной способностью исследуемого тела при заданных температурах поглощать тепло или, другими словами, делать его скрытым. Этот термин, скрытая теплота, не подходит, хотя мы все равно вынуждены использовать его из-за отсутствия лучшего.Мы используем его только для того, чтобы различать тепло, которое, действуя в массе материи и расходуя свою энергию в антагонизме с когезионным притяжением, не может быть распознано с помощью ощущений, как, например, свободное или ощутимое тепло. Скрытая или удельная теплоемкость различных тел стала предметом тщательного изучения, и были составлены справочные таблицы, чтобы предоставить готовые средства вычисления; но удельная теплоемкость всех тел изменяется по любой причине, которая уменьшает или увеличивает расстояние между частицами, составляющими их массу.Сжатие пара снижает его удельную теплоемкость, но увеличивает его температуру, и наоборот. Таким образом, удельная теплоемкость пара постоянна только при постоянном давлении. Теперь будет видно, что общее количество тепла, содержащегося в любом теле, можно определить с помощью термометра, только когда его удельная теплоемкость для всех температур была заранее определена. Это было сделано для многих веществ, включая воду и пар, для которых измерение тепла имеет наивысшее значение, поскольку только с помощью такого измерения могут быть решены вопросы экономии парогенераторов.Количество воды, испарившейся при постоянной температуре на фунт потребляемого горючего при постоянном давлении, является единственным надежным тестом экономичности парового котла. Когда испарение происходит при 313, требуемая однородность давления и, следовательно, температуры легко поддерживается, чего не было бы, если бы двигатель приводился в действие генерируемым паром или если бы была предпринята попытка произвести пар с постоянной более высокой температура.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2015-2019 © Игровая комната «Волшебный лес», Челябинск
    тел.:+7 351 724-05-51, +7 351 777-22-55 игровая комната челябинск, праздник детям челябинск