Определение закон сохранения и превращения энергии – Attention Required! | Cloudflare

закон сохранения и превращения энергии


закон сохранения и превращения энергии
conservation of energy

Большой англо-русский и русско-английский словарь. 2001.

  • закон сохранения
  • закон сохранения массы

Смотреть что такое «закон сохранения и превращения энергии» в других словарях:

  • ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ (ЗАКОН СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ) — общий закон природы, согласно которому (см.) любой (см.) при всех процессах, происходящих в системе, остаётся постоянной (сохраняется). При этом энергия не может исчезать бесследно или возникать из ничего, она может только превращаться из одной… …   Большая политехническая энциклопедия

  • Закон сохранения энергии — Закон сохранения энергии  фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и… …   Википедия

  • ЭНЕРГИИ СОХРАНЕНИЯ ЗАКОН — один из наиб. фун дам. законов природы, согласно к рому важнейшая физ. величина энергия сохраняется в изолиров. системе. В изолиров. системе энергия может переходить из одной формы в другую, но её кол во остаётся постоянным. Если система не… …   Физическая энциклопедия

  • ЭНЕРГИИ СОХРАНЕНИЯ ЗАКОН — закон сохранения и превращения энергии, общий закон природы, согласно к рому энергия любой замкнутой системы при всех процессах, происходящих в системе, сохраняется. При этом энергия может только превращаться из одной формы в другую и… …   Большой энциклопедический политехнический словарь

  • Закон — 1) необходимое, существенное, устойчивое, повторяющееся отношение между явлениями в природе и обществе. Понятие закон родственно понятию сущности. Существуют три основные группы законов: специфические, или частные (напр., закон сложения скоростей …   Политология. Словарь.

  • ЗАКОН — необходимое, существенное, устойчивое, повторяющееся отношение между явлениями в природе и обществе. Понятие закон родственно понятию сущности. Существуют три основные группы законов: специфические, или частные (напр., закон сложения скоростей в… …   Большой Энциклопедический словарь

  • ЗАКОН (в науке) — ЗАКОН, необходимое, существенное, устойчивое, повторяющееся отношение между явлениями в природе и обществе. Понятие закон родственно понятию сущности. Существуют три основные группы законов: специфические, или частные (напр., закон сложения… …   Энциклопедический словарь

  • СОХРАНЕНИЯ ПРИНЦИПЫ — утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса,… …   Философская энциклопедия

  • Энергии сохранения закон —         один из наиболее фундаментальных законов, согласно которому важнейшая физическая величина Энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе… …   Большая советская энциклопедия

  • закон — а; м. 1. Нормативный акт, постановление высшего органа государственной власти, принятый в установленном порядке и имеющий юридическую силу. Кодекс законов о труде. З. о социальном обеспечении. З. о воинской обязанности. З. о рынке ценных бумаг.… …   Энциклопедический словарь

  • СОХРАНЕНИЯ ЭНЕРГИИ ЗАКОН — в изолир. системе энергия системы остается постоянной, возможны лишь переходы одного вида энергии в другой. В термодинамике С. э. з. соответствует первое начало термодинамики, к рое выражается ур нием Q = DU + W, где Q кол во сообщенной системе… …   Химическая энциклопедия


dic.academic.ru

Закон сохранения энергии, общая форма. Полная энергия: механическая, кинетическая, потенциальная. Формулировка, формулы

Тестирование онлайн

Закон сохранения энергии

Полная механическая энергия замкнутой системы тел остается неизменной

Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h2. Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h3 меньше h2. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

fizmat.by

описание и примеры :: SYL.ru

Потенциальная энергия — это, скорее, абстрактная величина, ведь любой предмет, который имеет некоторую высоту над поверхностью Земли, уже будет обладать определенным количеством потенциальной энергии. Она рассчитывается путем умножения скорости свободного падения на высоту над Землей, а также на массу. Если же тело двигается, можно говорить о наличии кинетической энергии.

закон сохранения энергии

Формула и описание закона

Результат сложения кинетической и потенциальной энергии в закрытой от внешнего воздействия системе, части которой взаимодействуют благодаря силам упругости и тяготения, не изменяется – так звучит закон сохранения энергии в классической механике. Формула данного закона выглядит так: Ек1+Еп1=Ек2+Еп2. Здесь Ек1 является кинетической энергией определенного физического тела в конкретный момент времени, а Еп1 – потенциальной. То же самое верно и для Ек2 и Еп2, но уже в следующий временной промежуток. Но этот закон верен только в том случае, если система, в которой он действует, является замкнутой (или консервативной). Это говорит о том, что значение полной механической энергии не изменяется, когда на систему действуют лишь консервативные силы. Когда в действие вступают неконсервативные силы, часть энергии изменяется, принимая другие формы. Такие системы получили название диссипативных. Закон сохранения энергии работает, когда силы извне никак не действуют на тело.

закон сохранения механической энергии

Пример проявления закона

Одним из типичных примеров, иллюстрирующих описанный закон, служит проведение опыта с шариком из стали, который падает на плиту из этого же вещества или на стеклянную, отскакивая от нее примерно на ту же высоту, где он находился до момента падения. Данный эффект достигается за счет того, что когда предмет движется, энергия преобразуется несколько раз. Первоначально значение потенциальной энергии начинает стремиться к нулю, в то время как кинетическая увеличивается, но после столкновения она становится потенциальной энергией упругой деформации шара.

закон сохранения полной механической энергии

Это продолжается до момента полной остановки предмета, в который он начинает свое движение вверх за счет сил упругой деформации как плиты, так и упавшего предмета. Но при этом в дело вступает потенциальная энергия тяготения. Так как шарик при этом понимается примерно на ту же высоту, с которой он и упал, кинетическая энергия в нем одна и та же. Кроме этого, сумма всех энергий, действующих на движущийся предмет, остается одинаковой во время всего описанного процесса, подтверждая закон сохранения полной механической энергии.

Упругая деформация – что это?

Для того чтобы полностью понять приведенный пример, стоит более подробно разобраться с тем, что такое потенциальная энергия упругого тела – это понятие означает обладание упругостью, позволяющей при деформации всех частей данной системы вернуться в состояние покоя, совершая некоторую работу над телами, с которыми соприкасается физический объект. На работу сил упругости не влияет форма траектории движения, так как работа, совершаемая за счет них, зависит лишь от положения тела в начале и в конце движения.

Когда действуют внешние силы

закон сохранения энергии в классической механике

Но закон сохранения не распространяется на реальные процессы, в которых участвует сила трения. В пример можно привести падающий на землю предмет. Во время столкновения кинетическая энергия и сила сопротивления возрастают. Этот процесс не вписывается в рамки механики, так как из-за возрастающего сопротивления повышается температура тела. Из вышесказанного следует вывод о том, что закон сохранения энергии в механике имеет серьезные ограничения.

Термодинамика

закон сохранения энергии в термодинаммике

Первый закон термодинамики гласит: разность между количеством теплоты, накапливаемой благодаря работе, совершаемой над внешними объектами, равна изменению внутренней энергии данной неконсервативной термодинамической системы.

Но это утверждение чаще всего формулируется в другом виде: количество теплоты, полученное термодинамической системой, тратится на работу, совершаемую над объектами, находящимися вне системы, а также на изменение количества энергии внутри системы. Согласно данному закону, она не может исчезнуть, превращаясь из одной формы в другую. Из этого следует вывод о том, что создание машины, не потребляющей энергии (так называемого вечного двигателя), невозможно, так как система будет нуждаться в энергии извне. Но многие все же настойчиво пытались создать ее, не учитывая закон сохранения энергии.

Пример проявления закона сохранения в термодинамике

Опыты показывают, что термодинамические процессы невозможно обратить вспять. Примером тому может служить соприкосновение тел, имеющих различную температуру, при котором более нагретое будет отдавать тепло, а второе — принимать его. Обратный же процесс невозможен в принципе. Другим примером является переход газа из одной части сосуда в другую после открытия между ними перегородки, при условии что вторая часть пуста. Вещество в данном случае никогда не начнет движение в обратном направлении самопроизвольно. Из вышесказанного следует, что любая термодинамическая система стремится к состоянию покоя, при котором ее отдельные части находятся в равновесии и имеют одинаковую температуру и давление.

Гидродинамика

Применение закона сохранения в гидродинамических процессах выражается в принципе, описанном Бернулли. Он звучит так: сумма давления как кинестетической, так и потенциальной энергии на единицу объема одна и та же в любой отдельно взятой точке потока жидкости или газа. Это значит, что для измерения скорости потока достаточно измерить давление в двух точках. Делается это, как правило, манометром. Но закон Бернулли справедлив только в том случае, если рассматриваемая жидкость имеет вязкость, которая равна нулю. Для того чтобы описать течение реальных жидкостей, используется интеграл Бернулли, предполагающий добавление слагаемых, которые учитывают сопротивление.

Электродинамика

Во время электризации двух тел количество электронов в них остается неизменным, из-за чего положительный заряд одного тела равен по модулю отрицательному заряду другого. Таким образом, закон сохранения электрического заряда говорит о том, что в электрически изолированной системе сумма зарядов ее тел не изменяется. Это утверждение верно и тогда, когда заряженные частицы испытывают превращения. Таким образом, когда сталкиваются 2 нейтрально заряженные частицы, сумма их зарядов все равно остается равной нулю, так как вместе с отрицательно заряженной частицей появляется и положительно заряженная.

Заключение

закон сохранения энергии в электродинамике

Закон сохранения механической энергии, импульса и момента – фундаментальные физические законы, связанные с однородностью времени и его изотропностью. Они не ограничены рамками механики и применимы как к процессам, происходящим в космическом пространстве, так и к квантовым явлениям. Законы сохранения позволяют получать данные о различных механических процессах без их изучения при помощи уравнений движения. Если какой-то процесс в теории игнорирует данные принципы, то проводить опыты в таком случае бессмысленно, так как они будут нерезультативными.

www.syl.ru

Первый закон термодинамики как закон сохранения и превращения энергии

Термодинамический метод основан на использовании всеобщего закона сохранения энергии при ее превращениях, согласно которому: энергия не исчезает и не возникает вновь, она лишь переходит из одного вида в другой в различных физических и химических процессах. Другими словами, для любой изолированной системы энергия, заключенная в этой системе, сохраняется неизменной.

Энергетическое состояние термодинамической системы и уровень ее собственной энергии определяется такой величиной как внутренняя энергия. Внутренняя энергия тела складывается из поступательного и вращательного движений молекул, составляющих тело, энергии внутримолекулярных колебаний, внутриатомной и внутриядерной энергии.

В термодинамике в основном рассматриваются термодинамические системы взаимодействующие с окружающей средой, то есть не являющиеся изолированными. В этом случае изменение внутренней энергии DU системы определяют, изучая род взаимодействия системы с окружающей средой. При этом важно, что характер изменений в термодинамической системе зависит не от свойств окружающих тел, а исключительно от способа передачи энергии, то есть от рода взаимодействия. Поэтому при составлении баланса энергии термодинамической системы алгебраически суммируются воздействия каждого рода, исходящие от всех тел окружающей среды. Если через Qk обозначить количество воздействий k–го рода, то уравнение сохранения энергии можно представить в виде:

,

где n – число родов взаимодействий, или число термодинамических степеней свободы системы.

Представленное уравнение является формой выражения первого закона термодинамики для произвольной термодинамической системы с многими степенями свободы, который может быть сформулирован так:

изменение внутренней энергии термодинамической системы равно алгебраической сумме внешних воздействий.

При рассмотрении термодеформационной термодинамической системы таких внешних воздействий всего два: теплота и работа. Причем термическое воздействие, то есть количество подводимой теплоты Q, считается положительным в том случае, если теплота подводится от окружающей среды к термодинамической системе (рис. 2.1). А работа, наоборот, будет тогда положительной, когда система совершает работу над окружающей средой.



  Рис. 2.1. Внешние воздействия на термодинамическую систему В технической термодинамике отдельно рассматривается работа объемной деформации системы и работа, не связанная с объемной деформацией. Механическая работа, совершаемая при объемной деформации, называется работой расширения
и обозначается L. С учетом введенных обозначений и правила знаков уравнение первого закона термодинамики для термодеформационной системы получит вид: DU = QL,  

а первый закон следующую формулировку: изменение внутренней энергии термодинамической системы равно разности между количеством теплоты и работы.

Переписав представленное выражение в форме:

Q = DU + L,

можно получить еще одну формулировку первого закона термодинамики: подводимая к термодинамической системе теплота затрачивается на изменение внутренней энергии системы и на совершение работы.

Оба представленных выражения, определяют изменения в термодинамической системе, происшедшие в конечном термодинамическом процессе. В случае элементарного, бесконечно малого процесса теплота, работа и, следовательно, изменение внутренней энергии системы бесконечно малы. Тогда:

dU = d

Q – dL или dQ = dU + dL.

Если масса системы неизменна и сама система представляет собой однородное рабочее тело, то уравнения первого закона термодинамики могут быть записаны в удельных величинах:

du = dq – dl или dq = du + dl.

Кроме работы расширения термодинамическая система может совершать и другие виды работ. Любой вид работы, за исключением работы расширения обозначим символом L*. Тогда уравнения первого закона термодинамики для элементарного процесса запишутся в виде:

du = dq – dl – ådl* или dq = du + dl + ådl*.

megaobuchalka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *