Первый период периодической системы — Википедия
К пе́рвому пери́оду периоди́ческой систе́мы относятся элементы верхней строки (или периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) химических свойств элементов при увеличении атомного числа: новая строка начинается тогда, когда увеличивается количество энергетических уровней, что означает попадание элементов с аналогичными свойствами в тот же вертикальный столбец. Первый период содержит меньше всего элементов. Их всего два: водород и гелий. Данное положение объясняется современной теорией строения атома.
К каждому периоду в периодической таблице химических элементов относятся как минимум 8 элементов, и это позволяет найти определённый периодический закон периода. Однако 1-й период содержит только 2 элемента, что затрудняет процесс нахождения периодического закона.
Гелий является благородным газом и относится к 18-й группе, принадлежащей благородным газам. А водород, как сказано ниже, имеет уникальные свойства и поэтому его трудно распределить в какую-либо группу. Именно поэтому его часто изображают на разных позициях в периодической таблице
Позиции элементов первого периода в таблице[править | править код]
Хотя и водород, и гелий, относятся к s-блоку, ни к одному из них невозможно найти элемент из этого же блока с похожими свойствами. Их химические свойства так сильно отличаются от других s-элементов, что порой возникают разногласия относительно положения элементов в периодической системе.
Водород в системе иногда размещают над литием[1], углеродом[2], фтором[2][3]. В некоторых вариантах таблицы символ водорода вообще появляется дважды — над литием и фтором[4]. Иногда же этот элемент размещают над всеми элементами ниже лежащих периодов таблицы, подчёркивая, что этот химический элемент не распределяется ни в одну из групп[4] периодической системы.
Гелий практически всегда располагают над неоном (относящемуся к р-элементам) в столбце, принадлежащему группе №18, где распмещены благородные газы [1]. Однако время от времени гелий размещали над бериллием ввиду одинаковых конфигураций расположения электронов на внешнем уровне[5].
Водород[править | править код]



Водород (Н) является химическим элементом с атомным номером 1. При нормальной температуре и давлении водород представляет собой легковоспламеняющийся двухатомный газ без цвета, запаха и вкуса. Неметалл, имеет молекулярную формулу H
Водород является самым распространённым химическим элементом, составляя примерно 75 % от массы всех элементов во Вселенной.[7] Звёзды в главной последовательности в основном состоят из водорода в состояние плазмы. В элементарном состоянии водород является относительно редким элементом на Земле, поэтому в промышленных масштабах он производится из таких углеводородов, как метан. Большинство элементарного водорода используется «немедленно» (имеется в виду локально на производственной площадке), крупнейшими местами его сбыта является переработка ископаемого топлива, гидрокрекинг, производство аммиака, в основном для рынка удобрений,и т.д. Водород можно получить также из воды с помощью процесса электролиза, но при этом производство водорода получается коммерчески значительно дороже, чем из природного газа. [8]
Наиболее распространенный изотоп водорода природного происхождения, известный как протий, имеет один протон и не имеет ни одного нейтрона.[9] В ионных соединениях он может либо получить положительный заряд, став катионом, состоящим из одного протона, либо приобрести отрицательный заряд, став анионом, известным как гидрид. Водород может вступать в соединения с большинством элементов, он присутствует в воде и в большинстве органических веществ.[10] Он играет особенно важную роль в химии кислот и оснований, в которой многие реакции представляют собой обмен протонами между молекулами раствора.[11] Поскольку только для нейтрального атома уравнение Шрёдингера может быть решено аналитически, изучение энергетики и спектра атома водорода играет ключевую роль в развитии квантовой механики.[12]
Взаимодействие водорода с различными металлами являются очень важным в металлургии, так как многие металлы при реакции испытывают водородное охрупчивание,
Гелий[править | править код]

Гелий (He) является одноатомным инертным химическим элементом с атомным номером 2, без цвета, вкуса и запаха, нетоксичным, стоящим в начале группы благородных газов в периодической таблице.[17] Его температура кипения и плавления являются самыми низкими среди всех элементов, он существует только в виде газа, за исключением экстремальных условий. [18]
Гелий был открыт в 1868 году французский астроном Пьером Жансеном, который первым обнаружил этот элемент по наличию неизвестной ранее жёлтой спектральной линии солнечного света во время солнечного затмения.[19] В 1903 году большие запасы гелия были найдены на месторождении природного газа в США, на сегодняшний день эта страна является крупнейшим поставщиком этого газа.[20] Гелий используется в криогенной технике,[21] в системах глубоководного дыхания,[22] для охлаждения сверхпроводящих магнитов, в гелиевом датировании,[23] для надувания воздушных шариков,[24] для подъёма дирижаблей,[25] и в качестве защитного газа для промышленных целей, таких как электросварка и выращивание кремниевых пластин.[26] Вдыхая небольшой объём газа, можно на время изменить тембр и качество человеческого голоса.[27] Поведение жидкого гелия-4 в двух жидких фазах гелий I и гелий II имеет важное значение для исследователей, изучающих квантовую механику и явления сверхтекучести в частности,
Гелий является вторым по лёгкости элементом и вторым по распространённости в доступной для наблюдения части Вселенной.[30] Большинство гелия образовалось во время Большого взрыва, но и новый гелий постоянно создаётся в результате слияния ядер водорода в звездах.[31] На Земле гелий относительно редок, он образуется в результате естественного распада некоторых радиоактивных элементов,[32] потому что альфа-частицы, которые при этом испускаются, состоят из ядер гелия. Этот радиогенный гелий улавливается в составе природного газа в концентрациях до семи процентов от объема,[33] из которого он добывается в коммерческих масштабах в процессе низкотемпературной сепарации, называемой фракционной перегонкой. [34]
В традиционном изображении периодической таблицы гелий находится над неоном, что отражает его статус благородного газа, однако иногда, как, например, в таблице Менделеева Джанета, он находится над бериллием, что отражает строение его электронной конфигурации.
- ↑ 1 2 International Union of Pure and Applied Chemistry > Periodic Table of the Elements (неопр.). IUPAC. Дата обращения 1 мая 2011.
- ↑ 1 2 Cronyn, Marshall W. The Proper Place for Hydrogen in the Periodic Table (англ.) // Journal of Chemical Education (англ.)русск. : journal. — 2003. — August (vol. 80, no. 8). — P. 947—951. — DOI:10.1021/ed080p947. — Bibcode: 2003JChEd..80..947C.
- ↑ Vinson, Greg. Hydrogen is a Halogen (неопр.). HydrogenTwo.com (2008). Дата обращения 14 января 2012.
- ↑ 1 2 Kaesz, Herb; Atkins, Peter. A Central Position for Hydrogen in the Periodic Table (англ.) // Chemistry International (англ.)русск. : journal. — International Union of Pure and Applied Chemistry. — Vol. 25, no. 6. — P. 14.
- ↑ Winter, Mark. Janet periodic table (неопр.) (недоступная ссылка). WebElements (1993–2011). Дата обращения 19 января 2012. Архивировано 6 апреля 2012 года.
- ↑ Hydrogen – Energy (неопр.). Energy Information Administration.
- ↑ Palmer, David Hydrogen in the Universe (неопр.). NASA (13 ноября 1997).
- ↑ Staff. Hydrogen Basics — Production (неопр.). Florida Solar Energy Center (2007).
- ↑ Sullivan, Walter. Fusion Power Is Still Facing Formidable Difficulties, The New York Times (11 марта 1971).
- ↑ «hydrogen», Encyclopædia Britannica, 2008
- ↑ Eustis, S. N.; Radisic, D; Bowen, KH; Bachorz, RA; Haranczyk, M; Schenter, GK; Gutowski, M. Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia (англ.) // Science : journal. — 2008. — 15 February (vol. 319, no. 5865). — P. 936—939. — DOI:10.1126/science.1151614. — PMID 18276886.
- ↑ «Time-dependent Schrödinger equation», Encyclopædia Britannica, 2008
- ↑ Rogers, H. C. Hydrogen Embrittlement of Metals (англ.) // Science. — 1999. — Vol. 159, no. 3819. — P. 1057—1064. — DOI:10.1126/science.159.3819.1057. — PMID 17775040.
- ↑ Christensen, C. H., Nørskov, J. K.; Johannessen, T.. Making society independent of fossil fuels — Danish researchers reveal new technology, Technical University of Denmark (9 июля 2005). Архивировано 7 января 2010 года.
- ↑ Takeshita, T.; Wallace, W.E.; Craig, R.S.
- ↑ Kirchheim, R. Hydrogen solubility and diffusivity in defective and amorphous metals (англ.) // Progress in Materials Science (англ.)русск. : journal. — 1988. — Vol. 32, no. 4. — P. 262—325. — DOI:10.1016/0079-6425(88)90010-2.
- ↑ Helium: the essentials (неопр.). WebElements.
- ↑ Helium: physical properties (неопр.). WebElements.
- ↑ Pierre Janssen (неопр.). MSN Encarta. Архивировано 29 октября 2009 года.
- ↑ Theiss, Leslie. Where Has All the Helium Gone? (неопр.). Bureau of Land Management (18 января 2007). Архивировано 25 июля 2008 года.
- ↑ Timmerhaus, Klaus D. Cryogenic Engineering: Fifty Years of Progress (англ.). — Springer (англ.)русск., 2006. — ISBN 0-387-33324-X.
- ↑ Copel, M. Helium voice unscrambling (неопр.) // Audio and Electroacoustics. — 1966. — September (т. 14, № 3). — С. 122—126. — DOI:10.1109/TAU.1966.1161862.
- ↑ «helium dating», Encyclopædia Britannica, 2008
- ↑ Brain, Marshall. How Helium Balloons Work (неопр.). How Stuff Works.
- ↑ Jiwatram, Jaya. The Return of the Blimp (неопр.). Popular Science (10 июля 2008).
- ↑ When good GTAW arcs drift; drafty conditions are bad for welders and their GTAW arcs (англ.) // Welding Design & Fabrication : journal. — 2005. — 1 February.
- ↑ Montgomery, Craig. Why does inhaling helium make one’s voice sound strange? (неопр.). Scientific American (4 сентября 2006).
- ↑ Probable Discovery Of A New, Supersolid, Phase Of Matter (неопр.). Science Daily (3 сентября 2004).
- ↑ Browne, Malcolm W.. Scientists See Peril In Wasting Helium; Scientists See Peril in Waste of Helium, The New York Times (21 августа 1979).
- ↑ Helium: geological information (неопр.). WebElements.
- ↑ Cox, Tony. Origin of the chemical elements (неопр.). New Scientist (3 февраля 1990).
- ↑ Helium supply deflated: production shortages mean some industries and partygoers must squeak by., Houston Chronicle (5 ноября 2006).
- ↑ Brown, David. Helium a New Target in New Mexico (неопр.). American Association of Petroleum Geologists (2 февраля 2008).
- ↑ Voth, Greg. Where Do We Get the Helium We Use?, The Science Teacher (1 декабря 2006).
Третий период периодической системы — Википедия
К тре́тьему пери́оду периоди́ческой систе́мы относятся элементы третьей строки (или третьего периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Третий период содержит восемь элементов (как и предыдущий), в него входят: натрий, магний, алюминий, кремний, фосфор, сера, хлор и аргон. Первые два из них, натрий и магний, входят в s-блок периодической таблицы, тогда как остальные относятся к р-блоку. Следует обратить внимание, что 3d-орбитали у элементов не заполнены до 4 периода, что даёт периодам таблицы их характерный вид «две строки в одной».
Все элементы третьего периода встречаются в природе и имеют по крайней мере один стабильный изотоп.
Натрий[править | править код]
Натрий (Na) — щелочной металл серебристо-белого цвета с атомным номером 11, атомной массой 22,98977, имеющий один стабильный изотоп 23Na.
Содержание натрия в земной коре 2,64 % по массе. Натрий присутствует в больших количествах в мировом океане в форме хлорида натрия. В живых организмах натрий находится большей частью снаружи клеток (примерно в 15 раз больше чем в цитоплазме). Эту разницу поддерживает натрий-калиевый насос, который откачивает попавший внутрь клетки натрий. Рекомендуемая доза натрия составляет для детей от 600 до 1700 миллиграммов, для взрослых от 1200 до 2300 миллиграммов. В виде поваренной соли это составляет от 3 до 6 граммов в день.
Магний[править | править код]
Магний (Mg) — щелочноземельный металл серебристо-белого цвета с атомным номером 12 и атомной массой 24,305. Имеет три стабильных изотопа: 24Mg (78,60 %), 25Mg (10,11 %), 26Mg (11,29 %).
Основная область использования магния — производство магниевых сплавов. Магний применяют также для легирования сплавов на основе алюминия, для металлотермического получения некоторых металлов (Ti, U, Zr, V и др.), для раскисления и десульфурации ряда металлов и сплавов, в синтезе магнийорганических соединений. Ионы магния найдены в хлорофилле.
Алюминий[править | править код]
Алюминий (Al) — постпереходный металл серебристо-белого цвета с атомным номером 13, атомной массой 26,98154, имеющий один стабильный изотоп 27Al.
Содержание алюминия в земной коре 8,8 % по массе. По распространенности в природе он занимает четвёртое место среди всех элементов (после кислорода, водорода и кремния) и первое среди металлов. В свободном виде не встречается. Алюминий используют главным образом для получения алюминиевых сплавов. Чистый алюминий — конструкционный материал в строительстве зданий, в судостроении, для оборудования силовых подстанций и т. д. Применяют алюминий также для изготовления кабельных, токопроводящих и других изделий в электротехнике, корпусов и охладителей диодов, специальной химической аппаратуры, товаров народного потребления. Покрытия из алюминия наносят на стальные изделия для повышения их коррозионной стойкости.
Кремний[править | править код]
Кремний (Si) — металлоид. Он является полупроводником, на основе которого изготавливают большинство интегральных схем.
Фосфор[править | править код]
Фосфор (P) — неметалл. Обладает очень высокой реактивностью, из-за чего в природе в свободном виде не встречается.
Сера[править | править код]
Сера (S) — неметалл. Найдена в двух аминокислотах: цистеине и метионине.
Хлор[править | править код]
Хлор (Cl) — галоген. Используется в качестве дезинфицирующего средства, особенно в плавательных бассейнах.
Аргон[править | править код]
Аргон (Ar) является инертным газом, что делает его почти полностью нереакционноспособным. Лампы накаливания часто заполняют инертными газами, в том числе и аргоном, что предохраняет нити от перегорания при высоких температурах.
Пятый период периодической системы — Википедия
К пя́тому пери́оду периоди́ческой систе́мы относятся элементы пятой строки (или пятого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Пятый период содержит восемнадцать элементов (столько же, сколько и предыдущий), в него входят: рубидий, стронций, иттрий, цирконий, ниобий, молибден, технеций, рутений, родий, палладий, серебро, кадмий, индий, олово, сурьма, теллур, иод и ксенон. Все элементы этого периода имеют пять электронных оболочек. Первые два из них, рубидий и стронций, входят в s-блок периодической таблицы, тогда как остальные относятся к р-блоку.[1] Этот период содержит элементы, представляющие собой исключения из правил. Так технеций является одним из двух элементов до свинца, который не имеет стабильных изотопов, а молибден и иод являются самыми тяжелыми элементами, играющими биологическую роль.[2][3] Кроме того, ниобий имеет наибольшую глубину магнитного проникновения среди всех элементов.
Этот период имеет большое количество исключений из правила Клечковского, к ним относятся: ниобий (Nb), молибден (Mo), рутений (Ru), родий (Rh), палладий (Pd) и серебро (Ag).
Рубидий[править | править код]
Рубидий (Rb) — первый элемент пятого периода, мягкий серебристо-белый щелочной металл с атомным номером 37 и атомной массой 85,4678. В природе встречается в виде смеси стабильного изотопа 85Rb (72,15 %) и радиоактивного изотопа 87Rb (27,86 %) с периодом полураспада 4,8.1010 лет. Искусственно получено еще 26 радиоактивных изотопов рубидия с массовыми числами от 75 до 102 и периодами полураспада от 37 мс (рубидий-102) до 86 дней (рубидий-83).[4]
Содержание рубидия в земной коре составляет 7,8·10-3%. Это примерно столько же, сколько никеля, меди или цинка. По распространённости в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий — типичный рассеянный элемент.
Рубидий входит как компонент в материал катодов для фотоэлементов и фотоэлектрических умножителей, входит в состав смазочных композиций, используемых в реактивной и космической технике, применяется как катализатор в гидридных топливных элементах. Пары рубидия используются в разрядных электрических трубках, лампах низкого давления, источниках резонансного излучения, в чувствительных магнитометрах, стандартах частоты и времени. Перспективно использование рубидия в качестве теплоносителя и рабочей среды в ядерных реакторах и турбоэлектрических генераторных установках. Мировое производство рубидия и его соединений около 450 кг/год.
Рубидий опасен в обращении, хранят его в ампулах из стекла пирекс в атмосфере аргона или в стальных герметичных сосудах под слоем обезвоженного масла (вазелинового, парафинового). Утилизируют рубидий обработкой остатков металла пентанолом.[5]
Стронций[править | править код]
Стронций — второй элемент пятого периода, мягкий, ковкий и пластичный серебристо-белый щелочноземельный металл с атомным номером 38 и атомной массой 87,62.Природный стронций состоит из четырёх стабильных изотопов: 88Sr (82,56 %), 86Sr (9,86 %), 87Sr (7,02 %) и 84Sr (0,56 %). Стронций отличается большой химической активностью, по химическим свойствам сходен с кальцием и барием.[6]
Содержание стронция в земной коре 3,4·10-2% по массе, в океанических водах содержится 11097000 т (8,1 мг/л). В свободном виде не встречается.
Стронций ограниченно используют в технике для раскисления меди и бронзы, в качестве легирующих добавок к сплавам магния, алюминия, свинца, никеля и меди. Более широко используют соединения стронция при изготовлении специальных оптических стёкол, в пиротехнических составах, в производстве ферромагнитных и люминесцентных материалов и т. д. Соли стронция, в том числе радиоактивного стронция, применяют в терапии кожных болезней, соли жирных кислот — при изготовлении консистентных смазок.
Радиоактивный стронций может поступать в окружающую среду в результате ядерных испытаний и аварий на АЭС. Как аналог кальция, стронций активно участвует в обмене веществ у растений. В растения стронций-90 попадает при загрязнении листьев и из почвы через корни. Особенно много его накапливают бобовые, корне- и клубнеплоды и злаки. При избытке стронция в организме человека прежде всего поражаются костная ткань, печень и кровь. Предельно допустимая концентрация стронция в воде 8 мг/л, в воздухе от 1 до 6 мг/м3 (для разных соединений по-разному).
Второй период периодической системы — Википедия
Ко второ́му пери́оду периоди́ческой систе́мы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Второй период содержит больше элементов, чем предыдущий, в него входят: литий, бериллий, бор, углерод, азот, кислород, фтор и неон. Данное положение объясняется современной теорией строения атома.
Литий[править | править код]
Литий (Li) является химическим элементом с атомным номером 3, встречающимся в двух изотопах: 6Li и 7Li. При нормальной температуре и давлении литий — это серебристо-белый, мягкий щелочной металл с высокой реакционной способностью. Его плотность составляет 0.564 г/см³. Литий является самым лёгкий из всех металлов и наименее плотным из всех твёрдых элементов.[1] Наиболее распространённым в природе изотопом является литий-7, обозначающийся как 7Li, который составляет 92,5% всего лития. Такой изотоп состоит из трёх протонов и четырёх нейтронов.[2] Изотоп литий-6, обозначающийся 6Li, тоже стабилен, он содержит три протона и три нейтрона. Эти два изотопа составляют весь естественный литий на Земле, хотя искусственно были синтезированы и другие изотопы.[2] В ионных соединениях литий теряет электрон и становится положительно заряженным катионом Li+.
Согласно теории, Li является одним из немногих элементов, синтезированных в результате Большого Взрыва, вследствие чего его относят к списку изначальных элементов. Литий стоит на 33 месте среди самых распространённых элементов на Земле,[3] встречаясь в концентрациях от 20 до 70 миллионных долей по весу,[4] но из-за его высокой реакционной способности в природе он встречается только в виде соединений. Наиболее богатым источником литий-содержащих соединений являются гранитные пегматиты, а также сподумен и петалит, которые являются наиболее коммерчески целесообразными источниками этого элемента.[4] Металл выделяется электролитически из смеси хлорида лития и хлорида калия.
Соли лития используются в фармакологической промышленности как лекарственное средство для стабилизации настроения.[5][6] Они используются также при лечении биполярного расстройства, где играют определённую роль в лечении депрессии и мании, и могут уменьшить шансы суицида.[7] Наиболее распространёнными из применяемых соединений лития являются карбонат лития Li2CO3, цитрат лития Li3C6H5O7, сульфат лития Li2SO4 и оротат лития LiC5H3N2O4·H2O. Литий используется также в качестве анода в литиевых батареях, а его сплавы с алюминием, кадмием, медью и марганцем используются для высокопрочных частей самолетов и космических аппаратов, например, для внешнего топливного бака космического корабля Спейс шаттл.[1]
Бериллий[править | править код]
Бериллий (Be) является химическим элементом с атомным номером 4, существующем в виде 9Be. При нормальной температуре и давлении бериллий является твёрдым, лёгким, хрупким, двухвалентным щёлочноземельным металлом серо-стального цвета, с плотностью 1,85 г/см³.[8] Он обладает одной из самых высоких температур плавления среди всех лёгких металлов. Наиболее распространенным изотопом бериллия является 9Be, который содержит 4 протона и 5 нейтронов. Он составляет почти 100% всего природного бериллия, и является единственным стабильным изотопом, однако искусственно были синтезированы и другие изотопы. В ионных соединенийях бериллий теряет два валентных электрона с образованием катиона Be2+.
Небольшое количество атомов бериллия было синтезировано во время Большого Взрыва, хотя большинство из них распались или участвовали в дальнейшем в атомных реакциях при создания более крупных ядер, таких как углерод, азот и кислород. Бериллий является одним из компонентов в 100 из более 4000 известных минералов, таких как бертрандит Be4Si2O7(OH)2, берилл Al2Be3Si6O18, хризоберилл Al2BeO4 и фенакит Be2SiO4. Драгоценные формы берилла — аквамарин, берилл красный и изумруд. Наиболее распространенными источниками бериллия, используемого в коммерческих целях, являются берилл и бертрандит, и при его производстве используется реакция восстановления фторида бериллия с помощью металлического магния или электролиз расплавленного хлорида бериллия, содержащего некоторое количество хлорида натрия, поскольку хлорид бериллия является плохим проводником электричества.[8]
Благодаря высокой жёсткости, легкому весу и стабильности размеров в широком диапазоне температур, металлический бериллий используется в качестве конструкционного материала в авиации, ракетной технике и спутниковой связи.[8] Он используется в качестве легирующей добавки в бериллиевой бронзе, которая используется в электрических компонентах ввиду её высокой электро- и теплопроводности.[9] Листы бериллия используются в рентгеновских детекторах для фильтрации видимого света и пропуска только рентгеновских лучей.[8] Он используется в качестве замедлителя нейтронов в ядерных реакторах, поскольку лёгкие ядра более эффективны в замедлении нейтронов, чем тяжёлые.[8] Низкий вес и высокая жёсткость бериллия делают полезным его применение в высокочастотных громкоговорителях (твитерах).[10]
Бериллий и его соединения отнесены Международным агентством по изучению рака к 1 группе канцерогенов. Они обладают канцерогенными свойствами как для людей, так и для животных.[11] Хронический бериллиоз является лёгочным, гранулематозным заболеванием большого круга кровообращения, вызванным воздействием бериллия. Приблизительно 1% — 15% людей чувствительны к бериллию, и у них могут развиться воспалительные реакции дыхательной системы и кожи, которые называются хронической бериллиевой болезнью или бериллиозом. Иммунная система организма распознаёт бериллий как инородные частицы и подготавливает против них атаку, как правило, в лёгких, через которые эти частицы вдыхаются. Эта реакция может вызвать лихорадку, усталость, слабость, ночные потовыделения и затруднение дыхания.[12]
Бор[править | править код]
Основная статья: БорБор (B) является химическим элементом с атомным номером 5, существующем в виде 10B и 11B. При нормальной температуре и давлении бор является трёхвалентным металлоидом, имеющем несколько аллотропных форм. Аморфный бор представляет собой коричневый порошок, образующийся как продукт многих химических реакций. Кристаллический бор является очень твёрдым, чёрным материалом с высокой температурой плавления, существующем во многих полиморфных модификациях. Наиболее распространёнными являются две ромбоэдрические модификации: α-бор и β-бор, содержащие 12 и 106,7 атомов в ромбоэдрической ячейке соответственно, и 50-атомный бор с тетрагональной решёткой. Бор имеет плотность 2,34 г/см³.[13] Наиболее распространённым в природе изотопом бора является 11B (80,22% от всего бора), содержащий 5 протонов и 6 нейтронов. Другой встречающийся изотоп 10B (19,78%) содержит 5 протонов и 5 нейтронов.[14] Но это только стабильные изотопы, а искусственно были синтезированы и другие. Бор создаёт ковалентные связи с другими неметаллами и имеет степень окисления 1, 2, 3 и 4.[15][16][17] В свободном виде в природе бор не встречается, а встречается в таких соединениях, как бораты. Наиболее распространёнными источниками бора являются турмалин, бура Na2B4O5(OH)4·8H2O и кернит Na2B4O5(OH)4·2H2O.[13] Чистый бор получить довольно трудно. Сделать это можно путём его восстановления магнием из оксида бора B2O3. Этот оксид получают путём плавления борной кислоты B(OH)3, которая в свою очередь получается из буры. Небольшое количество чистого бора можно получить путём термического разложения трибромида бора BBr3 в газообразном водороде над горячей проволокой из вольфрама или тантала; последние действуют в качестве катализаторов.[13] Коммерчески наиболее важными источниками бора являются: пентагидрат тетрабората натрия Na2B4O7 · 5H2O, который в больших количествах используется при производстве изоляционного стекловолокна и отбеливателя из пербората натрия; карбид бора, керамический материал, используемый для изготовления бронированных изделий, особенно бронежилетов для солдат и сотрудников полиции; ортоборная кислота H3BO3 и борная кислота, используемые в производстве текстильного стекловолокна и плоскопанельных дисплеев; декагидрат тетрабората натрия Na2B4O7 · 10H2O и бура, используемые в производстве клеев; наконец, изотоп бор-10 используется в управлении ядерными реакторами в качестве защиты от ядерного излучения и в приборах для обнаружения нейтронов.[14]
Бор является одним из важнейших микроэлементов растений, необходимый для создания и роста прочных клеточных мембран, деления клеток, развития семян и плодов, транспортировки сахаров и развития гормонов.[18][19] Однако концентрация его в почве более 1.0 мд может вызвать некроз листьев и плохой рост. Уровень около 0.8 мд может вызвать эти же симптомы у растений особенно чувствительных к бору. У большинства растений, даже не слишком чувствительных к наличию бора в почве, признаки отравления бором появляются при уровне выше 1.8 мд.[14] В организме животных бор является ультраразличимым элементом (англ.). В диете человека ежедневный приём составляет 2.1-4.3 мг бора в день на килограмм массы тела.[20] Он также используется как добавка для профилактики и лечения остеопороза и артрита.[21]
Углерод[править | править код]
Углерод (C) является химическим элементом с атомным номером 6, встречающемся в природе в виде 12C, 13C и 14C.[22] При нормальной температуре и давлении углерод является твёрдым веществом, существующем в различных аллотропных формах, наиболее распространенными из которых являются графит, алмаз, фуллерены и аморфный углерод.[22] Графит — мягкий, матово-чёрный полуметалл с гексагональной кристаллической решёткой, с очень хорошими проводящими и термодинамически стабильными свойствами. Алмаз имеет весьма прозрачные бесцветные кристаллы с кубической решёткой и с плохими проводящими свойствами, он является самым твёрдым из известных естественных минералов и имеет самый высокий показатель преломления среди всех драгоценных камней. В отличие от структур алмаза и графита типа кристаллической решётки, фуллерены, названные в честь Ричарда Бакминстера Фуллера, являются веществами, архитектура которых напоминает молекулы. Есть несколько различных фуллеренов, наиболее известным из которых является «бакминстерфуллерен» C60, название которого также связано с именем Ричарда Бакминстера Фуллера. Пространственная структура этого фуллерена напоминает геодезический купол, изобретённый Фуллером. О фуллеренах известно пока немного, они являются предметом интенсивных исследований.[22] Существует также аморфный углерод, который не имеет кристаллической структуры.[23] В минералогии этот термин используется для ссылки на сажу и уголь, хотя они не являются строго аморфными, поскольку содержат небольшое количество графита или алмаза.[24][25] Наиболее распространённым изотопом углерода является 12C с шестью протонами и шестью нейтронами (98,9% от общего количества).[26] Стабилен также изотоп 13C с шестью протонами и семью нейтронами (1,1%).[26] Ничтожные количества 14C также встречаются в природе, но этот изотоп является радиоактивным и распадается с периодом полураспада 5730 лет. Он используется в методе радиоуглеродного датирования.[27] Искусственно синтезированы также другие изотопы углерода. Углерод образует ковалентные связи с другими неметаллами со степенью окисления -4, -2, +2 и +4.[22]
Углерод является четвёртым по распространённости элементом во Вселенной по массе после водорода, гелия и кислорода,[28] вторым в организме человека по массе после кислорода[29] и третьим по числу атомов.[30] Существует чуть ли не бесконечное число соединений, содержащих углерод, благодаря способности углерода к образованию стабильной связи C — С.[31][32] Простейшими углеродосодержащими молекулами являются углеводороды,[31] которые включают углерод и водород, хотя иногда они содержат в функциональных группах и другие элементы. Углеводороды используются в качестве топлива, для производства пластмасс и в нефтехимии. Все органические соединения, необходимые для жизни, содержат по меньшей мере один атом углерода.[31][32] В соединении с кислородом и водородом углерод может образовывать многие группы важных биологических соединений,[32] включая сахара, лигнаны, хитины, спирты, жиры и ароматические эфиры, каротиноиды и терпены. С азотом он образует алкалоиды, а с добавлением серы формирует антибиотики, аминокислоты и резину. С добавлением фосфора к этим элементам углерод формирует ДНК и РНК, химические коды носителей жизни, и аденозинтрифосфаты (АТФ), являющиеся наиболее важными переносчиками энергии для молекул во всех живых клетках.[32]
Азот[править | править код]
Азот (N) является химическим элементом с атомным номером семь и атомной массой 14,00674. При стандартных условиях азот в природе представляет собой инертный двухатомный газ без цвета, вкуса и запаха, составляющий 78,08% от объёма атмосферы Земли. Азот был открыт как составная компонента воздуха шотландским врачом Даниэлем Резерфордом в 1772 году.[33] В природе он встречается в виде двух изотопов: азот-14 и азот-15.[34]
Многие важные для промышленности вещества, такие как аммиак, азотная кислота, органические нитраты (ракетное топливо, взрывчатые вещества) и цианиды, содержат азот. В химии элементарного азота преобладает чрезвычайно сильная химическая связь, в результате чего возникают трудности как для организмов, так и при промышленном производстве в разрушении этой связи при преобразовании молекулы N2 в полезные соединения. Но в то же время такое успешное преобразование вызывает потом высвобождение большого количества энергии, если такие соединения сжечь, взорвать или другим способом преобразовать азот обратно в газообразное двухатомное состояние.
Азот присутствет во всех живых организмах, а круговорот азота описывает движение элемента из воздуха в биосферу и органические соединения, и затем обратно в атмосферу. Искусственно произведённые нитраты являются ключевыми ингредиентами промышленных удобрений, а также основными загрязняющими веществами при возникновении эвтрофикации водных систем. Азот является составной частью аминокислот, а, следовательно, белков и нуклеиновых кислот (ДНК и РНК). Он находится в химической структуре практически всех нейротрансмиттеров и является определяющим компонентом алкалоидов и биологических молекул, производимых многими организмами.[35]
Кислород[править | править код]
Кислород (O) является химическим элементом с атомным номером 8, встречающемся в природе в виде 16O, 17O и 18O, среди которых самым распространённым изотопом является 16O.[36]
Фтор[править | править код]
Фтор (F) является химическим элементом с атомным номером 9, имеющем единственный стабильный изотоп 19F.[37] Чрезвычайно химически активный неметалл и сильнейший окислитель.
Неон[править | править код]
Неон (Ne) является химическим элементом с атомным номером 10, встречающемся в природе в виде 20Ne, 21Ne и 22Ne.[38]
- ↑ 1 2 Lithium at WebElements.
- ↑ 1 2 Isotopes of Lithium (неопр.). Berkley Lab, The Isotopes Project. Дата обращения 21 апреля 2008. Архивировано 31 июля 2012 года.
- ↑ Krebs, Robert E. The History and Use of Our Earth’s Chemical Elements: A Reference Guide (англ.). — Westport, Conn.: Greenwood Press, 2006. — P. 47—50. — ISBN 0-313-33438-2.
- ↑ 1 2 Kamienski et al. «Lithium and lithium compounds». Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. Published online 2004. DOI:10.1002/0471238961.1209200811011309.a01.pub2
- ↑ Cade J. F. J. Lithium salts in the treatment of psychotic excitement (англ.) // Medical Journal of Australia (англ.)русск. : journal. — 1949. — Vol. 2, no. 10. — P. 349—352. — PMID 18142718.
- ↑ P. B. Mitchell,D. Hadzi-Pavlovic. Lithium treatment for bipolar disorder (англ.) // Bulletin of the World Health Organization (англ.)русск.. — World Health Organization, 2000. — Vol. 78, no. 4. — P. 515—517. — PMID 10885179.
- ↑ Baldessarini R. J., Tondo L., Davis P., Pompili M., Goodwin F. K., Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review (англ.) // Bipolar disorders : journal. — 2006. — October (vol. 8, no. 5 Pt 2). — P. 625—639. — DOI:10.1111/j.1399-5618.2006.00344.x. — PMID 17042835.
- ↑ 1 2 3 4 5 Beryllium at WebElements.
- ↑ Standards and properties of beryllium copper.
- ↑ Information about beryllium tweeters.
- ↑ IARC Monograph, Volume 58 (неопр.). International Agency for Research on Cancer (1993). Архивировано 31 июля 2012 года.
- ↑ Information Архивная копия от 31 марта 2001 на Wayback Machine about chronic beryllium disease.
- ↑ 1 2 3 Boron at WebElements.
- ↑ 1 2 3 Properties of boron.
- ↑ W.T.M.L. Fernando, L.C. O’Brien, P.F. Bernath. Fourier Transform Spectroscopy: B4Σ−−X4Σ− (неопр.) (PDF). University of Arizona, Tucson. Архивировано 31 июля 2012 года.
- ↑ K.Q. Zhang, B.Guo, V. Braun, M. Dulick, P.F. Bernath. Infrared Emission Spectroscopy of BF and AIF (неопр.) (PDF). University of Waterloo, Waterloo, Ontario. Архивировано 31 июля 2012 года.
- ↑ Compound Descriptions: B2F4 (неопр.). Landol Börnstein Substance/Property Index.
- ↑ Functions of Boron in Plant Nutrition (неопр.) (PDF) (недоступная ссылка). U.S. Borax Inc.. Архивировано 18 августа 2003 года.
- ↑ Blevins, Dale G.; Lukaszewski, Krystyna M. Functions of Boron in Plant Nutrition (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 1998. — Vol. 49. — P. 481—500. — DOI:10.1146/annurev.arplant.49.1.481. — PMID 15012243.
- ↑ Zook EG and Lehman J. 850-5 (неопр.) // J. Assoc. Off Agric. Chem. — 1965. — Т. 48.
- ↑ Boron (неопр.). PDRhealth. Дата обращения 18 сентября 2008. Архивировано 24 мая 2008 года.
- ↑ 1 2 3 4 Carbon at WebElements.
- ↑ Amorphous carbon // IUPAC Compendium of Chemical Terminology (неопр.). — 2nd. — International Union of Pure and Applied Chemistry, 1997.
- ↑ Vander Wal, R. Soot Precursor Material: Spatial Location via Simultaneous LIF-LII Imaging and Characterization via TEM (англ.) // NASA Contractor Report : journal. — 1996. — May (no. 198469). Архивировано 17 июля 2009 года. Архивная копия от 17 июля 2009 на Wayback Machine
- ↑ diamond-like carbon films // IUPAC Compendium of Chemical Terminology (неопр.). — 2nd. — International Union of Pure and Applied Chemistry, 1997.
- ↑ 1 2 Presentation about isotopes by Mahananda Dasgupta of the Department of Nuclear Physics at Australian National University.
- ↑ Plastino, W.; Kaihola, L.; Bartolomei, P.; Bella, F. Cosmic Background Reduction In The Radiocarbon Measurement By Scintillation Spectrometry At The Underground Laboratory Of Gran Sasso (англ.) // Radiocarbon : journal. — 2001. — Vol. 43, no. 2A. — P. 157—161. Архивировано 27 мая 2008 года. Архивировано 27 мая 2008 года.
- ↑ Ten most abundant elements in the universe, taken from The Top 10 of Everything, 2006, Russell Ash, page 10. Архивировано 10 февраля 2010 года.
- ↑ Chang, Raymond. Chemistry, Ninth Edition (неопр.). — McGraw-Hill Education, 2007. — С. 52. — ISBN 0-07-110595-6.
- ↑ Freitas Jr., Robert A. Nanomedicine, (итал.). — Landes Bioscience (англ.)русск., 1999. — С. Tables 3—1 & 3—2. — ISBN 1570596808.
- ↑ 1 2 3 Structure and Nomenclature of Hydrocarbons (неопр.). Purdue University. Архивировано 31 июля 2012 года.
- ↑ 1 2 3 4 Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the Cell (неопр.). — Garland Science (англ.)русск..
- ↑ Lavoisier, Antoine Laurent. Elements of chemistry, in a new systematic order: containing all the modern discoveries (англ.). — Courier Dover Publications, 1965. — P. 15. — ISBN 0486646246.
- ↑ Nitrogen at WebElements.
- ↑ Rakov, Vladimir A.; Uman, Martin A. Lightning: Physics and Effects (неопр.). — Cambridge University Press, 2007. — С. 508. — ISBN 9780521035415.
- ↑ Oxygen Nuclides / Isotopes (неопр.). EnvironmentalChemistry.com.
- ↑ National Nuclear Data Center. NuDat 2.1 database – fluorine-19 (неопр.). Brookhaven National Laboratory. Архивировано 31 июля 2012 года.
- ↑ Neon: Isotopes (неопр.). Softciências. Архивировано 31 июля 2012 года.
Четвёртый период периодической системы — Википедия
Материал из Википедии — свободной энциклопедии
К четвёртому пери́оду периоди́ческой систе́мы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Четвёртый период содержит восемнадцать элементов (на десять элементов больше, чем предыдущий), в него входят: калий, кальций, скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, мышьяк, селен, бром и криптон. Первые два из них, калий и кальций, входят в s-блок периодической таблицы, десять следующих являются d-элементами, а остальные относятся к р-блоку. Следует обратить внимание, что заполненные 3d-орбитали появляются только у элементов 4 периода. Все элементы этого периода имеют стабильные изотопы, все они встречаются в природе.[1]
Заметим, что исключение из эмпирического правила Клечковского, составляют следующие элементы: хром (Cr), никель (Ni) и медь (Cu).
Калий[править | править код]
Калий (K) — лёгкий серебристый щелочной металл с атомным номером 19 и атомной массой 39,0983. В природе встречается в виде двух стабильных изотопов: 39К (93,10% по массе) и 41К (6,88%), а также одного радиоактивного 40К (0,02%). Период полураспада калия-40 составляет 1,28 миллиарда лет.[2] Калий очень мягок, легко режется ножом и поддается прессованию и прокатке. Химически очень активен, легко взаимодействует с кислородом воздуха с образованием смеси, состоящей из пероксида К2О2 и супероксида KO2(К2О4). В природе в чистом виде не встречается.
Содержание калия в земной коре 2,41% по массе, калий входит в первую десятку наиболее распространённых элементов (7-е место). Калий — один из важнейших биогенных элементов, постоянно присутствующий во всех клетках живых организмов. Ионы калия участвуют в работе ионных каналов и регуляции проницаемости биологических мембран, в генерации и проведении нервного импульса, в регуляции деятельности сердца и других мышц, в различных процессах обмена веществ. Содержание калия в тканях животных и человека регулируется стероидными гормонами надпочечников. В среднем организм человека (масса тела 70 кг) содержит около 140 г калия.
Кальций[править | править код]
Кальций (Ca) — серебристо-белый щелочноземельный металл с атомным номером 20 и атомной массой 40,078. Из-за высокой реактивности с водой в природе в чистом виде не встречается.[3] По распространённости в земной коре занимает 5-е место (минералы: кальцит, гипс, флюорит и др.).[4]
Как активный восстановитель кальций служит для получения урана (U), тория (Th), ванадия (V), хрома (Cr), цинка (Zn), бериллия (Be) и других металлов из их соединений. Используется для раскисления сталей, бронз и т. д. Входит в состав антифрикционных материалов.
Кальций — пятый по количеству из присутствующих в человеческом организме минеральных компонентов: примерно 1000-1200 г в теле взрослого человека. Основная роль кальция — организация целостной скелетной системы, в которой и находится 99% всего кальция организма. Оставшийся 1% играет важнейшую роль в свертывании крови, генерации и передаче нервных импульсов, сокращении мышечных волокон, активации определённых ферментативных систем и выделении некоторых гормонов.[5]
Период периодической системы — Википедия
Материал из Википедии — свободной энциклопедии
Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.
Периодическая система имеет семь периодов. Первый период, содержащий 2 элемента, а также второй и третий, насчитывающие по 8 элементов, называются малыми. Остальные периоды, имеющие 18 и более элементов — большими. Седьмой период не завершён. Номер периода, к которому относится химический элемент, определяется числом его электронных оболочек (энергетических уровней).
Каждый период (за исключением первого) начинается типичным металлом (Li, Nа, К, Rb, Cs, Fr) и заканчивается благородным газом (Ne, Ar, Kr, Хе, Rn, Og), которому предшествует типичный неметалл.
В первом периоде, кроме гелия, имеется только один элемент — водород, сочетающий свойства, типичные как для металлов, так и (в большей степени) для неметаллов. У этих элементов заполняется электронами 1s-подоболочка.
У элементов второго и третьего периода происходит последовательное заполнение s— и р-подоболочек. Для элементов малых периодов характерно достаточно быстрое увеличение электроотрицательности с увеличением зарядов ядер, ослабление металлических свойств и усиление неметаллических.
Четвёртый и пятый периоды содержат декады переходных d-элементов (от скандия до цинка и от иттрия до кадмия), у которых после заполнения электронами внешней s-подоболочки заполняется, согласно правилу Клечковского, d-подоболочка предыдущего энергетического уровня.
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 6f 7d 7f ...
В шестом и седьмом периоде происходит насыщение 4f— и 5f-подоболочек, вследствие чего они содержат ещё на 14 элементов больше по сравнению с 4-м и 5-м периодами (лантаноиды в шестом и актиноиды в седьмом периоде).
Вследствие различия периодов по длине и другим признакам существуют разные способы их относительного расположения в периодической системе. В короткопериодном варианте, малые периоды содержат по одному ряду элементов, большие имеют по два ряда. В длиннопериодном варианте все периоды состоят из одного ряда. Ряды лантаноидов и актиноидов обычно записывают отдельно внизу таблицы.
Малые периоды | Большие периоды | |
Количество элементов | 2 или 8 | 18 и более |
Количество рядов | 1 | 2 |
Распределение электронов | заполняются только s— и р-подоболочки | заполняются также предвнешние d-подоболочки и предпредвнешние f-подоболочки |
Изменение свойств элементов | металлические свойства быстро убывают | медленный переход от металлических свойств к неметаллическим |
Элементы одного периода имеют близкие значения атомных масс, но разные физические и химические свойства, в отличие от элементов одной группы. С возрастанием заряда ядра у элементов одного периода уменьшается атомный радиус и увеличивается количество валентных электронов, вследствие чего происходит ослабление металлических и усиление неметаллических свойств элементов, ослабление восстановительных и усиление окислительных свойств образуемых ими веществ.
Восьмой период периодической системы — Википедия
Материал из Википедии — свободной энциклопедии
Восьмо́й пери́од периоди́ческой систе́мы включает гипотетические химические элементы, принадлежащие к дополнительной восьмой строке (или периоду) периодической системы. Систематизированные названия этих элементов переданы ИЮПАК к использованию. Ни один из этих элементов пока не был создан, и вполне возможно, что ни один из них не имеет изотопов с достаточно стабильными ядрами, чтобы синтезировать их в ближайшие годы. Возможно также, что в связи с капельной неустойчивостью ядер, только первые несколько элементов восьмого периода физически возможны.
Если бы удалось произвести достаточное количество этих элементов, чтобы изучить их химические свойства, вполне возможно, что эти элементы повели бы себя совершенно иначе, чем элементы предыдущих периодов. Это связано с тем, что их электронные конфигурации могут варьироваться из-за квантовых и релятивистских эффектов. Например, уровни энергии 5g-, 6f- и 7d-орбиталей у них расположены настолько близко друг к другу, что все они могут вступать в обмен электронами друг с другом. Это должно привести к большому числу элементов в группе суперактиноидов, которые будут иметь чрезвычайно сходные химические свойства.
С помощью компьютерных расчётов учёные попытались определить строение атомов и оценить важнейшие свойства таких «сверхэлементов», вплоть до огромных порядковых номеров (Z = 172 и даже Z = 184). Полученные результаты оказались весьма неожиданными. Например, в атоме элемента с Z = 121 предполагается появление 8р-электрона, это после того, как в атомах с Z = 119 и 120 завершилось формирование 8s-подоболочки. А ведь появление р-электронов вслед за s-электронами наблюдается только в атомах элементов второго и третьего периодов. Расчеты показывают также, что у элементов гипотетического восьмого периода заполнение электронных оболочек и подоболочек атомов происходит в очень сложной и своеобразной последовательности. Поэтому оценить свойства соответствующих элементов — проблема весьма сложная. Казалось бы, восьмой период должен содержать 50 элементов (Z = 119—168), но согласно расчётам, он должен завершаться у элемента с Z = 164, то есть на 4 порядковых номера раньше.[1]