Как решать задачи по геометрии. Часть 1
Геометрическая логика при решении задач
Геометрия… Страшное слово для бесчисленного множества учеников. Они знают свойства фигур и выучили определения и теоремы, но задачи по геометрии все равно остаются какой-то китайской грамотой.
Это про тебя? Тогда ты попал туда, куда нужно!
Проблема подавляющего большинства учеников в том, что они не умеют обдумывать задачу по геометрии. Их этому не научили (ну, или они не захотели научиться, когда была возможность). Именно в этой статье, я объясню саму технологию обдумывания и, в конечном счете, нахождения решения ПРАКТИЧЕСКИ ЛЮБОЙ задачи по геометрии.
Сразу оговорюсь — без знания теории в геометрии никак. В смысле, вообще никак, от слова «совсем». Чтоб тебе было полегче при чтении этой статьи, я буду внутри решений задач в скобках курсивом указывать используемые свойства и теоремы. Но помни: если вдруг в знании теории у тебя пробел – закрытие его за тобой! Бери учебник и читай. Причем главные вещи – заучивай (или понимай). Знать теорию – обязательно!
Ладно, к делу.
Ты играл когда-нибудь в квесты? Неважно в реальной жизни или в компьютере. Во всех квестах принцип один – у тебя есть что-то (вещи, знания, навыки) и есть цель (раскрыть какую-нибудь тайну, найти некий предмет, «спасти принцессу» и т.д.). При этом путь к цели – неизвестен. И зачем нужны эти самые имеющиеся у тебя «вещи, знания, навыки» – тоже непонятно. Что делать? Как достичь цели?
Известно как: использовать то, что есть, и искать, куда это применить, чтоб продвинуться к цели. То есть, делать шаги от своего текущего местонахождения – к цели. При этом понятно, что некоторые шаги будут вести нас не туда, куда надо, а совсем даже в тупик. А иногда мы будем находить вещи или информацию, вроде бы напрямую к цели не ведущие, но как выяснится в дальнейшем – необходимую.
Более того, порой можно логически двигаться и наоборот – от цели к твоей текущей позиции. Например, если нужно «спасти принцессу из замка», то понятно, что, скорее всего, надо будет как-то попасть в замок. А для этого надо оказаться на острове, где этот замок стоит. Как попасть? Может быть на лодке. Или найти телепорт. Или использовать магию. Но на остров – надо. Начинаем искать пути на остров. Это уже логические шаги от цели к текущей позиции.
К чему весь этот разговор? Решение задачи по геометрии это точно такой же «квест», только математический . Вдумайся: у нас всегда есть некоторые исходные данные и есть то, что нужно найти (или доказать – разницы на самом деле практически нет). И наша задача – построить логическую цепочку от исходных данных к цели. Строительным материалом при этом у нас будут данные (исходные и полученные при рассуждениях), а также теоремы и свойства.
Ладно, давай уже конкретный пример разберем.
Задача. В треугольнике \(ABC\) из точки \(B\) проведена высота \(BH\). Найти длину отрезка \(AH\), если известно, что сторона \(AC\; =\; 14\) см и угол \(A\) равен углу \(C\).
Так. С чего начинается решение геометрической задачи? Ну, а с чего начинается решение квеста? Правильно, осматриваемся по сторонам, изучаем, что у нас есть и куда нас жизнь закинула.
В геометрии это означает:
- построить чертежа выделить из условия задачи исходные данные, то есть, выяснить, что нам дано.
- выделить из условия задачи исходные данные, то есть, выяснить, что нам дано.
Хорошо. Значит, текущая ситуация у нас такова:
Давайте потихоньку развеивать туман. Нам известно, что углы \(А\) и \(С\) равны, а это значит, что треугольник \(АВС\) – равнобедренный с основанием АС (теория – «признак равнобедренного треугольника: равенство углов при одной из сторон. Она и является основанием»). Это новая информация, новые данные, изначально неизвестные. Делаем шаг.
Отлично. Теперь смотрим, что у нас есть еще? Еще у нас есть информация, что \(BH\) – высота. А раз треугольник \(ABC\) – равнобедренный, то значит \(BH\) еще и медиана (теорема о высоте в равнобедренном треугольнике: высота, проведенная к основанию равнобедренного треугольника является медианой и биссектрисой). То есть, мы, используя новые, полученные на предыдущем шаге данные, а также исходные данные и знание теории, делаем еще один шаг и опять получаем новую информацию.
А что мы знаем про медиану? Она делит противоположную сторону на две равные части (определение медианы: отрезок, соединяющий вершину треугольника с серединой противоположной стороны). Но тогда получается, что точка \(H\) делит сторону \(AC\) пополам. То есть \(AH = HC\).
Стоп. Так у нас же есть длина стороны \(AC\)! И если мы знаем, что точка \(H\) делит сторону \(AC\) пополам, значит, \(AH\) равен половине \(AC\)! Таким образом, получаем, что \(AH = AC/2 = 14/2=7\) см.
Готово. Ответ получен.
Естественно, такие конструкции с «пятном тумана» рисовать каждый раз не нужно, эта схема показывает логическую цепочку решения у нас в голове. А записывается примерно так:
cos-cos.ru
«Классические» схемы для решения задач по геометрии
Анна Малкова
Многие старшеклассники считают, что геометрия сложнее алгебры. «В алгебре все просто, — говорят они. – Есть способы решения уравнений. Есть типы задач – на движение, на работу, на проценты – и для каждой свои приемы решения. А задачи геометрии друг на друга не похожи».
Так ли это? Может быть, и в планиметрии есть схемы, на которых строится множество задач?
Да, есть. Я называю их «классические схемы планиметрии». Учимся узнавать их и использовать в задачах! И возможно, что на ЕГЭ вам встретится задача, «ключиком» к которой будет одна из этих схем. Конечно, на ЕГЭ эти утверждения надо доказывать.
Вот 5 полезных схем для решения задач по планиметрии.
Схема 1. В треугольнике АВС проведены высоты АМ и СК.
H – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК
1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
, если , и , если
- Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
- Четырехугольник ВКМН также можно вписать в окружность.
- Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
- , где R – радиус описанной окружности .
Схема 2. Пусть луч МА пересекает окружность в точках А и В, а луч МD – в точках С и D, причем МА > МВ, МD > МС. Тогда треугольники ВМС и DМА подобны.
Схема 3. У треугольников АВС и АМС сторона АС – общая, угол В равен углу М, причем точки В и М лежат по одну сторону от прямой АС. Тогда точки А, В, С, М лежат на одной окружности.
Схема 4. У треугольников АВС и АМС сторона АС – общая, углы В и М – прямые. Тогда точки А, В, С, М лежат на окружности, радиус которой равен половине АС.
Схема 5. Лемма о трезубце (трилистнике)
И несколько лайфхаков для сдающих ЕГЭ.
1) Любая задача из варианта ЕГЭ решается без сложных формул. И если вы не помните теорему Чевы, теорему Менелая и другую экзотику – вам это и не понадобится. Только то, что есть в нашем Супер-Справочнике . И полезные факты. Зато знать это надо наизусть.
2) Когда вы отлично знаете все теоремы, формулы, свойства геометрических фигур – у вас в голове выстраивается цепочка ассоциаций. Например, в условии задачи дан радиус вписанной окружности. В каких формулах он встречается? – Правильно, в теореме синусов и в одной из формул для площади треугольника.
3) Есть такие теоремы, которые вроде и входят в школьную программу – а попробуй их найди в учебнике. Например, теорема о секущей и касательной или свойство биссектрисы треугольника. А вы их знаете?
4) Как научиться решать задачи по геометрии? Если у вас маловато опыта – не стоит начинать с реальных задач ЕГЭ. Сначала – задачи на доказательство. Тем более что в реальной задаче 16 из варианта ЕГЭ первый пункт – доказательство.
5) Если вы вдруг не можете решить пункт (а), но решили пункт (б), вы получите за него один балл. А это лучше, чем ничего. Но вообще пункт (а), как правило, бывает простым. Иногда вопрос в пункте (а) очень простой. И это не только для того, чтобы вы получили «утешительный» балл. Помните, что пункт (а) часто содержит подсказку, идею для решения пункта (б).
6) Среди стратегий подготовки к ЕГЭ есть эффективные. А есть откровенно проигрышные.
Пример плохой стратегии – когда старшеклассник принимает решение заниматься только алгеброй и считает планиметрию и тем более стереометрию слишком сложными для себя. И вот на ЕГЭ попадается сложное неравенство или «экономическая» задача. И всё, баллов не хватает! Тех самых баллов за планиметрию и стереометрию, которые можно было взять, не хватает для поступления!
Чтобы такого не случилось – занимаемся планиметрией как можно больше.
7) Стоит учесть, что задачи вариантов ЕГЭ по планиметрии и стереометрии бывают намного проще, чем по алгебре.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
ege-study.ru
В данном курсе приведены условия и решение задач по геометрии. Есть также некоторое количество задач из курса алгебры, если их содержание предполагало знания по геометрии. Задачи структурированы по темам: Планиметрия, Треугольники, Четырехугольники, Многоугольники, Стереометрия и т.д. Все задачи по геометрии — с решением. Если Вы не нашли решение задачи по геометрии интересующего Вас типа, напишите об этом в форуме — практически наверняка курс будет дополнен Вашей задачей. Обратите внимание на то, что задача (тип задачи) решение которой Вас интересует, может находиться несколько в ином разделе, чем Вы рассчитываете. Например, в разделе «теорема синусов», если ее решение предполагает использование данной теоремы. Для решающего это не всегда очевидно.
Для ознакомления со справочной информацией, которая часто необходима для решения, например, относительно формул площади треугольника, площади параллелограмма, признаков подобия треугольников и т.д. перейдите к соответствующему разделу. Как правило, каждая глава содержит необходимую справочную информацию. Идея курса — решение конкретных задач на примерах для получения навыков в их решении. |
У даному курсі приведені умови і рішення задач з геометрії. Є також деяка кількість завдань з курсу алгебри, якщо їх вміст передбачав знання по геометрії. Завдання структуровані по темах: Планіметрія, Трикутники, Чотирикутники, Багатокутники, Стереометрія і так далі. Всі завдання по геометрії — з рішенням. Якщо Ви не знайшли рішення задачі по геометрії того типу, що цікавить Вас, напишіть про це на форумі — курс буде доповнений Вашим завданням. Звернiть увагу на те, що завдання (тип завдання) вирішення якого Вас цікавить, може знаходитися декілька в іншому розділі, чим Ви розраховуєте. Наприклад, в розділі «теорема синусів», якщо її рішення передбачає використання даної теореми. Для учня це не завжди очевидно. Для ознайомлення з довідковою інформацією, яка часто необхідна для вирішення, наприклад, відносно формул площі трикутника, площі паралелограма, ознак подібності трикутників і так далі — перейдіть до відповідного розділу. Як правило, кожна глава містить необхідну довідкову інформацію. Ідея курсу — вирішення конкретних завдань на прикладах для здобуття навиків в їх рішенні. |
profmeter.com.ua
Несколько способов решения одной геометрической задачи
Для успешного изучения геометрии учащиеся старших классов должны не только знать основные формулы и теоремы, но и владеть различными методами решения геометрических задач. В успешном усвоении различных методов решения может помочь рассмотрение различных способов решения одной и той же задачи.
Рассмотрим несколько основных способов, которые чаще всего применяются при решении геометрических задач: координатный, векторный, аналитический (то есть сводящийся к решению уравнений и систем уравнений), тригонометрический (то есть основанный на формулах тригонометрии) и чисто геометрический.
1. Способ координат
Этот способ считается самым универсальным для решения геометрических задач.
Рассмотрим его и другие возможные способы на примере одной задачи.
Задача.
В произвольном треугольнике АВС биссектриса ВЕ перпендикулярна медиане АD, причем ВЕ = AD = 4. Найти стороны треугольника АВС.
Решение.
Рассмотрим треугольник АВС (рис. 1).
Точка О – точка пересечения биссектрисы ВЕ и медианы АD.
Прямоугольные треугольники АВО и DВО равны по катету и острому углу. Поэтому АО = ОD = 2 и АВ = ВD, так что
ВС = 2АВ.
Пусть точка О – начало прямоугольной системы координат. Ось абсцисс совпадает с направлением вектора ОD. Будем считать, что |OD|/2 есть единичный отрезок координатной плоскости.
В введенной системе координат точки А, D, В имеют следующие координаты:
А(-2; 0), В(0; b), и D(2; 0).
Чтобы вычислить длины сторон треугольника АВС надо определить, чему равно число b.
Его можно выразить через координаты точек С и Е. Зная, что D – середина ВС, получаем, что С(4; -b). Найдем вторую координату точки Е(0; у), пользуясь тем, что она принадлежит прямой АС.
Уравнение прямой АС имеет вид: (х + 2)/6 = у/(-b).
Координаты точки E(0; у) этому уравнению удовлетворяют, поэтому, подставив в него 0 вместо х, получим,
что y = -⅓·b.Следовательно, ВЕ = 4/3 · b. По условию задачи BE = 4, значит, b = 3.
Итак, имеем A(-2; 0), В(0; 3), С(4; -3). Теперь, зная координаты вершин треугольника АВС, найдем его стороны:
АВ = √13, ВС = 2√13, АС = 3√5.
2. Векторный способ
Введем обозначения: ВА = а, ВС = с.
Теперь через а и с выразим векторы ВЕ и АD.
По свойству биссектрисы треугольника из того, что ВС = 2BD, следует, что
СЕ = 2АЕ. По формуле деления отрезка в данном отношении имеем:
ВЕ = (c + 2a)/3.
По правилу вычитания векторов АD = 1/2 · c – a. У векторов ВЕ и АD длины известны.
Пусть |a|= a, тогда |c|= 2a. Вычислив скалярные квадраты векторов ВЕ и AD, получим уравнения:
2a2 + ac = 36; 2a2 – ac = 16.
Отсюда a2 = 13 и ac = 10.
Значит, АВ= √13, ВС=2√13.
Найдем сторону АС по теореме косинусов: AC2 = 5a2 – 2ac. Подставив вместо a2 и ас найденные выше значения, получим АС = 3√5.
3. Аналитический способ
Медиану AD и биссектрису ВЕ треугольника АВС выразим через длины а, b и с сторон треугольника АВС по формулам: AD2 = (b2 + c2)/2 – a2/4 и BE2 = ac – a₁c₁, где а1 = СЕ и с1= АЕ.
Пусть АВ = х, АЕ = у, тогда ВС = 2х и СЕ = 2у. Получим систему уравнений:
{(х2 + 9у2)/2 – х2 = 16
{х2 – у2 = 8.
Отсюда x2 = 13, у2 = 5.
Значит, АВ = √13, ВС = 2√13 и АС=3√5.
4. Тригонометрический способ
Обозначим АВ = х, а угол АВС = 2α. По теореме косинусов из треугольников АВЕ и ВСЕ можно выразить АЕ и СЕ:
АЕ2 = х2 + 16 – 8х · cos α и CE2 = 4x2 + 16 – 16x · cos α.
Пользуясь тем, что СЕ = 2АЕ или CE2 = 4AE2, имеем: x · cos α = 3.
Но x · cos α = ВО, а значит, ВО = 3 и ОЕ = 1.
Далее, пользуясь теоремой Пифагора, остается только вычислить стороны треугольника АВС.
5. С помощью площадей
Так как АО = ОD = 2, ВЕ = 4 и АD перпендикулярно ВЕ, то площадь каждого из треугольников ВАЕ и ВDE равна 4 (рис. 2). Площадь треугольника СDE также равна 4, так как медиана ED делит треугольник ВСЕ на два равновеликих треугольника. Значит, площадь треугольника АВС равна 12.
Так как AD – медиана треугольника АВС, то площадь треугольника ABD равна 6.
По формуле площади треугольника
SABD = АО · ВО = 6.
Но АО = 2, а значит,
ВО = 3.
Стороны треугольника АВС можно найти по теореме Пифагора.
Итак, задача может быть решена устно, если догадаться соединить точки D и Е, а затем вычислять площади треугольников.
6. С помощью осевой симметрии
Точки А и D симметричны относительно биссектрисы ВЕ. Построим еще точку, симметричную точке С относительно прямой ВЕ. Для этого продолжим отрезок DE до пересечения с прямой АВ и обозначим через F точку пересечения прямых АВ и DЕ.
Получим равнобедренный треугольник ВСF. Из равенства треугольников ВЕF и ВЕС следует, что ВF = ВС.
Продолжим еще биссектрису ВЕ до пересечения с СF в точке Н.
Тогда ВН – биссектриса треугольника ВСF, а следовательно, и его медиана.
Таким образом, Е – точка пересечения медиан треугольника ВСF, и поэтому ЕН = 0,5; ВЕ = 2, а ВН = 6.
Средняя линия АD треугольника ВСF делит медиану ВН пополам, поэтому ВО = 3. Далее поступаем так же, как и при решении задачи другими способами.
Как видим, вспомогательные построения привели к простому, чисто геометрическому способу решения задачи.
7. По теореме о средней линии треугольника
Проведем среднюю линию DK треугольника ВСЕ (рис. 3).
Так как DK || ВЕ и АО = ОD, то ОЕ – средняя линия треугольника АDK. Следовательно,
ОЕ = 1/2 · DK и DK = 1/2 · ВЕ, т.е. ОЕ = 1/4 · ВЕ.
Так как ВЕ = 4, то ОЕ = 1 и ВО = 3.
Из решения видно, что отношение ВО/ОЕ не зависит от длин отрезков ВЕ и АD. Найти это отношение можно используя лишь тот факт, что АD – медиана треугольника АВС и
АО = ОВ, причем без всяких вспомогательных построений.
8. По теореме Менелая
Секущая ВЕ пересекает стороны треугольника АСD в точках Е и О.
По теореме Менелая из треугольника АСD имеем:
AE/EC · CB/BD · DO/OA = 1, а так как СВ/ВD = 2 и DО = ОА, то АЕ = ЕС.
Применив теорему Менелая к треугольнику ВСЕ и секущей АD, получим:
BO/OE · EA/AC · CD/DB = 1.
Но ЕА/АС = 1/3 и СD = DВ.
Следовательно, ВО/ОЕ = 3.
На примере одной задачи мы рассмотрели несколько способов ее решения. Кроме приведенных решений можно отыскать и другие, более сложные, чем геометрические способы. Решение этой задачи можно выполнить с помощью теоремы косинусов, формулы Герона для площади треугольника, составления и решения системы из трех уравнений. Однако, можно найти наиболее простое и красивое решение с помощью дополнительных построений.
Остались вопросы? Не знаете, как решать задачи по геометрии?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
blog.tutoronline.ru
Геометрия. Урок 7. Практические задачи по геометрии
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Два треугольника называются подобными, если углы одного треугольника соответственно равны углам другого треугольника, а стороны одного треугольника соответственно пропорциональны сторонам другого треугольника.
Подобие треугольников обозначается значком «∼». Запишем подобие двух треугольников:
△ABC∼△A1B1C1Соответственные стороны двух подобных треугольников – это стороны, которые лежат напротив равных углов.
Пары равных углов:
∠A и ∠A1
∠B и ∠B1
∠C и ∠C1
Пары соответственных сторон:
BC и B1C1
AC и A1C1
AB и A1B1
Представьте себе, что на смартфоне или планшете вы открыли изображение треугольника. Вы захотели получше его рассмотреть и увеличили изображение. Сам треугольник увеличился, но его пропорции сохранились (он не сплюснулся, не вытянулся, просто стал больше). Вот такие два треугольника: исходный и увеличенный будут подобными. Масштаб увеличенной картинки изменился в k. Это число k будет являться коэффициентом подобия этих треугольников.
Коэффициент подобия k это число, равное отношению соответственных сторон подобных треугольников.
k=A1B1AB=A1C1AC=B1C1BC
- Если стороны большего треугольника относить к сторонам меньшего треугольника, то коэффициент подобия k>1.
- Если стороны меньшего треугольника относить к сторонам большего треугольника, то коэффициент подобия k<1.
Отношение периметров подобных треугольников равно коэффициенту подобия.
P△A1B1C1P△ABC=k
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
S△A1B1C1S△ABC=k2
Первый признак подобия треугольников (по двум углам)
Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
∠A=∠A1∠B=∠B1|⇒△ABC∼△A1B1C1
Второй признак подобия треугольников (по двум сторонам и углу между ними)
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
∠A=∠A1A1B1AB=A1C1AC=k|⇒△ABC∼△A1B1C1
Третий признак подобия треугольников (по трём сторонам)
Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
A1B1AB=A1C1AC=B1C1BC=k⇒△ABC∼△A1B1C1
В задании 17 ОГЭ встречаются задачи, в которых необходимо найти угол между часовой и минутной стрелкой. Давайте разберёмся, как их решать.
Часовой циферблат – это окружность.
Градусная мера всей окружности равна 360°.
Стрелки – стороны центральных углов.
На окружности 60 маленьких делений и 12 больших.
Каждое маленькое деление отсекает от окружности дугу, градусная мера которой равна 360°60=6°.
Каждое большое деление отсекает от окружности дугу, градусная мера которой равна 360°12=30°.
Можно рассуждать, что одна большая дуга содержит пять маленьких, то есть её градусная мера равна 6°⋅5=30°.
В задании 17 ОГЭ встречаются задачи, в которых дано колесо со спицами и требуется определить либо угол между соседними спицами (если дано количество спиц), либо количество спиц (если дан угол между соседними спицами). Будем разбираться, как такие задачи решать.
Пусть у нас есть колесо, в котором n спиц. Тогда эти спицы образуют n равных центральных углов α.
Формула, которая связывает количество спиц и угол между двумя соседними:
α⋅n=360°
В задаче данного типа дана лестница, состоящая из n ступенек. Каждая ступенька характеризуется своей высотой (вертикальный отрезок) и длиной (горизонтальный отрезок). Сама лестница характеризуется своей длиной (отрезок AC), высотой (отрезок BC) и отрезком AB.
Высота всей лестницы – количество ступенек, умноженное на высоту одной ступеньки. Длина всей лестницы – количество ступенек, умноженное на длину одной ступеньки. Для нахождения длины лестницы необходимо применить теорему Пифагора.
Теоретический и практический материал по нахождению площадей треугольников и четырехугольников можно найти в уроках 3 и 4 модуля геометрия.
Перейти по ссылкам:
epmat.ru
Полезные факты для решения задач по геометрии
Анна Малкова
Полезные факты для решения задач ЕГЭ по геометрии (ЕГЭ по математике, Часть 2, профильный уровень).
Как научиться решать задачи ЕГЭ по геометрии (задача 16, Профильный уровень)?
Школьные учебники геометрии (Л. С. Атанасян, А. Г. Мерзляк…) неплохие. Даже лучше, чем по алгебре. Однако в них нет задач из вариантов ЕГЭ. Непонятно, как по ним готовиться к ЕГЭ, на что обращать внимание. Да и нет времени в 11-м классе заново читать учебник и решать все задачи подряд.
В освоении планиметрии важен правильный подход. Многие начинают с реальных задач ЕГЭ, а когда не получается, чувствуют разочарование. Не стоит так делать.
Первый этап: выучите теорию. Определения, теоремы, признаки. Основные формулы. Например, для площади треугольника нам нужны 5 формул. Помните их? Все они применяются в решении задач. Теоремы синусов и косинусов. Свойства высот, медиан и биссектрис. И многое другое.
В этом вам поможет Полный справочник Анны Малковой для подготовки к ЕГЭ по математике. Именно то, что нужно для решения задач ЕГЭ. Ничего лишнего. А цветные картинки запоминаются сами собой.
И конечно, практика! Решаем задачи ЕГЭ. Сначала – Часть 1, задачи 3 и 6. Не меньше 50 задач первой части ЕГЭ по теме «Планиметрия» надо решить, чтобы выучить и уметь применять теоремы и формулы планиметрии.
Изучить планиметрию и потренироваться в решении задач можно на нашем Онлайн-курсе.
Задачи, решения, видеоразбор.
Отлично, освоили задачи по планиметрии 1 части Профильного ЕГЭ по математике. Пора переходить ко второй! К задаче 16. Но не будем спешить. Пункт (а) задачи 16 Профильного ЕГЭ по математике – доказательство. А вы знаете, что пункт (а) нужен не только для того, чтобы вы получили один из трех баллов за эту задачу? Что во многих задачах ЕГЭ №16 пункт (а) содержит идеи для решения пункта (б). Намеки на то, как решить задачу полностью. Надо научиться доказывать всевозможные утверждения планиметрии.
Мы публикуем для вас новый и ценный материал — доказательство полезных фактов. Это и повторение всего курса (7-9 класс), и «заготовки» для многих задач ЕГЭ.
Приведем список из 32 полезных фактов. Докажите их самостоятельно и проверьте решения по ссылкам.
Для большинства этих полезных фактов приведены примеры решения задач и первой, и второй части Профильного ЕГЭ по математике.
Углы, треугольники, четырехугольники
1. Биссектрисы смежных углов перпендикулярны.
2. Свойство медианы прямоугольного треугольника.
3. Сумма квадратов диагоналей параллелограмма.
4. Площадь выпуклого четырехугольника
5. Свойства трапеции: отрезок, соединяющий середины диагоналей
6. Свойства равнобедренной трапеции
7. Замечательное свойство трапеции.
8. Свойство серединных перпендикуляров к сторонам треугольника.
9. Свойства биссектрис треугольника.
10. Свойства медиан треугольника
11. Свойство высот треугольника.
Окружности
12. Диаметр, перпендикулярный хорде, делит ее пополам.
13. Теорема о пересекающихся хордах.
14. Теорема о серединном перпендикуляре к хорде.
15. Равные хорды удалены от центра окружности на равные расстояния.
16. Дуги окружности, заключенные между параллельными хордами, равны.
17. Угол между касательной и хордой.
18. Теорема о секущей и касательной.
19. Угол между пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами.
20. Угол между двумя секущими (с вершиной вне окружности) равен полуразности дуг, высекаемых секущими на окружности.
21. Радиус окружности, вписанной в прямоугольный треугольник с катетами а и b и гипотенузой с, равен .
22. Прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
23. Если расстояние между центрами окружностей радиусами R и r равно а и , то отрезки общих внешних и общих внутренних касательных, заключенные между точками касания, равны соответственно и
24. Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противоположных углов равна 180 градусов.
25. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
26. Если окружность вписана в равнобедренную трапецию, то боковая сторона трапеции равна ее средней линии.
27. Если М – точка касания со стороной АС окружности, вписанной в треугольник АВС, то АМ = р – ВС, где р – полупериметр треугольника АВС.
28. Если окружность касается стороны ВС треугольника АВС и продолжений сторон АВ и АС, то расстояние от вершины А до точки касания окружности с прямой АВ равно полупериметру треугольника АВС.
29. Если окружность, вписанная в треугольник АВС, касается сторон АВ, ВС и АС соответственно в точках K, L, M, а угол ВАС равен , то угол KLM .
30. Если прямые, проходящие через точку А, касаются окружности S в точках В и С, то центр вписанной окружности треугольника АВС лежит на окружности S.
31. Если площадь треугольника равна S, то площадь треугольника, составленного из его медиан, равна .
32. Свойство биссектрисы треугольника. Биссектриса угла треугольника делит противолежащую сторону в отношении длин прилежащих сторон.
*При составлении списка полезных фактов использованы учебные пособия Р. К. Гордина.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
ege-study.ru
Как решать задачи по геометрии: практические советы и рекомендации
Как решать задачи по геометрии? Многие учащиеся задаются этим вопросом на протяжении многих лет. Иногда даже сам предмет вызывает страх и отвращение из-за непонимания отдельных тем. Потом бывает очень сложно преодолеть неприязнь к геометрии и снова с заинтересованностью посещать уроки.
В чем причина
Во многом все зависит от того, как преподаватель объясняет свой предмет. Если учитель сможет заинтересовать учеников, дальше дело пойдет по накатанной, и каждый урок будет захватывающим. Дети даже будут оставаться на переменке, чтобы успеть решить как можно больше задач.
Если вам плохо объясняли этот предмет или есть еще какие-то причины, по которым у вас совершенно не получается вникнуть в тему, эта статья поможет разобраться.
Как научиться решать задачи по геометрии?
Для начала нужно понять, что за один день вы вряд ли далеко продвинетесь в своих знаниях, так что настраивайтесь на длительный процесс обучения.
Также нужно определиться с целью. Если вам нужно просто решить задачу по геометрии, чтобы не получить плохую оценку за контрольную работу, достаточно лишь выучить определенную тему и потренироваться в практических аспектах.
Что делать?
Возьмите учебник и пролистайте последние несколько параграфов, которые вы изучили. Постарайтесь вникнуть в информацию, поймите, что от этого зависит то, как будут оценены ваши знания. Теперь можете взять листочек и изучить несколько задач, обязательно смотрите в текст учебника и пытайтесь понять алгоритм решения.
Если что-то не получается, обратитесь к решебнику, который выпущен специально под ваш учебник. Только не списывайте абсолютно все, старайтесь понять, как решать задачи по геометрии.
Вспомните, о чем говорил преподаватель на занятиях, возможно, какая-то информация окажется полезной.
Не стоит пренебрегать и человеческим фактором. Хорошо знающие предмет школьники или студенты не откажут вам в помощи. Некоторые из них могут объяснить гораздо доходчивее преподавателей.
А тем, кто решил не просто разобраться в отдельных темах, а научиться решать задачи и как орешки их щелкать, нужно основательно потрудиться.
Во-первых, главное – это мотивировать себя на дальнейшие занятия. Бывает так, что вопрос о том, как научиться решать задачи по геометрии, встает лишь один раз, а потом начинается просто списывание примеров из интернета. Так делать крайне нежелательно.
Развивайте усидчивость. Посмотреть в решебник намного проще, разумеется, но подумайте, какое наслаждение вы испытаете, когда самостоятельно решите сложную задачку. Поэтому лучше лишние полчаса посидеть за учебником, чем стараться списать побыстрее чье-то решение.
Может быть, геометрия вам понадобится для будущей профессии. Тогда тем более не стоит откладывать дело в долгий ящик, нужно приниматься за задачи прямо сейчас.
Во-вторых, практика, и только она, поможет вам стать на шаг ближе к своей цели!
Заведите привычку узнавать что-то новое каждый день. Просто старайтесь с утра решать одну задачу, а потом проверяйте по ключам ее правильность. Позже заметите, что с каждым днем процесс идет все быстрее и качественнее.
Самое главное здесь – не сдаваться и не обращать внимания на мелкие трудности. Если вы включите в распорядок дня этот совет, то вопрос о том, как решать задачи по геометрии, отпадет сам собой.
В-третьих, обращайтесь за помощью к знакомым.
Не бойтесь в школе лишний раз поднять руку и выйти к доске, чтобы решить сложный пример, который никто не отважился постичь. Даже если что-то пойдет не так, и вам не удастся сделать задание, ничего страшного в этом нет. Преподаватель объяснит решение примера и даже похвалит вас за смелость. Также это неплохой способ показать свои знания одноклассникам.
Ребята могут помочь с выполнением заданий, когда узнают, что вы настроены серьезно в изучении предмета.
Не вешаем нос!
Не отчаивайтесь, если никто не откликнулся на вашу просьбу. Всегда можно обратиться за помощью к репетитору, который точно объяснит, как решить задачу по геометрии. Даже при ограничении в денежных средствах хорошим выходом станут занятия по скайпу, которые ничем не хуже уроков, проходящих при личной встрече.
Вот и все советы. Будем надеяться, что вы все-таки поняли, как решать задачи по геометрии. В любом случае старайтесь применять эти методы на практике, и вы осуществите задуманное!
fb.ru